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Two-level bosonic model that simulates the transition from a superconductive condensate
to an alpha cluster condensate
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A simple bosonic model that has two different phases, one corresponding to a condensate of bo-
sons, a situation that resembles spherical nuclei, and a second one of a condensate of pairs of bosons
that corresponds to nuclei where the ground state is a condensate of alphalike clusters, is solved in
several different approximate treatments and exactly. Some differences due to the finite number of
bosons from the known results for large boson systems are obtained.

I. INTRODUCTION

The spectra of medium and heavy nuclei have fre-
quently been described in terms of elementary modes of
excitation involving clusters of nucleons. Pairs of nu-
cleons coupled to J=O, T=l have been used, for in-
stance, in nuclear superAuidity as well as in pairing vi-
brations. Excitation modes with a larger number of par-
ticles were introduced within the quartet model some
years ago. Within this picture the building blocks are a
clusters. The reason for this choice was clearly suggested
by the large stability of the a particles. Models of this
type have been applied since the early years of nuclear
physics. -' For light nuclei where N =Z the e cluster has
shown a reasonable success. There is also, in connection
with nuclear masses, ' good evidence throughout the
periodic table, suggesting a quartet picture.

It has been shown" that there may be a competition
between condensates of pairs of like particles (i.e. , a su-
perconductive description of nuclei) and a state formed
by a condensate of alphalike clusters (that may be associ-
ated with deformed states). It has also been shown that
not only T = 1, but also T =0 interacting correlated pairs
would be needed to describe these alphalike clusters. For
this one must include' R different two-particle "collec-
tive" excitations, where R is a number of the same order
of magnitude than the number of active particles. In this
way the four-body excitations are constructed as a
coherent mixture of those pairs of two-body collective ex-
citations. The quantum numbers of the four-body excita-
tion that we are considering are similar to those of the al-
pha particle (i.e. , J= T =0). In this case each collective
pair will have only one partner when building the
coherent state.

It is worthwhile to remark that in zero order of I /0,
where 0, is the number of effective particle-particle states,
the collective pair can be treated as bosons because the
Pauli corrections are of order 1/Q. ' A simple model
that displays this competition can be provided by a bo-
sonic model, where two levels have energies equal to

D/2 w—hile the remaining ones, 2R, have single boson
energies D/2. The two levels with energy —D/2 simu-
late the proton and neutron pairing bosons that are used
in the usual description of pairing vibrations. The con-
densate of this type of bosons can be described as a super-
conductive system. The 2R levels with energy D/2 simu-
late the two-particle excitations formed by a proton (p)
and a neutron (n). If these p nexcitatio-ns interact via a
pairinglike residual Hamiltonian, one obtains collective
pairs of p npairs (tha-t may have the same quantum num-
bers as alpha particles). In Ref. 11 it was shown that this
type of residual Hamiltonian has some resemblance with
the effective interaction for the ' Po nucleus. A similar
study, obtaining the same type of results was made in
Ref. 14 for Hg. This simple version has the advantage
of displaying in a simple way the existence of a collective
coherent state. The main effects that we want to point
out are just related to the mere existence of this coherent
state and therefore its structure seems to be not very im-
portant.

The main purpose of the present paper is to explore
along this line the origin of the four-body correlations in
heavy nuclei. We study the very simple model just dis-
cussed where the pairs of particles are replaced by bo-
sons. We introduce in Sec. II a simple model for bosons
that mock up many of the features that seem to be
present in real nuclei, a method to solve it exactly and we
also introduce the Holstein-Primakoff transformation be-
tween bosons that allows us to connect this simple model
with one that has appeared before in connection with
four-body correlations. In Sec. III we compare the re-
sults obtained for the ground state using different approx-
imate treatments of this simple model with those ob-
tained by the exact calculation. In Sec. IV we make a
similar treatment for the excited states and the con-
clusions are drawn in Sec. V.

A secondary purpose of the present paper is to study
with this simple model the competition between particle
and pair condensation in Bose systems when the number
of particles is not too large.
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H g(BqBq+BB ) BB BB
q=l

R—G B,"Bt +B B +H.c.
q=1

(2.1)

where B~ creates a boson with quantum numbers q.
There are 28. types of different bosons that have the same
single-~article energy D/2, while bosons created by B,
and B have single-particle energy D/2—. A boson of
the type 8 is always created or destroyed by the Hamil-
tonian together with its conjugate boson 8 . This modelq'

II. FORMULATION OF THE MODEL
AND EXACT TREATMENTS

We will consider a system formed by M bosons in-
teracting via the Hamiltonian

is an attempt to mock up the competition between the
pairinglike bosons (represented by B„that creates a pro-
ton pairing phonon, and by B that creates a neutron
pairing phonon) and the alphalike excitations (represent-
ed by the coherent sum of pairs of conjugate bosons,
where each of these bosons can be thought of as a p-n
pair).

In order to solve exactly the Hamiltonian we can diag-
onalize it numerically. To simplify the evaluation of the
matrix elements, it is convenient to introduce the concept
of shell seniority, as in the fermionic case. If one consid-
ers for example the shell formed by the bosons of the type
o and 0, one has a state of shell seniority s if (a) the state
has s bosons of the type 0 or 0 and (b) the operator B,B
acting on the state cancels it. One can define in a similar
way the seniority of the other shells. It will then be con-
venient to use the normalized states

)n, M, s, l ) = (l +R —1)!
n!(s +M n)!(M ——n)!l!(1 +n +R —s)!

' 1/2

(B~tB~t)M
— y BtB~t

~
l )

q=l
(2.2)

where s is the seniority associated with the shell 0 while l is the seniority associated with the shells q.
The matrix elements of the interacting part of the Hamiltonian can be written as

(n —I,Ms, l!H;„t~n,Ms, l ) = G&—n (R +1+n —1)(s +M n+1)(—M n+1) . — (2.3)

Pi =B,B0 (2.5a)

q
(2.5b)

and their matrix elements between ground states are good
candidates to be the order parameters.

An important point when studying these simple models

In zeroth order, when the interaction is negligible, the
ground state of the system will-be approximately de-
scribed by a condensate of bosons formed by a mixture of
B, and 8 . If they represent, respectively, the proton
and neutron pairing phonons the ground state will be
given by a state of the form

Btz/2Btn/2~O) (2.4)0

where z and n are the active number of protons and neu-
trons, respectively. For simplicity we will consider that
n =z in what follows.

When the splitting of the single-particle energies D is
negligible compared with the interacting part of the
Hamiltonian, the ground state will be described reason-
ably by a condensate of a coherent mixture of pairs of
conjugate bosons. One will, therefore, have a phase tran-
sition as the interaction strength increases. Our main in-
terest is to describe in a simple way this "phase transi-
tion, "and the first thing to do is to find a parameter simi-
lar to an order parameter. As in the fermionic case, there
are some operators that are important, such as

is the selection of the scaling parameters. Usually they
are selected with the criterion that the matrix elements of
the Hamiltonian are numbers of the order of 1 (such as
n/M, n/R or functions of these parameters as, for exam-
ple, [I+(n —1)/R ]' ). In our case we have two possi-
ble parameters, one related to the single-particle part of
the Hamiltonian (MD) and the other one to the interac-
tion part of the Hamiltonian (GM&RM ). For reasons
that will be clear when we study the approximate treat-
ments, we choose as scaling parameter for the total ener-
gy of the system the one related to the interaction part of
the Hamiltonian. From these two scaling parameters we
can define a dimensionless parameter, g=D/(6&MR ),
that will allow us the scaling of the results as a function
of the interaction. The scaling of the matrix elements of
the operator (2.5) or the number of bosons operators is
done with the same criterion, i.e., we extract the factors
of M needed to make the matrix elements numbers of or-
der 1.

If one performs a Holstein-Primakoff transformation,
the matrix elements of the equivalent Hamiltonian are ex-
actly the same ones obtained from the original Hamil-
tonian, and therefore one does not obtain any advantage
by diagonalizing it numerically, but it will be very con-
venient in order to develop alternative approximate treat-
ments. We therefore review in this section the essentials
of the Holstein-Primakoff transformation (HPT).

The first step is to define a set of bosonic operators that
satisfy

(2.6a)



40 T%'0-LEVEL BOSONIC MODEL THAT SIMULATES THE. . . 2363

(2 6b) (n+ I,Z lH;., ln, & &[CJ, Ck, ]=5;k5~v+5;&5ji

[c,', , c„',]=o . (2.6c) = —G(K —n+1) Rn 1+ n —1

RThe vacuum state lo) z of the new boson space is defined
by

1/2

(2.14)

c„lo),=o . (2.6d)

The HP images of the bilineal forms in the original bo-
sonic operators are obtained by requiring them to fulfill
the commutation algebra of bibosonic operators:

(8;BJ)iip=+c;kcjk =(C C);J, (2.7)
k

(8tB t)iip= [Ct(]L+ Ctc)' ];

(8;BJ)pip=[(3. +C C')' C]" (2.8b)

In Eqs. (2.8) we see the trademark of the HPT, the
square-root operator.

In the present case it is convenient to make a HPT
only for the bilineal operators Pz and

R
N2= Q BqB +8 8

q=1

It is then convenient to define an operator C by the con-
dition

It must be noted that the matrix elements of the Ham-
iltonian (2.12) given by (2.14) are the same as the one ob-
tained from (2.3) when s = l =0.

III. APPROXIMATE TREATMENTS
OF THE GROUND STATE

AND COMPARISON WITH THE EXACT RESULTS

In this section we will study the ground state of boson-
ic systems in different types of approximations and com-
pare the results obtained with the exact results. The first
approximate method that will be used is the variational
treatment of the HP image of the Hamiltonian, the
second one will correspond to the equivalent of Bardeen-
Cooper-Schrieffer (BCS) treatment for bosons, while the
third one will be Hartree-Bose (HB) treatment of (2.1).

A. Variational treatment of the HP mapped Hamiltonian

C =
—,'gX; C;tj . (2.9) To evaluate the mean value of the HP mapped Hamil-

tonian, it is convenient to define the condensate states

(~z)~p=c 1+ Nc
R

1/2

(2.11a)

(2.11b)

This expression allows us to write the HP image of the
Hamiltonian as

The commutation relation associated with C yield the
normalization condition

[C,ct]=—,'gX;JX;*=I . (2.10)
ij

Defining Nc =C C, one obtains for the HP image of P2
and N2

laM ) =(B.'8'+aC')MlO& .

Their norm can be written as

M 2r

N~(M) =(M!)2 Q
0 rf

and the expectation values of Nc and no

(aMln, laM) =(M!) g a "
I f

cxM —— N (M),
2 BcK

(3.1)

(3.2)

(3.3a)

(H, )iip=DNc — (B,B,+8,8, )—,

(H;„, )imp
= —G &R ( CtB,B, 1+

' 1/2

(2.12a)

+H. c. .

rcpt

(aM le laM ) =(M!)'y
r1 ' Bo;

(3.3b)

(2.12b)
In a similar way one can write for the expectation

value of the interaction part of the mapped Hamiltonian

To diagonalize this Hamiltonian one can define as basis
states forming the normalized basis (aMlB.'8,' 1+

1/2

ln, X&= (8'8') -"C'"lo)1

(K —n)!&n!
(2.13) M 1/2

(M, )p~ (M r+1) —
1

r —1

(r —1)! R
2r —1 (3.4)

and the matrix elements of the nondiagonal part of the
Hamiltonian can be written as The energy can then be written as
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&aM~a~aM &

&aM ~aM &

' l/2

2G&RM ga " '/r![(2r —M)ag —(M —r +1)/v M 1+ ]R
2r (3.5)

while the minimization condition yields

M 2r —1 E(2r —M)
G3/MR

1/2
(M —r + 1)(2r —1) r —11+-

&Ma R
=0.

(3.6)

iy&=we' io& . (3.10)

In order to obtain the amplitudes of (3.9) one has two
alternative ways. The first one is to obtain an operator

(3.11)

and the BCS wave function can be written as usual as a
coherent state

M —
1 2r

( 1)l

M 2r —
1

2—0!e

With this type of replacement the scaled energy of the
system can be written as

This system of equations yields the value of 0. as well as
the energy. This equation must be solved, in general, nu-
merically. In order to obtain some insight on the mean-
ing of its solutions it is convenient to look at Eqs. (3.4)
and (3.5) in the limit R ~~ and M also going to infinity
but considering that M/R is much smaller than one.
This particular model is what was called the P AB model
in Ref. 15.

In this case one can replace the sums by exponentials
and powers, as for example,

such that, acting on the coherent state (3.10) it yields

w, ~y&=o.

The. other alternative, that of course yields the same am-
plitudes, is to minimize the expectation value of the
Hamiltonian in the coherent state (3.10).

To perform the BCS approximation it is convenient to
introduce a chemical potential A, such that the average
number of particles has the appropriate value. To simpli-
fy the description it will be convenient to introduce the
parameters

6 =GU, V„A,=GRU V

In our particular case, the BCS equations can be written
as

E = —g(1 —2q ) —221(1 —g ),
GM3/MR

(3.7)
/

—,'+A,
/ + =2M+R +1,

[( 1 +g)2 g2 ]1/2 [( & g)2 g2]l/2

32) +2gq —1=0 . (3.8)

where 2)=a/&M, while one obtains for the minimiza-
tion condition GRA

2D [(-' —~)' —~']'"
GRA

2E

(3.12a)

(3.12b)

+—/+31

3 3

1/2

It is important to note that even for large values of g, g is
non-negligible, and when g is very large (and positive) it
can be approximately written as q = 1/2g.

B. BCS-type treatment

In the BCS treatment one defines an operator that
creates a pair of bosons as

p=0
(3.9)

The existence of this model was important to give a clue
about how to choose the dimensionless interaction pa-
rameter g and the way in which energies have to be
scaled.

The parameter q is a very natural order parameter.
From its definition and (3.8) it follows that for g~ —1

one obtains g = 1 (i.e., one only has pairs of bosons), while
for g ) —1 one obtains

Gh,
2D[( ~ +g)2 +2]l/2

Gh,
2E,

(3.12c)

Using these equations one obtains for the amplitudes U
and V

D /-,'+X/
V, =——1+

2 E, U, =1+V, ,

V =— —1+2=1
q

D/-,' —x[

Eq
U =1+V

(3.13)

and the scaled ground-state energy can be written as

EN E/( GM3/2R l/2)

1/2

(RV —V, )— U, U V, V (3.14)

As V2=M(1 —
2) ) and V =My /R we can express all

the relevant variables in terms of g. Some of them have
rather simple expressions as, for example,
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A, =6M' q + R
' 1/2

bq=GM(1 —q ) 1+
M(1 —g )

1/2

or the ground-state energy

E = —g(1 —27I )

1 + 2

R
1+ 1

M(1 —g )

1/2

(3.14')

C. Hartree-Bose treatment

Some others, such as the chemical potential, have ex-
pressions that are more complex. These express'ions help
to choose the proper scaling for the different physical
magnitudes and will also help to understand the compar-
ison between the different approximation methods used.

condition for the validity of the different approximate
methods used. Our main interest was to study the
inAuence of R, and therefore we have used three different
values of R /M which roughly correspond to the interest-
ing limiting cases: 0.1, 1, and 10. We diagonalized the
Hamiltonian for M =50 and 51, and we evaluate the en-
ergies as well as the matrix elements of P for —2 ~ g ~ 2.

In Fig. 1 it is shown the ground-state energy obtained
in the exact calculation for M =50 and the same energy
obtained using the three approximate treatments dis-
cussed before. Figure l(a) corresponds to R/M=0. 1,
Fig. 1(b) to R/M =1, and finally Fig. 1(c) to R/M =10.
The most striking feature of the exact result is the big
asymmetry in the ground-state energy obtained for posi-
tive and negative values of g for moderate and large
values of R. For comparison the result obtained in the
P AB model in the drawing corresponding to R /M =1 is

0-

One may start the Hartree-Bose treatment by closely
following the formula developed in Ref. 16, but due to
the very simple structure of the Hamiltonian it is more
convenient to define

1 R

A, = 2, c(B,+B~)+b g (Bt+B~t)
[2(c +b R )]'i

(3.15)

-2-

-2

and therefore the condensate state formed by X bosons
can be written as

(A1'
)2ML0 ) (3.16)

The mean value of the single-particle and interacting
parts of the Hamiltonian can be written as

-2-
&+la„lx& =2DM(x —Y)/(x+ Y), (3.17a)

(&IH;., l& &
= —GM(M —

—,')XY/(X+ Y), (3.17b)

where X =b R and Y=c . The Hartree-Bose wave func-
tion is obtained by minimizing the ground-state energy
with respect to these variational parameters. One obtains

-2

1 G (2M —1)
2( Y —X) 2D

(3.18)

It can be shown that X =0 or Y=O also correspond al-
ways to an extreme for the energy. The energy at the
minimum can be written as

E=—lg'lGM R' if l»l (1,
(» +1) if I»l» .

DM
2T

(3.19a)

(3.19b)

D. Comparison between exact and approximate treatments

All the comparisons were done for a rather large value
of M (M =50) because we know that this is an essential

FICx. 1. Scaled ground-state energy (E,=E,/GM R '
)

for different approximations: Hartree-Bose is dotted line,
Holstein-Primakoff is dashed and dotted line, BCS is dashed
line, and the exact results is full line. In (a) R/M=0. 1, (b)
R /M = 1, and (c) R /M = 10. In all cases M =50.
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also shown. The results of this model are almost indistin-
guishable from those corresponding to R /M = 10 in the
exact, HP and BCS calculations.

The Hartree-Bose description is very poor, and it is
worse as the value of R/M increases. This method is
completely unable to reproduce the most important
features of the model, such as the already mentioned
asymmetry or any type of pairlike coherence in the
ground-state wave function. One may have guessed this
behavior for strong interactions as the wave function pro-
posed in the HB approximation does not exploit at all the
main features of the residual interaction used. The main
reason for the HB being so bad for positive (and rather
large) values of g is that the HB wave function is not able
to take into account the existence of correlated pairs of
bosons [of the type shown in Eq. (2.5b) for example] even
in small amounts. As these correlated pairs are in the
main responsible for the lowering of the ground-state en-
ergy in the positive g region, HB fails as shown in Fig. 1.

As it can be guessed from expressions (3.7) and (3.14)
for the BCS ground-state energy and the similar result
obtained from the P AB model, HP and BCS yield simi-
lar descriptions of the ground state, and these similarities
are more striking as R /M increases.

In Fig. 2 is shown the value of g obtained in HP, BCS,
and the P AB model as well as in the exact calculation,
using the same convention as in Fig. 1. From the results
obtained in the approximate treatments, we see that at
g= —1.0 we have a well-defined phase transition. For
g& —1.0, the system can be described essentially taking
into account only a coherent pair of bosons in the R de-
generate levels, while for g larger than —1.0 one needs to
take into account also a pair of bosons in the levels 0 and
0. In a sense, one can say that there is a phase transition
from a "normal" (for g& —1.0) to a "superconductive"
phase. The equivalent phase transition for positive values
of g does not happen for /=1. 0 but occurs for a rather
large value of the strength. The shape of the phase tran-
sition at —1.0 depends critically on the value of R, being
much sharper for large M and R. As the P AB treatment
is valid when M and R are large, one understands why
the phase transition at g= —1.0 in this approximate
treatment is much sharper than the one displayed by the
exact calculation. We can conclude this section by saying
that the HP and BCS treatments yield almost equally
good results for the ground-state energies and that in
practice they seem to be equivalent.

assume that the excited state will have the form

l~pM & =(B.'B-."+pc')(B.'B.-'+«')™llo& . (4.1)

The parameter p is fixed by the orthogonality condition

(aMlapM & =0

that yields

M —I

g (M —k)(a "/k!)
k=0

M —1

(&2k+1/k ~)

k=0

(4.2)

(4.3)

2

(a)

I

-2

0.5

t

X~

~ W

To evaluate the energy we need the expression of the
norm and the expectation values of H, and H;„,. The
calculation is straightforward and one obtains

IV. APPROXIMATE TREATMENTS
GF THE EXCITED STATES 0.5

(c)

This section is devoted to the study of the excited
states using the same approximate treatments as in Sec.
III, except Hartree-Bose on account of its poor descrip-
tion for the ground state. We will study the state corre-
sponding to one- and two-body excitations. These states
can be classified by the shell seniorities (s, I).

l

0
'~ ~

g

A. Holstein-Primakoff treatment

We will describe the s =0, l =0 excited state corre-
sponding to two-body excitations in the HP picture. We

FIG. 2. The order parameter g as a function of the scaled
strength g. The P AB results are shown in dotted line. For HP
and BCS the same convention as in Fig. 1 is used. The exact re-
sults are not shown as they are indistinguishable from the HP
ones.
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M —1 2k 2kM —k
(apMIapM & =(M —1)!' y. ,

(M —k)'+p'(k+1}+
a

(4.4)

M —1 2k

(apMIH„lapM & =D(M —I)!' y
k=0

(M —k) + — (2k M—)+P (k + 1)(2k +2—M) (4.5)

M —1 ~2k k
&apMIH;. , IapM &

= —2G&R (M —1)9 y, I+—
0 k t

P(M —k)(k + 1) — —M —k

' ]/2

+ 1+ (k —1) k—(M —k + 1)(M —k)(M —k + 1+ (k —1)
R A

(4.6}

As in Sec. III A, we can look at (4.3), (4.4), (4.5), and
(4.6) in the limit R —+ ao, M ~~ with M/R ((1 (P AB
model), replacing sums by exponentials. In such a way
we obtain the norm P and the scaled excitation energy
(when g) —1)

2ea
(aPM laPM & =(M —1)!'M (4.7) H H00+H]1 +H22 +H31 +H]3 +H40 +H04

where

(4.14)

I

first one usually has the advantage of having greater sim-
plicity, while the second one isolates completely the
spurious state.

One starts expressing the Hamiltonian in terms of
quasiparticle operators. It can therefore be written as fol-
lows:

E,„,= — =2(+4ri= —', g+ —', (g +3}' . (4.9)

B. BCS treatment

H00 =E
H]]=E n +Epn, ,

H22= —G(Uq U, + V V, )v R (yty, +yty )

(4.15a)

(4.15b)

We describe initially the states corresponding to one-

body excitations (i.e., s =0, l = 1 or s =1, l =0). Within
the BCS formalism they are the one-quasiparticle states,
thus,

I lqp &
= A tip &, (4.10)

where IP& and A are defined by (3.10) and (3.11), respec-
tively. Their energies are given by E (the quasiparticle
energies), i.e.,

—2G( Uq Vq U, V, nqn, ),
H3i =(Hi3) =G[( Voi Uo) Uq Vqy, nq

(4.15c)

+U V, (Vq+U )v'R ytn, }], (4.15d)

H4o = (How ) = —G( U, Vq + V, Uq )V R yqy, . (4.15e)

with

n =g(A„A„+A A ) n, =(A, A, +A A ),
r)0

E =D[(-'+X)'—a']'"
—D[( i g)2 g2]i/2

q z q

(4. 1 la)

(4.11b)

y', =lg&YRy A„'A', y'. =A.'A'.yf 0 0r)0
To do the TDA we assume the

The states corresponding to two-body excitations are
two-quasiparticles states. They can have four difFerent
structures, according to the (s, l) shell seniorities: (s =0,
l =2), (s =1, 1=1), (s =2, 1=0), and (s =0, l =0). The
erst three have a simple structure in terms of quasiparti-
cles and can be written as

I2qp& =rTDAI0&

where

TD& +q3 q ++0+0

(4.16)

(4.17)

I2qp&= +1+5

and their energies are

E (2qp) =E~+E ~ .

(4.12)

(4.13)

(4.18)

Applying the equation of motion method

[H +H„+H„,r, „]=~, r,
in the quasiboson approximation for y and y, we obtain

a)TD~=(Eq+Eo)+[(Eq Eo) +G R(U U + Vq V ) ]

The description of the (s =0, I =0}states is more com-
plicated as they can mix with the spurious state (see for
instance Ref. 16). We have tried two different approxi-
mations: (i) the Tamm-Damcoff approximation (TDA)
and (ii) the random-phase approximation (RPA). The

In order to perform the RPA we assume that

I2qp& =rapA. I0& ~

(4.19)



CURUTCHET, DUKELSKY, DUSSEL, AND FENDRIK

where

I RpA=X p +Xop&+ F p + Yo} & (4 20)

and ~0) is the RPA vacuum, i.e., it contains quasiparticle
correlations.

The equation of motion in the quasiboson approxima-

tion for y~ and y~,

[Hoo+H„+H22+H&o+HO4, pRp&] —coRp~l RpA, (4.21)

gives the frequencies

co„p~=0 (double root)

Es 1.0
Es

3

00
-2 2 2.

0
2

1.S-

\ /
\

l / /
'I

0 -1 0

Es'
l5-

E

4.

0 2
0

-2 -1 0 2

FICx. 3. Scaled excitation energy (E,=Eg, /GM' 2R '
) for

the lowest states with (I = 1, S =0) and ( I =0, S = 1). The BCS
results are shown in dashed line while the exact one is in full

line.

FIG. 4. Scaled excitation energy (E,=E~, /GM' R ' ) for
the lowest (l =s =0) states, in dashed line are shown the BCS
results, in dotted line the RPA results, and in full line the exact
ones.
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and

coRpa +[4(Eq +Eo )

+26 R(U V +U V +U U +V V )]'

(4.22)

is necessary to consider the RPA to properly treat those
states (and in particular the spurious one).

V. CONCLUSIONS

C. Comparison between exact and approximate treatments

EN(M)(g) —M[E(M)(g) E(M)(g)] g(g) (4.23)

where A, (g) is the "exact" chemical potential

1 M+1
g(g) E(M+1)(gl )

M
1/2 s ~.

ME' '(g—) M+1

1 /2

and E', '(g) is the lowest eigenvalue obtained by diago-
nalization of H in the space (s =0, l =1) or (s =1, l =0)
for the system with (2M + 1) bosons. The full line
represents the exact values (4.23) while the dashed lines
correspond to the BCS bosonic quasiparticle energies
(4.11a) and (4.11b). The results show that the BCS type
treatment is appropriate to describe these one-body exci-
tations and the goodness of such approximation increases
when R /M increases.

In Fig. 4 we show the results obtained using the BCS
(dashed), RPA (dotted), and exact (full line) for the
(l =s =0) states. It is particularly interesting to note
how the RPA manages to isolate the spurious state at
zero energy. This state has almost a vanishing energy in
BCS, showing the advantage of taking properly into ac-
count the quasiparticle correlations with the RPA. The
TDA results are not shown as they are not as good as the
BCS ones. In general, we can conclude by saying that the
BCS approximation is quite good for all the states that
have different quantum number than the vacuum, while it

In this section we compare the approximate treatments
and exact calculation corresponds to the lowest excited
states for systems with M=50 and R/M =0.1, 1, and
10, respectively, in the interval —2 ~ g'+ 2.

In Fig. 3 we show the excitation energies of the lowest
states with (s=0, /=1) and (s=1, /=0) for R/M
=0.1, 1, and 10. We compute the exact excitation ener-
gies as

We have studied a system that resembles on one side a
condensate of proton and neutron pairing bosons, which
is a reasonable model for spherical nuclei, and on the oth-
er side a condensate of alphalike clusters, which may
modelate deformed nuclei. We have shown that for
"spherical systems" the number of alphalike clusters is
very high due to the large number (R) of bosons that
contribute to this alpha cluster. Even for values of g as
large as 2 one obtains a few percent of alphalike cluster-
ing in the wave function of the "pairing condensate. "
The model Hamiltonian that we have used in the bosonic
space has similarities, with the effective one obtained in a
multi-step-shell model calculation"' for the Pb re-
gion and therefore a mechanism like the one discussed
here may be responsible for the large value of the prefor-
mation factor for alpha particles in this region.

Our last point will be related to the study within this
simple model of the competition between particle and
pair condensation in Bose systems when the number of
particles is not too large. This competition has been
studied in the thermodynamical limit. ' In this case, if
the interaction is attractive enough as to bind a pair of
bosons in a cluster, one may have pair condensation. At
low densities the ground state is a condensate of these
clusters, but for high densities the one boson condensate
is more stable. The main reason for this phase transition
is the hard core that accounts for the saturation proper-
ties. The order of the transition between both conden-
sates depends upon the behavior of the bosonic chemical
potential as a function of the density. We have found
that the situation is dramatically different in our simple
model. The reason is the fact that the model studied does
not have saturation properties, and therefore the hard
core is absent in our model, at least for the number of
particles (or equivalently densities) that are of interest in
nuclei.
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