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We present a version of the random-phase approximation for the description of nuclear excita-
tions which is a consistent extension of the QHD1 mean-field theory of the ground states of doubly
magic nuclei. This approach includes correlations induced by the isoscalar o. and co mesons of
QHD1. Our method employs a nonspectral single particle propagator in such a way that we avoid
any basis truncation and automatically include the escape widths implied by the theory. Our calcu-
lations yield exactly conserved random-phase approximation transition currents as well as correct
treatment of spuriosity for 1 T =0 excitations. Because of the Aexibility of our numerical method,
we can treat discrete excitations, giant resonances, and the continuum response in general—
including quasielastic scattering —in a unified way, We compare our results with experimental
(e, e') form factors for various discrete excitations in ' C, ' 0, Ca, and Ca as well as with the qua-
sielastic Coulomb response functions for ' C and Ca. Agreement with transition charge densities
is typically quite good and in some cases superior to comparable nonrelativistic random-phase ap-
proximation calculations. Transition current densities are less well described. The question of sum
rules in the relativistic random-phase approximation is also addressed.

I. INTRODUCTION X =X(P,P, V") (2.1)

The QHD1 mean-field theory (MFT) of the ground
states of doubly magic nuclei has been extensively stud-
ied' and has been found to reproduce experimental
quantities like valence state binding energies and ground
state charge distributions quite accurately with a
minimum number of free parameters. In this paper, we
discuss a consistent extension of the QHDl MFT which
accounts for one-particle, one-hole (lp-lh) excitations of
the doubly magic nuclei. This extension is the MFT
random-phase approximation (MFT RPA) which, on the
basis of a long history of studies of the nonrelativistic
RPA (see e.g., Refs. 3 —6), we expect to provide especially
good descriptions of low-lying collective excitations.
Various versions of the MFT RPA applied to particular
types of excitations have been discussed by other au-
thors. " In the present work, we formulate a nonspec-
tral version of the MFT RPA which avoids approxima-
tions intrinsic to the more common spectral ap-
proaches ' and which allows a unified description of
both discrete and continuum excitations with realistic
boundary conditions for the latter. " We show MFT-
RPA results for a number of discrete excitations in ' C,' 0, Ca, and Ca with special emphasis on electromag-
netic properties. We also briefly discuss giant resonance
phenomena as well as the quasielastic (e, e'. ) Coulomb
response.

II. REVIEW OF QHD1 MEAN-FIELD THEORY

In the QHD1 MFT of finite nuclei, one begins with a
Lagrangian density

which specifies the behavior of interacting nucleon and
isoscalar scalar (cr) and vector (co) meson fields represent-
ed by g, P, and V", respectively. The interacting single
particle Green function is obtained in Hartree approxi-
mation by summing tadpole diagrams

G (x,y) = —t ( +OI &[1lj'(x)g'(y)]
~ %o)

= GH(x, y)

= —t(C, I &[f(x)y(y)]l@, )
=Go(x,y)+ fd'z G, (x,z)r„(z)G (z,y)

(2.2)

with

&II=&,+X„&",

X, = —tg, b,oTr(GH ),
X",= + tg, D&&Tr(yf" GH ),

(2.3)

where G, Go, and GH are the full, free, and Hartree prop-
agators, respectively, 'Po (No) is the full (Hartree) ground
state, and fi' (fi) is the full (Hartree) field operator. Also,
XH is the Hartree self-energy consisting of scalar (X, ) and
vector (X"„) contributions depending on the scalar and
vector coupling constants, g, and g„respectively, and the
meson propagators 60 and Do. In the MFT used here,
the self-energies are evaluated subject to a further ap-
proximation which can be understood from the structure
of G~ and will be discussed later in this section. The
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Hartree basis consists of eigenfunctions of the following
Dirac equation:

[y Et)+(.y V —m —X, (r) —y X„(r)]gt)(r)=0 (2.4)

Gt)(to) = 8(et)) +
6) 6'p+ LYj

8( —
et~)

CO Ep L'77

+2rn5( to ep) 8( e—F et3) 8( ep)—

=Gvti(co)+Go p(to) . (2.5)

In these expressions, P labels a Hartree basis state, F
represents the Fermi surface, and the structure of the
vacuum contribution, G~& ensures positive energy states
propagate forward in time while negative energies go
backward. The density contribution GD& represents the
correction due to the fact that positive-energy levels up to
and including P=F are occupied and should propagate
backward, too. The self-energies of Eq. (2.3) are diver-
gent due to the vacuum contributions entering via Gz&
and vacuum polarization contributions can be computed
only after a renormalization program is carried out. The
resulting theory is referred to as the relativistic hartree
approximation (RHA). In the QHD1 MFT, however, the
effect of the vacuum is assumed to be incorporated in the
effective masses and coupling constants of the original
Lagrangian density. We then explicitly treat only the
contributions to X~ arising from GD &. Thus XH XM„
where the scalar and vector terms of XM„are defined as
in Eq. (2.3), but with GH ~GD. The basis states are again
eigenfunctions of Eq. (2.4) but with X~XMF. In all cal-
culations to be presented below, unless otherwise

where we have used the fact that, for doubly closed-shell
nuclei, X",~X",5"'; i.e., only the timelike component of
X", is nonvanishing in the nuclear rest frame. This im-

plies the eigenfunctions have total angular momentum as
a good quantum number. We may express GH in terms
of the basis [gt)] via a "spectral" expansion:

GH(x, y;~o) = g gp(x)gt3(y )Gti(to)
p

where

specified, we use the so-called "finite Hartree" coupling
constants and meson masses given in Table V of Ref. 2.

In closing this section, we present an alternative "non-
spectral" representation of the MFT propagator which
appears in "spectral" form in Eq. (2.5). In a partial-wave
expansion we write

GMF(x, y;to) = g [Q„(, (x. ;co)g„), (y. ;.co)8(y —x)
Ijm

+g, .( (x;co)1t„., (y;co)8(x —y)]

(2.6)

where g and g each satisfy Eq. (2.4) with et)~co but
where g„(it„) is regular at r =0( &n ) and where a suitable
normalization is obtained by dividing by the Wronskian
of the functions associated with the upper components of
P„and g„. Note that the linear independence of f„and
g„ is equivalent to specifying that to is not an eigenvalue
of Eq. (2.4). The details of the construction of this propa-
gator are presented in Ref. 12 and in Appendix B. This
"nonspectral" propagator can be thought of as a summa-
tion of the spectral form.

III. FORMALISM FOR QHDI-MFT RPA

=—&)I),lT[f "(x)iT'(x)f'"(y)f' '(y)]lao& (3.1)

where i, j, k, and l are Dirac indices. This object de-
scribes the propagation of a particle-hole excitation in the
ground state of the fully interacting system just as G
defined in Eq. (2.2) describes the propagation of a single
particle (or hole). We may go over to the Lehmann repre-
sentation,

There are numerous techniques for deriving the RPA
equations for nuclear excitations beginning with the MFT
ground state. In order to be as consistent as possible
with the treatment of the QHDl-MFT problem outlined
above, we employ the Feynman rules of QHD 1.

We first consider some general properties of the fully
interacting polarization insertion defined by

—tII'~'"'(x, y)

&+alit g(x)@s(x)lq'. &&+.1@s(y)@s(y)l+0&—II(x, y;co) = g
CO CO„+ l, 'g

& +01fs(y)g s(y) I p. & & 'p.
I p s(x)g s(x) I+o &

N+ CO„LYJ

(3.2)

where 4„ is the full wave function for the nth excited
state whose excitation energy is ~„=E„—Eo and where
fz(x) is the full field operator in the Schrodinger picture.
Evidently, %„must be, at least in part, a one-particle
one-hole state with respect to the ground state. Other ex-
cited, . states make no contribution to II. Equation (3.2)
makes it clear that II(x, y;co) has poles at to=co„and that
the residue (for co )0) is the outer product of the
configuration space transition densities:

P (n)(x)cy(n)( )—II(x, y; co~co„+(,i) ) =
tX/

where

and where

cy—yoytyo

(3.3)

(3.4)
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According to the Feynman rules, the transition ampli-
tude for an interaction having a vertex 8 can be ex-
pressed as

(8)'"'= J d'y Tr[8(y)P'"'(y)] (3.5)

where the trace is over Dirac indices. (See Appendix C
for a more detailed discussion of (8)'"'.) In a somewhat
more general way, linear response theory ' gives the
response to an external probe whose interaction is
represented by 8 as

Sco(co)= ——Im f d x d y Tr[8(x)II„,(x,y;co)8(y)]
1

(3.6)
where II„,is the retarded (or causal) version of II. From
Eqs. (3.2) —(3.6), we have

~g(~) = y I & 8)'"'I'[&( —~. )—(l(~+~. )] . (3 7)

The standard techniques of field theory may be used to
expand H in terms of Hartree propagators and meson in-
teractions. Retaining only the "ring" contributions and
summing to all orders yields the following RPA integral
equation;

—CII'J'"'(x, y; co ) = —cllI[pp', (x, y; co)

cII—Q' '(x, y;co)+ g Jd x,d xi( —c)IIQ™m~(x,x„'co)
mm'
nn'

X g (P )~ cD~ ,&(x, —.xz, co)(Pz)" "( c)H—RFA'(xz, y;co)
N

(3.8)

where X represents the meson type, a and b refer to; e.g., I.orentz indices, and I, m', etc. refer to Dirac indices. Also,
I ~ is a meson-NN vertex and D&.,b is the configuration space form of the free meson propagator. These quantities are
discussed in detail in Appendix B. Finally, the Hartree polarization insertion is

—IIQ'"(,y)—:(@,~T[p'( )p'( )p "(y)1('(y)]lcI ) (3.9)

or

de)—clip' '(x, y;co) = GH'(x, y;co+co')GPj(y, x;co') . (3.10)

Using the spectral form for GH given in Eq. (2.5), we have

—clip'"'( yx; )=cog g'(x)g'(y)g&(y)gj&(x) c f G (co+co')G&(co') .
a, P

2m.

Again using Eq. (2.5), we have

G (co+co')Gp(co')=(Gv +GD )(Gvp+GD p) .

(3.1 1)

(3.12)

» keeping with the mean-Beld approximation, discussed in the preceding section, we drop the Gy Gy p or vacuum-
vacuum terms, retaining only the density-dependent contributions. This dejines the mean-field polarization insertion:

cHMF (x, y; co) = g f' (x)iT '.(y )((13(y)g p(x )
a, P

I

XC f [GVa(CO+CO')GD&(CO')+GD (CO+CO')GV p(CO )+GDa(CO+CO')GDp(CO')] . (3.13)

This approximation again assumes that vacuum polarization effects are accounted for in the phenomenological masses
and coupling constants determined in the QHD1-MFT description of the ground state as discussed in the preceding sec-
tion. In the full Hartree approximation, the divergent vacuum-vacuum contributions contained in the "G&G&" term
are rendered finite by counterterm contributions determined in the renormalization program. A thorough discussion of
this problem in the context of nuclear matter is given by Chin. '

The real and imaginary parts of IIM„[Eq. (3.13)] are readily determined by performing the simple integrals over co'.

The result is

g'(x)1Tjjp(x)itj~(y)g'(y) PIi(x)g'(x)g"(y)g&(y)
cII~~'F"'(x, y;co) =—c

& F Co Coap+ C'g(a ) Co+ Cori C C)(a)'
a(0

(3.14)

where i)(a) =+ ~i) ~
for a & F, i)(a) = —

~i)~ for a (0, and co &
=—e —e&. The causal or retarded version of IIMF has posi-

tive infinitesimals in both terms on the right-hand side of Eq. (3.14). Defining co —=co+cd),
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LHMF ret(xiy~M) LHMF (x~y~&)

1(' (x)g pj(x)ttlp(y)1t '(y)

F&P
a

gp(x)g'(x)1t "(y)g p(y)

Q+ CO~p

(3.15)

where we have used the antisymmetry of the quantity in large parentheses for a~P to include terms involving
F)a )0. Again using Eq. (2.5), we may perform the a sum. Dropping the ret subscript, we have

l, IIMJ'F" (x y'co) =l, g [gh(x)g p(y)GMJF(y~x ep 'co)+GMF(x y;op+co)gpk(y)g Jp(x)] . (3.16)
F&P&0

As will be discussed in Sec. V, our calculational scheme
stipulates that HM„and its RPA analogue are evaluated
at S=~+cg, g =0. 1 MeV, so that we always evaluate
the causal polarization insertions as required by linear
response theory [Eqs. (3.6) and (3.7)]. This will be impor-
tant when sum rules are discussed in Sec. VII.

The QHD1-MFT RPA as outlined above is a con-
sistent extension of the MFT description of the ground
state to 1p-1h excitations based on that ground state.
The consistency of the treatment has several interesting
consequences. For example, the stability condition for
the mean-field ground state also ensures real RPA excita-
tion energies. Conversely, imaginary RPA energies im-
ply an unstable ground state. Consistency is also essen-
tial to ensure that symmetries broken in the mean-field
formulation are respected in the RPA treatment so that
spurious states lie at zero excitation energy. The classic
example of this is the spurious 1 T =0 level arising be-
cause the usual mean-field treatment is not manifestly co-
variant. The covariance of the nucleon-nucleon. interac-
tion and the MFT RPA consistency guarantee a 1 T =0
spurious state at co=0 which carries aII of the lowest or-
der E1 strength. Such a state is the RPA approximation
to the degenerate translated ground state.

In addition to these features, the fact that the transi-
tion currents are conserved at the mean-field level com-
bined with the structure of the RPA equation results in
an exactly conserved RPA transition current. All of the

I

properties of the RPA discussed above are realized in the
numerical results to be presented here.

IV. SPECTRAL RPA

—IIM~'F"'( x, y; co ) =
F &P&Q

g' (x)g Jp(x)fp(y)tt '(y)
CO CO p+I. 'g

fp(x)g'(x)g"(y)P p(y)
CO+ CO~p t 'g~

(4.1)

where g =+(—)g for a)( ~ )F and co p E Ep. The-— —
similarity of the Lehmann representation of the fu11 II
[Eq. (3.2)] and the spectral form of IIMF motivates us to
define the particle-hole transition densities:

17kl (y)gk(y)t(l l (y) (4.2)

in analogy with the full 2 "' of Eq. (3.4). This allows us
to rewrite Eq. (4.1) in matrix form as

%'e now examine two distinct techniques for solving
the integral equation which results from combining the
MFT version of Eq. (3.8) with Eq. (3.16). The first makes
use of a spectral expansion of the MFT propagator [Eq.
(2.5)]. This yields

(&"p(x),VJ (x))
F &P&Q

G p(co+i, rI )

0

()
'
cykl ( y )

'

—Gp (co*+~ri ) Vp (y)
(4 3)

where we have defined

G p(co) —=

'X'.p' V.p
'

cg( n)
'RPA X Y(n) PF&P&Q uP Pa

(4.4)

We now assume that the RPA transition density for
the excitation of the nth state can be written as

where we have dropped the Dirac indices. The RPA in-
tegral equation [Eq. (3.8)] can then be recast into the fa-
miliar spectral RPA matrix relations:

(a)„—co p)X' p
— g [K p p(a)„)X'"pl+K p p.

. (co„)Y~"p ]=. 0,
F & P' & Q

a'

(co„+co p)Y'"p+ g [Kp &(co„)X'"pl +Kp„p. (co„)Y'"&]=0.
F&P'&Q

(4.5)



2324 J. R. SHEPARD, E. ROST, AND J. A. McNEIL 40

where

+a pa'p'(~n ) X f d +ld +z~ap (xl) X (~x) A';ab(xl x2&~n (~N) (~a'/3') (x2) (4.6)
mm'
nn'

1V; ab

is the RPA kernel whose co dependence is typically ig-
nored. This amounts to dropping "retardation eFects."

An important property of the RPA presented here can
be derived (see Appendix A) using the RPA matrix equa-
tions. We observe that the uncorrelated MFT elec-
tromagnetic particle-hole transition current is conserved
in the following sense. Define the particle-hole transition
current via

J"&—— d re ''Tr J" &r (4.7)

is the free nucleon current operator. Since the anomalous
moment contribution is divergenceless by construction,
we can let J"~—Leg~ for the present discussion of
current conservation. Because the single particle wave
functions which appear in 7 p both satisfy the same
Dirac equation [Eq. (2.4)], we have

q.J p=0

for q"= (co p, q). The RPA transition current is

J'"' = f d v e "q'Tr[J„P "~ (r)]

and, by the RPA equations [Eq. (4.5)], satisfies

q J'n'=0

(4.8)

for q" —=(co„,q). Thus, in the present model, the elec-
tromagnetic RPA transition current is exactly conserved,
ensuring that, among other things, Seigert's theorem is

where q is the three-momentum transfer of the transition
and where, omitting form factors and isospin labels,

T

LKJ"=—
L ey+ O" q2m

I

automatically satisfied.
The spectral QHD1-MFT RPA equations have been

solved by Furnstahl, by Furnstahl and Dawson, ' and
by Blunden and McCorquodale' at various levels of ap-
proximation. For example, in Refs. 7 and 10, contribu-
tions from the negative energy sea [i.e., from a (0 in Eq.
(4.5)] were ignored. In all cases, the continuum (or con
tinua in the case of Refs. 8 and 9 where negative-energy
contributions were included) was discretized by "putting
the system in a box." This treatment has little eA'ect on
the properties of discrete excited states but gives an in-
correct picture of the nuclear response in the continuum.
Finally, as a necessary consequence of using the spectral
method, the discretized Hartree basis is truncated. In
Refs. 7 and 10 only positive-energy levels with kinetic en-
ergies below =40 MeV were retained. In Refs. 8 and 9, a
much larger basis was used, including positive-energy lev-
els up to several hundred MeV as well as all bound
negative-energy states. Altogether, a total of about 200
basis states was employed. Specific results of the large
basis calculations of Refs. 8 and 9 will be discussed in
Sec. VI where our calculations for discrete transitions are
presented.

V. NONSPECTRAL RPA

An alternative to the "spectral formulation is the
direct solution of the MFT version of the RPA integral
equation, Eq. (3.8). This "nonspectral" approach is im-
plemented by computing IIMF as given in Eq. (3.16) using
the nonspectral MFT propagator GMF as given in Eq.
(2.6). Beginning with this form of GMF, a partial-wave
version of the RPA integral equation (see Appendix B)
may be solved numerically. Specifically, this radial equa-
tion is

—11,', ,„,,(, ;
ij;kl ij; kl

+2 g & f "z',dz, f "z,'d, ( —&)IIM'F: (, , ;~)(—ig„)'(I„') '

I ";+,a mm
nn'

I I

&«fg-'(z), z2, ~)(I ~ , )D "( I, )III".L"sl . —
(sJ. yz;co) (5.1)

where IIMF".«»J(x, y;co) comes from the partial-wave
decomposition of IIM„[Eq. (3.16)] and f~~~'(z „z~;co )
comes from the Slater expansion of the free meson propa-
gator for meson X. The Dirac matrix content of the
meson-nucleon-nucleon vertex for meson type N, namely
(I ~., )D as well as its Pauli spin nature indicated by S„
are as defined in Appendix B.

There are several advantages to the "nonspectral"
method. For example, discretization is avoided and the
correct continuum boundary conditions are automatical-
ly included. This provides a more realistic continuum

response and is crucial for treating, e.g., the quasielastic
response in (e, e') or (p,p'). In addition, the entire MFT
single particle spectrum —including positive- and
negative-energy continua —is automatically incorporated
in the GM„of Eq. (3.8). This means that uncertainties in-
herent in any basis truncation do not arise. Finally, re-
tardation effects [co dependence of D& ,b(z, —z2, co) in Eq. .
(3.8)] can be trivially included. (This dependence, howev-
er, is expected to be very weak in the direct-only RPA
discussed here. )

Typically the numerical solution to Eq. (5.1) is found
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either by iteration or by matrix inversion after the in-
tegrals are put on a Gauss-Laguerre radial grid (see, e.g. ,
Ref. 14 for a similar nonrelativistic approach). The non-
spectral Dirac RPA method has been applied to finite nu-
clei by Shepard et a/. ,

' Iichi et al. ,
' and Wehrberger

and Beck." The first two of these studies were aimed at
evaluating RPA-like core-polarization corrections to the
isoscalar magnetic response of closed-shell +1 nuclei.
Here the iterative and matrix-inversion techniques gave
essentially identical results. In Ref. 11, the iterative tech-
nique was used to find the transverse and longitudinal
(e, e ) responses in the quasielastic region. In this in-
stance, the iterative technique was found to be unreliable
in certain kinematic regions. We have recently developed
a code' for solution via matrix inversion of Eq. (5.1) as it
stands for arbitrary complex co. The calculation is done
in configuration space and yields the general result
IIgL ss J(x,y; co ), where co =co + s i) which ensures the
causal polarization insertion is evaluated as discussed in
Sec. III. The Aexibi1ity of the code allows us to extract
several interesting quantities. We can find the response
to any one-body vertex operator at arbitrary co by solving
for II and taking the traces over the Dirac indices ij;kl
as indicated in Eq. (3.6). Alternatively, for a discrete
transition, we can evaluate II at @=co„+~g,extract the
residue, and determine the RPA transition density P~piA,

analogous to the full transition density defined in Eq.
(3.4). (See Appendix C for details of the construction of
the nonspectral form of 2'Rz~. ) This object can then be
used in standard scattering codes for (e, e') and (p,p')
reactions to compute observables with RPA transition
densities without resorting to the usual representation in
terms of particle-hole pairs (aP) and associated X'

&
and

I'
& coefficients [see Eq. (4.4)]. We note that the iterative

technique for finding II fails utterly for discrete transi-
tions.

VI. DISCRETE TRANSITIONS

We begin consideration of specific transitions by dis-
cussing 1 T =0 transitions in ' O. We find a very collec-
tive excitation at co=0.5~ MeV which clearly is the spuri-
ous level referred to in Sec. III. A clear indication of the
correct treatment of spuriosity in our calculations is the
behavior of the (e, e') Coulomb form factor for the first
nonspurious 1 T =0 level. This state is calculated to lie
at 8.47 MeV, considerably lower than the lowest uncorre-
lated excitation at 11.2 MeV. The experimental energy is
7.117 MeV suggesting insufhcient collectivity in the cal-
culations.

This suggestion is further supported by the comparison
in Fig. 1 of calculated (e, e') Coulomb form factors with
the data of Buti et a/. ' The RPA form factor lies below
the data by a factor of =2.5. Note, however, the
dramatic difference in shape between the uncorrelated
and RPA results which is a consequence of the elimina-
tion of all spurious components in the latter. This means
that, at small q, Fc is proportional to q in the uncorre-
lated case but proportional to q for the RPA. Hence the
RPA form factor and the data have the same shape as the
3 T =0 form factor to be examined below. Also shown

$0

10-4

10-5

10—6

q (fm ')

I I 4 I I

3

FIG. 1. The Coulomb form factor for the 7.117-MeV
1 T=O level in ' O. The dashed curve is the simple Hartree
particle-hole result for a (p&&2) '(s&~2) configuration (E =11.2
MeV) while the solid line is the RPA result (E„=8.47 MeV).
The dashed-dotted curve is RPA calculation (E„=10.1 MeV)
omitting the correlations due to the spacelike co interaction.
Data are from Ref. 18.

TABLE I. Calculated B(E1)'s for the lowest 1 T=O level in
' 0; see text.

Calculation

Uncorrelated
RPA, Coulomb
RPA, Electric

a(E1, V =0)e' fm'

8.0X10 '
1.30X 10
0.93 X 10

in Fig. 1 is a RPA result which excludes the correlations
induced by the spacelike co interaction. In effect, this cal-
culation employs a noncovariant nucleon-nucleon in-
teraction which means the 1 T=O spuriosity is not
treated correctly. The anomalous low-q structure in this
form factor is a consequence of less-than-complete elim-
ination of spurious components. The low-q behavior of
Fc also determines the B(E1) values of the transition. In
Table I various B(El)'s for the lowest 1 T=0 level are
compared. Two RPA values are given, one deduced from
Fc and the other from the transverse electric form factor
FE. According to Seigert's theorem or, more generally,
current conservation, these two values should be identi-
cal. Since both are quenched by RPA correlations by
nearly 4 orders of magnitude, their near equality is an in-
dication of su%cient numerical accuracy in our computer
program.

As stressed in Sec. III, the RPA discussed here is a
consistent extension of the description of the ground state
to 1p-1h excitations of the ground state. This consistency
has been emphasized by Frois and Papanicolas' in the
context of nonrelativistic models. They observe that non-
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at the peak by a factor of 5 and drop the excitation ener-

gy from the uncorrelated value of 10.92 MeV to 4.09
MeV. The experimental value is 4.43 MeV. Overall the
calculations are in good agreement with data. The trans-
verse electric form factor is also compared with measure-
ments in Fig. 2. We observe that, here, the RPA correla-
tions quench the square of the form factor at the peak by
nearly a factor of 2. However, the correlations give rise
to enhancement beyond q =2.5 fm '. This rejects the

"frontAow" phenomenon due to spacelike co correlations
and previously observed in the elastic Ml form factors of
ground states of closed-shell +1 nuclei calculated in
QHD1 MFT. ' ' ' The frontilow is an artifact of drop-
ping vacuum polarization effects and is likely to disap-
pear when vacuum dynamics is treated explicitly. In
any case, the square of the transverse form factor is over-
predicted at the peak where frontflow is negligible by
nearly a factor of 3. This discrepancy is due in part to
the strong m * enhancement of the isoscalar Dirac
current characteristic of QHD1 mean-field models. The
larger m* which arises in RHA models should reduce
this discrepancy as will a more realistic description of the
mean-field ground state which is unlike the spherically
symmetric p3/2 closed shell assumed here.

Coulomb (e, e') form factors for the lowest 3 excita-
tions in ' 0 and Ca are compared with data in Figs. 3
and 4, respectively. Agreement with experiment is again
quite good. However, the Ca case is somewhat prob-
lematic since, using the standard finite-nucleus QHD1-
MFT coupling constants and meson masses, the energy
of the 3 state is imaginary, indicating the spherical
mean-field ground state is unstable. The calculation
shown employs a o.NN coupling constant arbitrarily re-
duced by one percent. The significance of this failure of
the mean-field model is still an open question.

In Fig. 5, the calculated transition charge density (in
configuration space) for the lowest 3 level in Ca is
compared with the nonrelativistic calculations and the
data of Ref. 26. The relativistic RPA calculations again
use the reduced oNN coupling constant and agree much
more closely with experiment than the nonrelativistic
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0 Ex=4 507 MeV

I I I I I I [ I
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FIG. 5. The charge and current transition densities for the
4.507 MeV 3 level in Ca. The solid curves are the Dirac
RPA (E =4.41 MeV) results while the dashed lines are the
nonrelativistic RPA calculations (E =4.51 McV) of Ref. 26.
The experimental values shown by the dark bands are also from
Ref. 26.

10

q (fm ')

FIG. 6. The magnetic form factor for the 17.79-MeV 4 T=O
level in ' O. The dashed curve is the simple Hartree particle-
hole result for a (p3/2) '(dsz~) configuration (E =17.37 MeV)
while the solid line is the RPA result (E„=16.225 MeV). Data
are from Ref. 27.
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prediction even though the input for the latter was ad-
justed to reproduce properties of this excitation. This
comparison suggests that the superior description of
ground state charge densities afforded by the relativistic
approach does indeed carry over to the transition densi-
ties for collective excitations. Comparisons with the
transition current densities in Fig. 5, however, are not so
felicitous. The shape is badly described by both RPA cal-
culations where m * and frontflow effects cause the rela-
tivistic results to overestimate the data considerably. It
will be interesting to examine vacuum polarization effects
in this specific case as well.

Figure 6 shows calculated magnetic (e, e') form factors
for the 17.79-MeV 4 T=O level in ' 0 along with the
data of Ref. 27. Here the frontflow is evident as a high-q
enhancement of the RPA result over the uncorrelated
calculation. Both calculations overestimate the data by a
factor of 3 or 4. Such overestimates are not surprising
since isoscalar magnetic transitions are known ' to be
strongly quenched by mechanisms whose description lies
beyond the scope of the simple RPA employed here.
However, vacuum polarization contributions can be ex-
pected to reduce this discrepancy somewhat.

VII. SUM RULES IN DIRAC RPA

It is straightforward to derive sum rules for simple
particle-hole (i.e., MFT) matrix elements of one-body ver-
tex operators. These sum rules depend on the complete-
ness of the particle-hole basis. In some cases—for exam-
ple, in the case of the energy-weighted sum rule to be dis-
cussed below —these sum rules are preserved in the RPA
(see, e.g. , Refs. 4 and 5). In this section, we will consider
energy-weighted sums in the (uncorrelated) MFT and
then examine numerically the infIuence of RPA correla-
tion on these quantities. In a nonrelativistic picture, the
energy-weighted summed response is, using Eq. (3.7),

S@—= f dcocoS@(co)= g co pi(6) p~ (7.1)
P~F

where the hole index P runs over all occupied orbitals.
The a index is originally taken to run over all unoccupied
states but, because of the antisymmetry of co & under in-
terchange of indices, the range of a can be extended to in-
clude the range of P. Thus in this expression the range of
cx is unrestricted. Still, the only nonvanishing contribu-
tions to S@ arise from terms with a & F which ensures
~ & is positive and that So is positive definite. Assuming,
in analogy with Eq. (2.4), that the single particle wave
functions are eigenfunctions of a single particle Hamil-
tonian,

F)P)0 F)P&p

(7.4)

where now the hole label P is restricted to positive-energy
occupied levels and the particle label n runs over the en-
tire Hartree spectrum, including the negative-energy lev-
els. When o, refers to a negative-energy level, the corre-
sponding term in the energy-weighted sum rule [Eq. (7.4)]
is negative definite since co &=e —e&&0. Thus the sum
rule strength is no longer positive definite (see Fig. 7).

An example which illustrates the significance of these
differences between Dirac MFT and nonrelativistic sum
rules is the photoabsorption sum rule. The relevant one-
body vertex operator is the electric-dipole operator:

8~ (1+r, )r z .
—~e

2
(7.5)

(This expression is valid both relativistically and nonrela-
tivistically assuming the operator is to be evaluated be-
tween single particle wave functions and their Hermitian
conjugates, and not, in the relativistic case, between the
wave functions and their adjoints. ) Nonrelativistically,
assuming the potentials in h to be local and independent
of isospin, we have

[6,[h, 8]]= —,'(1+v, ) (7.6)

which yields the (non-recoil-corrected) TRK sum rule

2m+ XZOp-
m

(7.7)

Relativistically, as pointed out by Price and Walker,

[6,[h, 6]]=0
and the summed photoabsorption strength vanishes.
What is the physical interpretation of this result? We
consider the MFT version of the (spectral) response to a
probe with interaction vertex 6. In analogy with Eq.
(3.7), this quantity is

In the QHD1-MFT RPA presented here, the analogue
to Eqs. (7.1) and (7.2) is (remembering to construct the
response from the retarded polarization insertion IIM„.„,)
S@= g co p~(6) p~

=
—,
' g (P~[8, [h, 8]]~P&

h~a)=e ~a)

we can show

(7.2)

where we have made use of the completeness relation

(7.3) FIG. 7. Schematic representation of nuclear response con-
tained in mean-field-theory polarization insertion. See text.
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SM"(ni)= g ~(8) p~'[5(co —co &)
—5(~+co Z)],

F)P&0

gMF y ~(0) ~2

F)P&0
(7.9)

In contrast to the nonrelativistic case [Eq. (7.1)] where all
terms in the sum were positive definite, co &

& 0 for e & 0
and these terms are negative definite. Thus, when the
double commutator of 6 with the MFT Hamiltonian
vanishes, as is the case for the electric-dipole operator, we
understand that the ordinary particle-hole (a )I') contri-
bution is exactly canceled by the blocking response
(a (0). This accounts for the zero photoabsorption sum
rule in our model. As pointed out in Ref. 29, the negative
contributions to the sum rule involve a & 0 and thus cor-
respond to pair creation and so to very high "excitation"
energies. By restricting the range of energy integration in
the sum rule [Eq. (7.1)] to exclude such pair processes,
these negative contributions are dropped and, instead of a
summation over all particle states a, only positive energy
e are included. Then, using

(7.10)
a&0

where A'+ ' is the positive-energy projection operator, the
"projector" sum rule becomes

(7.8)

where (6) &
=—Tr(GV li) and where V & is the particle-

hole transition density defined in Eq. (4.2). For positive co,

the first term of Eq. (7.8) contributes only for a) F. This
is the Dirac analogue to the usual "particle-hole"
response in the nonrelativistic RPA. A unique feature of
the Dirac RPA is that the second 5 function —which
usually can be nonzero only for negatiue co and is thus as-
sociated with the decay of excited states —can contribute
for co positive since co &=e —@&&0 for e &0. These
contributions describe the blocking of the response of
vacuum due to the presence of occupied, positive-energy
states, g&. We immediately see that the energy-weighted
sum is

lativistic and "projector" sum rules, we have directly
evaluated the energy-weighted sum for the isoscalar (e, e')
Coulomb quadrupole response in Ca. The MFT and
RPA responses at q =200 MeV/c are displayed in Fig. 8.
The energy-weighted sums obtained from these responses
are compared with the nonrelativistic [i.e., Eq. (7.2) with
h ~—V /2m] and projector [i.e., Eq. (7.11)] sum rules at
several values of three-momentum transfer in Table II.
The comparison reveals that, for this particular response,
the projector sum rule is enhanced over the nonrelativis-
tic one by 20—30%, presumably due to m* enhance-
ments of currents. Also shown in Table II is the summed
mean-field response obtained by direct integration of the
uncorrelated (e, e') spectrum up to 100 MeV. For q ~ 150
MeV/c, this summed response agrees well with the pro-
jector sum rule suggesting that the assumptions discussed
above Eq. (7.10) are well satisfied. For higher q's, excita-
tion energies above 100 MeV become increasingly impor-
tant and the summed response lies below the full project-
ed sum rule because of the arbitrarily restricted range of
integration over co.

As noted above, ordinary 1p-1h excitations mix with
pair-production terms in the RPA and only the full sum
rule of Eq. (7.4) is preserved. However, Table II shows
that the summed QHDI-MFT RPA response, again ob-
tained by direct integration of the spectrum, is nearly
identical to the projector sum rule at low q. For q &200
MeV/c, RPA correlations reduce the energy-weighted
sum by as much as 25% presumably due to a shift of
strength above the 100 MeV upper limit of our integra-
tion.

Ce 2 T=O (e,e') Coulomb Response, q=200 MeV/c
0.20 I I I I I I I I

0.15

F &/3&0

(7.1 1)

a"
3

M

0.10

and the nonrelativistic sum rule [Eq. (7.7)] is (approxi-
mately) recovered. In our calculations, the complete-
ness properties of a finite basis-spline approach to the
spectral RPA (Ref. 30) are exploited to represent
efficiently the positive-energy projection operator.

In the RPA, contributions from the ordinary particle-
hole excitations are mixed with pair contributions and
only the full sum rule of Eq. (7.2) is preserved. Thus, in
the finite-basis spectral RPA calculations, only the trivi-
al, zero photoabsorption sum rule is rigorously satisfied.
Any "sum rule" for excitations below IVAN threshold will
be approximate and model dependent.

In order to examine the extent to which the effective
"no-pair" QHD1-MFT RPA rules differ from the nonre-

0.05

0.00
20 40 60

~ (MeV)

BO 100

FIG. 8. The Ca isocalar ( e, e') Coulomb quadrupole
responses in MFT (dashed line) and MFT RPA (solid line) are
shown. In these calculations, the nucleon electromagnetic form
factor was set to unity, retardation e6'ects and spacelike co corre-
lations were omitted, and the response was folded with a Breit-
Wigner having a half-width of 1.5 MeV.
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TABLE II. Energy-weighted sum of (e,e') isoscalar quadrupole Coulomb response for Ca; see text.

q (MeV/c) S " (MeV) s'+' SMFT SRPA

50
150
200
250
400

1.74
38.45
57.06
72.71
91.10

2.18
51.15
75.56
94.00

112.36

gj SNR

125%
133%
132%
129%
123%

y SNR

126%
135%
127%
102%
21%

%s'+'

101%
102%
96%
79%
17%

y SNR

129%
135%
120%
85%
16%

g S(+)

103%
102%
91%
66%
13%

The awkwardness of the sum rules in this version of
the QHDl-MFT RPA is related to the fact that we have
omitted vacuum polarization contributions to the nuclear
response. While the significance of the QHD vacuum is
quite controversial at present, inclusion of vacuum polar-
ization terms in future formulations will at least give
more physically meaningful sum rules. For example, re-
normalization will permit the calculation of the difference
between the response of the nucleus and the response of
the true isotropic vacuum. This difference is an observ-
able quantity.

VIII. GIANT RESONANCES

I /2m=
I ( &. pl'

[co—(e —equi)]'+(I /2)'
(8.1)

In Sec. VI, we outlined the treatment of discrete excita-
tions in our nonspectral RPA. This approach exploits
the relationship appearing in Eq. (3.3) which states that,
for co sufficiently close to co„, the excitation energy of the
nth state, a single pole dominates II and the residue at
this pole is the "outer product" of the transition density
V and its adjoint. This picture can be straightforwardly
extended to account for giant resonances. This extension
is most readily understood by considering the spectral
form of the uncorrelated polarization insertion, IIM„,
given in Eq. (4.1). It is evident that this object has poles
at co &, the particle-hole excitation energies. We recall
co &

=—e —
e& where the e's are the single particle energies

for the MFT Dirac equation. Since the hole index P
refers to a level below the Fermi surface, this level must
be bound and e& must be real. If the particle index a also
corresponds to a bound single particle level, e is also
real, IIMF has a pole at cu & on the real axl's, and the
methods of Sec. VI apply directly.

Now consider the case for which the particle index a
refers to a resonant single particle level. As is well
known, such levels have complex "eigenenergies, "
e ~e —~I /2 where I is the escape width of the reso-
nance. (In fact, it is more precise to say that resonant
states correspond to poles in the single particle propaga-
tor GMF at complex frequencies. ') In this instance, the
pole in HMF will appear at the complex energy
co &=(e —i, l /2) —e&. The contribution of this pole to
the continuum response for a probe with a vertex given
by the operator 8 is, via Eqs. (3.3), (3.5), and (3.7),

where, in analogy with Eq. (3.5),

( @& ~
——Id'y Tr[(y) V &(y) ] (8.2)

and where 9'
& is the particle-hole transition density

defined in Eq. (4.2). This response is just the modulus
squared of the particle-hole matrix element times a
Breit-Wigner with full width at one-half maximum of I
The correct limit [Eq. (3.7)] is obtained for I —+0. The
method outlined in Sec. III and discussed in detail in Ap-
pendix C for extracting the transition densities by numer-
ically determining the residue of II at its poles was ap-
plied in Sec. VI to the case of real excitation energies (i.e.,
poles on the real axis) but is equally appropriate for poles
at complex energies. In the present work, the existence
of such poles in IIMF is ensured by the continuum bound-
ary conditions imposed in constructing the nonspectral
single particle propagator GM„. [See Eq. (2.6) and Ap-
pendix B.] We conclude that the technique just outlined
is likewise appropriate for the RPA; i.e., we may find
poles in HRp~ at complex energies, associate the imagi-
nary part of these energies with the escape widths of the
excitations, extract the transition densities by numerical-
ly determining the residues of IIRp~ at the poles, and
compute the contributions of these excitations to the
response using the appropriate generalization of Eq. (8.1).

Preliminary investigations of the structure of IIRp~ in
the complex-co plane suggest the picture outlined above is
realized in our calculations. Figure 8 shows the MFT
and RPA (e, e') isoscalar quadrupole responses for Ca
at a momentum transfer of q =200 MeV/c. A large
structure appears at co=30 (21) MeV in the MFT (RPA)
response. Poles in the insertions having large residues are
found at complex co's corresponding to the centroids and
widths of these peaks. We identify these poles with
(pieces of) the isoscalar giant quadrupole resonance.

In the present picture, then, we think of discrete, low-
lying collective transitions and giant resonances in much
the same way except. that the latter correspond to poles at
complex rather than real co's. We are familiar with the
fact that RPA correlations lower the excitation energy
and build up the strength of low-lying collective excita-
tions. This amounts to altering the position of a pole on
the real axis and increasing its residue. The same picture
can be applied to the giant resonaces where now RPA
correlations will shift the pole in the complex-co plane
affecting both its centroid and escape width. Application
of these techniques to specific giant resonances and use of
extracted transition densities in (e, e'), (p,p'), and (m, ~')
calculations will be reported in a future publication.
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IX. QUASIELASTIC (e, e') COULOMB RESPONSE

While the preceding discussion of giant resonances is
useful for the interpretation of distinct structures in the
low energy continuum response, it is not applicable
everywhere in the continuum. For example, in the region
of the quasielastic response, it is unfeasible to decompose
the contribution of each of the many relevant partial
waves into contributions due to individual poles. Instead,

the response is most readily computed by direct use of
Eq. (3.6). We have performed such calculations for the
quasielastic (e, e') Coulomb response for ' C and Ca. In
these calculations, we assume (l) that the isoscalar anom-
alous moment vanishes and (2) that the isovector
response is uncorrelated. We use the nucleon elec-
tromagnetic form factors of Ref. 33. Figure 9 shows un-
correlated and RPA calculations for the longitudinal qua-
sielastic response of ' C at q =400 and 550 MeV/c. Simi-
lar comparisons are made for Ca in Fig. 10. The RPA
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0 025
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FIG. 9. The longitudinal quasielastic (e, e') response for ' C
at q =400 and 550 MeV/c is compared with Dirac uncorrelated
(dashed) and RPA (solid) calculations. The data are from Ref.
34.

FIG. 10. The longitudinal quasielastic (e,e') response for
Ca at q=410 and 550 MeV/c is compared with Dirac un-

correlated (dashed) and RPA (solid) calculations. The data are
from Ref. 34.
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response is seen to be appreciably quenched compared to
the uncorrelated result and is also in good agreement
with the data, especially for ' C. Both Horowitz and
Suzuki have observed that this RPA quenching is cru-
cial for describing the experimental Coulomb sum values.
Also, as discussed by Horowitz and Piekarewicz, ' vac-
uum polarization effects somewhat reduce the response
on the high-co side of the quasielastic peak, substantially
improving agreement with the Ca data but worsening
the description of ' C.

X. SUMMARY AND CONCLUSIONS

We have presented Dirac RPA calculations emphasiz-
ing their consistency with successful mean-field descrip-
tions of nuclear ground states. We have discussed a cal-
culational approach which avoids the approximations
and ambiguities of more conventional RPA treatments by
employing a nonspectral single particle propagator.
Some Dirac RPA calculations by other workers are dis-
cussed in Refs. 7—10. Our method allows consistent
treatment of both discrete and continuum excitations in-
cluding correct boundary conditions in each case. The
RPA description of (e, e') Coulomb form factors for low-
lying collective excitations is quite good. The associated
transverse electric form factors are more poorly repro-
duced, presumably due to m * enhancements and
"frontAow. " Both these phenomena are likely to be sub-
stantially reduced by including vacuum polarization con-
tributions.

The energy-weighted summed response in our Dirac
RPA was found to be constrained by a sum rule of little
physical utility. In the uncorrelated case, it is possible to
define a "projected" sum rule which can be closely con-
nected with measurable quantities and which is very simi-
lar to the more familiar nonrelativistic sum rule. Numer-
ical examples of various summed responses were present-
ed in the case of the isoscalar quadrupole Coulomb (e, e')
response for Ca. The projected sum rule was found to
be enhanced by 20—30% over the nonrelativistic result.
The Dirae RPA summed response was observed to be
very similar to the projected sum rule at low q but some-
what lower at q + 200 MeV/c.

The correspondence between poles in the polarization
insertion at real values of co and discrete excitations was
extended to include giant resonances which appear as
poles at complex energies, the imaginary part of which
corresponds to the escape width of the resonance. Our
method of calculation, which builds in the correct contin-
uum boundary conditions at the level of the nonspectral
single particle propagator, naturally gives rise to such
poles. We have numerically established the connection
between such poles and low-lying peaks of nonzero width
in our continuum response. Application to specific reso-
nances, including the use of extracted transition densities
to make predictions for (e, e'), (p,p'), and (n., ~') observ-
ables, will be the subject of future studies.

We have also evaluated quasielastic (e, e') Coulomb
responses for ' C and Ca. The RPA calculations were
found to be in good agreement with data, in most cases
correctly reproducing the strong quenching relative to

both relativistic Fermi gas and uncorrelated (or mean-
field-theory) results.

The model presented here could be improved in several
ways. For example, we would like to include explicit
treatment of the vacuum dynamics with particular em-
phasis on their implications for transverse electric form
factors. A complete theory of collective excitations must
describe both the Coulomb and electric (e, e') form fac-
tors. The present RPA is successful only for the former.
While examination of electromagnetic observables has
been very informative, comparison with (p,p') data is
likely to provide interesting and unique tests of the Dirac
RPA. To effect such comparisons, we have adapted ex-
isting (p,p') codes' to accept our nonspectral RPA tran-
sition densities. Results of (p,p ) calculations employing
our RPA transition densities and consistent distortions
generated using relativistic impulse approximation opti-
cal potentials constructed from experimental NN ampli-
tudes and mean-field-theory vector and scalar ground
state densities will be reported elsewhere. Eventually,
we hope to calculate the (p,p') continuum response using
HRp~ and distorted waves determined by the relativistic
impulse approximation. It may be possible to treat the
distortions in full partial-wave expansion rather than us-
ing plane waves or an eikonal formulation. Finally, we
must include isovector RPA correlations arising from in-
teractions mediated by m and p mesons. Such calcula-
tions, using an approach similar to that employed in Ref.
10, are in progress.
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APPENDIX A

X[@ (ep e) y—q]it' —(r) . &A1)

After expressing q in terms of a gradient acting on the ex-
ponential, integration by parts yields

iq J g= f d v e "q'i7tp(r)

X[@ (e e&)+iy (V&—+V )]g (r) (A2)

where V (Vp) acts only on g (g&). Since P and Pp satis-

fy the same Dirac equation [Eq. (2.4) with MFT self-
energies] with eigenvalues e and e&, respectively, the

We first establish that the particle-hole transition
current as defined in Eq. (4.7) has zero divergence. Using
q"=(co &, q), we have, letting e ~ l,

iq J &~f d v e "q'Tr[&V &(r)]

d re 'q' pr
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quantity in the square brackets vanishes and the particle-
hole transition current is conserved.

In RPA, the statement of current conservation is

shows

0 0X JpaKpa;a'p' $ JapKap;a'p' (A 10)

q J~„]= d re ' 'Tr RpAr =0 (A3)

where now q"=(co„,q). To prove this assertion, we use
the spectral representation of PzpA as given in Eq. (4.4)
to write

cq.J(„)= g X'p f d r e '~'Tr[QP p(r)]
F)P&0

a

+ Y("p) f d r e "~'Tr[&Vp (r)]

[(co„m.p)X—(.pJ'.p
F)P&0

+(co„+c()p)Y("pJ p] (A4)

where the last expression follows from the conservation
of the particle-hole transition current with q"=(~ p, q).
The spectral RPA matrix equations [Eq. (4.5)] may now

be used to write

Similar results hold when a' and P' are interchanged and
~q.J~„)=0 follows, as required.

The above proof does not depend on any specific prop-
erties of the interaction K. In particular, consistency be-
tween K and the Hartree basis is not necessary for
current conservation as it is for proper treatment of
spurious excitations (see Sec. III). However, complete-
ness is essential and a conserved RPA current is not ob-
tained with a truncated basis even if the simple particle-
hole current is conserved.

APPENDIX B

In this appendix, we derive the partial-wave form of
the RPA equation as shown in Eq. (5.1). Using the ex-
pression for the MFT polarization insertion, HMF, given
in Eq. (3.16), the first iteration of IIM„ is

—cIIM('F'~'"'(x, y;co) = f d z, d zz( —c)IIMJF (x,z, ;co)

~q J~„)=
F)P, P'&0

a, a'

[J p(K p pX("i'r+. K p p ~ Y'"p . )

Jp (Kp —.p, X'"p', +K. p .p ~
Y'".p, )] .

X g (I'~) cDbi ,b(z) —
z. 2;co)

N

X(r' )"'"(—L)II ' (z„y'co)

(81)

%'e now write explicitly,

d'x px ' ~x 'y0J0e

= f d'x e 't'*[gt(x)]'[gp(x)]'

(A5)

(A6)

where summation over the repeated Dirac component in-
dices is understood. To make further progress, we speci-
fy the angular dependence of the quantities comprising
IIMF. Referring again to Eq. (3.16), we write the MFT
single particle wave functions as

where l and l are Dirac spinor indices, a sum over which
is implicit, and where we have made use of the explicit
form of J (see Sec. IV). Similarly,

K.p,.p f d'y d'~[4.(y)] [fp(y)] up(x)= '
up(x) for i =1,
cup(x) for i =2

fp(x)~Q'„ i J (x)=u„' i, (x)P,(;). (x, cr)
np pJpmp np pJp

where i is a Dirac component index and

(82)

X[K(y—z)] '"" [Pp,(z)]"[P .(z)]" (A7)

y [e.(y)] [0'.(x))'=& i~'"(x—y) (A8)

which implies

g J'.pK.p,.p= fd'y d'« ""[fp(y)]

x [«y —»l '"" [@p(»l" [@.«)]" .

(A9)

where K is the quantity in the large parentheses in Eq.
(4.6) but contracted with y "at each end. " The com-
pleteness relation is

with u (u) being the real upper (lower) component bound
state radial wave function and where

P, (;) . (x; cr ) = [ Y,(;)(x )X, /2(cr ) ]J

and I( ':—(2j —1"') that is, I( ' is the "other parity" lower
component orbital angular momentum associated with
the upper component orbital angular momentum l"'.

The nonspectral MFT single particle propagator' has
a similar form:

GMF(xy~)= g [4'.;i, (x~WJ,
, i; (y~)~(y —x)

1'j'm

+Q„'.i~' (x;co)g J.i. ' (y;co)8(x —y)]

(83)

Use of the orthogonality relation again in the specific
form of

g [4.(x))'[0'.(y) l =~,i&"'(x—y)

where

with

(x; co ) = g„' i'(x; co )P, ,(;) ., (x, cr. ) (84)
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ul. '(x) for i =1
J

I,gl, (x) for i =2,~h', ,(x)= ' (85)
GMF(x, y;~)= g Gl'J'(x, y;~)

I'j'm

X "pl, „, (x,o )&I „., (y o~) (B6)

u (g) being the upper (lower) component radial wave
function for the solution of the MFT Dirac equation [i.e.,
the MFT version of Eq. (2.4)] at energy co with regular
boundary conditions at x =0. For co above particle
threshold. , u and z will be complex. Similarly,

(x;co) represents a solution to the MFT Dirac equa-
tion which is regular at large distances. In practice, this
quantity is obtained by integrating the Dirac equation in-
ward from some large radius (typically 10 fm) at which
point f„ is matched to the outgoing wave spherical
Hankel function JII'"(kx) where k =(co +2m')'/ for
co & 0. For co ~ 0, 1'„ is matched to hlI

"(w'x) with
lr = ( co 2m—co )

' where we now specify co =e m, e—be-
ing the energy appearing in the MFT Dirac equation [Eq.
(2.4)].

With these conventions GM„becomes

where

Gl' j (x,y;co) =g'„.I. '(x;co)g j.l. '(y;co)8(y —x )

+f„' I'(x.;co)g j I'(y. ;co)8(x —y )

and

(B7)

(B&)

We combine these expressions, couple the P's of like
arguments together, and use the identity

and similarly for g „'. Note that there is no conjugation of
the radial functions above. This is consistent with the
usual prescription to be used in constructing the single
particle propagator in the continuum.

[+Ij(x o )+I'j'(x & )]JM ( —)' g [(l—,
' )j(l' —,

' ),'l(ll')L( —,
'

—,
' )s]JCII I [YL(x )(gl'ny, /2)s]JM

LS

Cl/'L =

where [(l—,
'

) (i' —,
' ) '~ (ll')L ( —,

'
—,
' )s ]I is a unitary transformation coefficient proportional to a 9-j symbol and

1/2
(2l+ 1)(2l'+ 1)

4~(2L+ 1)

(B9)

We can then write

+MP'(x y ~)= g &)i ss'J(x»»I ~L(x )[&I/2(~. »I/2(~. )]s ]JM I ~L (y )[Xl/2(~ )Xl/2(~ )]s']1M
LL'
SS'
JM

where

2L'ss'J(x y»= — X [~iI', I'j', LsJ~ I J I'j', L s Jul J (x )u I (y )Gl". '(y, x; ep )—pJp pJp

1'j'

+~ I'J'I J LSJ~ I'J'I j L'S'Jul J y ) I j (x )'Gl'J'(X, y ~II+~) lJ pJpi J pJp~ pJp pJp

(B10)

(Bl 1)

with

(B12)

We now consider the "kernel" appearing in Eq. (Bl) which connects the two MFT polarization insertions. The ver-

tices are expressed as

r, ~lg, ~ig, (r, )Do„(I,)D =1D, o, = II

(B13)

where the subscript D refers to matrices in Dirac component space and I' refers to matrices in Pauli spinor space. Then
the contribution to the kernel due to meson type N can be written as
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—tg' g(l' )™(I., )""g f (z. , ,z, ;to)[Y (z, )o ] [Y (z )o ]t
a LJM

(814)

to perform the integrals over z„z2, and the spin variables in Eq. (81). Equation (815) implies a separation into partial
waves of total angular momentum and parity J as expected. The 6rst iteration of the MFT polarization insertion can
then be expressed as radial functions times one overall spin-angle factor:

+MF ( J )=g [ %i"'ss J( y' )+&iL ss J][Y ( )(X /zX / )s] [YL (y)(X /~ / )s']J (816)
LL'
SS'
JM

where
' '

~ I 2 I 'klBgL"ss'J=2 fz,dz, z2dz2 g ( 1)H)L"SS,J(x,z1 , ro)( —'tgA')(I Ji)™tv.L. (z1,z2 ~)(PJi, a )" "( t)IIL~—L's. s'J(z2, y;ro) .
L"
N, a (817)

where we have used the fact that DN. ,b is diagonal in the generalized coordinate indices a and b. Also o., is the Pauli

spin operator relevant to meson type N (label suppressed) and coordinate a and fJi Lari.ses from the Slater expansion of
DN. %'e use the spin-angle identity

f dx ~ I L(x )[Xl/2(~)X1/2(o )ls I JM[ YL'(x ) s']J'M' 2~LL'~ss'~JJ'~MM' (815)

The ring sum is accomplished by letting II' +"~HRPA
on the left-hand side of Eq. (816) and IIMF(z2, y;ro)
~IIRPA(z2, y;co) on the right-hand side of Eq. (817).
The result is the RPA radial equation of Eq. (5.1) where
the radial MFT polarization insertion is given by Eqs.
(811)and (812).

APPENDIX C

The RPA analogue of Eq. (3.3) is

[~ RPA( x )]"I:&RPA( X )]
III[p"A'(x, y;ro ro„+ti))=—

(Cl)

where co„ is the RPA excitation energy of the nth excited
state and (PRP'A) is the associated RPA transition densi-

ty which is a matrix in Dirac component space. The
partial-wave expansion of Hzp~ discussed in Appendix B
implies

t 9HFPA;LL'SS'J(x y ~ + t 9)i;kl

(@)RPA~ g ~ @LSJM ~RPA '
LSJM

where

( LSJM ~RPA = g f 'yoLSJM( J)[~RPA;LSJM(Ji)]
lk

&2 & f "y'dy OLsJ(y)[&MFA;LSJ(y)]"'
Ik

(C4)

for @LSJM( J)=@LSJ(y )[YL(y )~rs ]JM
The RPA transition density may be extracted from the

IIRPA of Eq. (5.1) via the following procedure. Define

)+RPA;L'L'S'S'J(y0 y0 ~ +~ l)2 k+I +1 lk;kl

=I[&xFFA;L s J(yo)]"'I'

which is positive definite. Note that the phase ( —)

comes from the definition 9:yP y . Then—
L'77 'i; kl L'SS'J( y. . .+ J)

and

~LSJM( J)=&LSJ(y )[ YL(y )os ]JM (C3)

[PRPA. LSJ(X )] [NRPA LS J(y )] (C2.)
[~RPA;LSJ(& )l

I ~RPA; LSJ (C5)

Hence [see Eq. (3.5)] the RPA matrix element of vertex
operator 6 for this transition is

which finally yields the radial transition density to be
used in, e.g., Eq. (C4).
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