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The magnetic form factors of H and 'He are calculated with the Monte Carlo method from vari-
ational ground-state wave functions obtained for the Argonne and Urbana two- and three-nucleon
interactions. The electromagnetic current operator contains one- and two-body terms that are con-
structed so as to satisfy the continuity equation with the two-nucleon potential in the Hamiltonian.
The results obtained with the Argonne two-nucleon interaction are in overall agreement with the
empirical values. It appears that the remaining theoretical uncertainty, in the calculation of these
form factors from a given interaction model, is dominated by that in the electromagnetic form fac-
tors of the nucleon. It is found that the isovector magnetic form factors are rather sensitive to the
details of the isospin-dependent tensor force, and they are much better reproduced with the Ar-
gonne than the Urbana potential. The isoscalar magnetic form factors appear to be sensitive to the
spin-orbit interactions, and are better reproduced with the Urbana potentia1. The Argonne poten-
tial has a stronger v. , ~2 tensor force, while the Urbana one has a shorter-range spin-orbit interac-
tion.

I. INTRODUCTION

The theoretical investigation of the structure of the
bound hydrogen and helium isotopes differs from the
study of larger nuclei in that the wave functions of these
nuclei can be treated exactly in the numerical sense. '

The uncertainty limits in the calculations are thus set
solely by the available computer power. This fact makes
the electromagnetic form factors of these few-body sys-
tems the observables of choice for testing the quality of
models for the nucleon-nucleon interaction. The situa-
tion is, however, complicated by the fact that the elec-
tromagnetic current operator contains irreducible two-
body exchange current components, which through the
continuity equation also depend on the potential model.
Consistent gauge invariant calculations of the elec-
tromagnetic form factors thus, in general, require that
the same potential model be used to generate both the
wave functions and the exchange current operators.

The importance of the exchange current corrections is
particularly large in the case of the magnetic form factors
of the three-body nuclei H and He. Because of a
destructive interference in the matrix elements for transi-
tions between the 5- and D-state components of the wave
functions, the impulse approximation predictions for
these form factors have distinct minima around 2.5 fm
in disagreement with the experimental data. ' ' The
situation is closely related to that of the backward cross
section for electrodisintegration of the deuteron, ' which
is also dominated by exchange current contributions for

values of momentum transfer above 2.5 fm
In previous studies of the exchange current contribu-

tions to the magnetic form factors of the bound trinu-
cleons, the model for the exchange current operator has
been based on simple meson exchange mechanisms.
Such models for the exchange current operator are in a
qualitative sense consistent with the models for the realis-
tic nucleon-nucleon potentials that are used to construct
the nuclear wave functions, since those too are typically
based on boson exchange mechanisms. The usual ad hoc
treatment of the short-range part of the exchange current
operators does, however, imply that the continuity equa-
tion is satisfied only approximately (at best). In this in-
vestigation we shall try to improve on this situation by
using the methods proposed in Refs. 14—16 to construct
the exchange current operators from the potential model
used to calculate the wave function.

We use the variational ground-state wave functions'
obtained with the Argonne' and Urbana' two-body po-
tentials and the Urbana model VII three-nucleon interac-
tion. Most of the form factors in the region of momen-
tum transfer around 3 fm ' are due to exchange current
contributions. The dominant term of the current in this
region is the isovector exchange current operator associ-
ated with the isospin-dependent component of the
nucleon-nucleon tensor interaction. ' The small exchange
currents associated with the velocity-dependent com-
ponents of the nucleon-nucleon interaction are hardly
visible, unless one considers the isoscalar combination of
the magnetic form factors of the trinucleons.
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In addition to the above exchange currents required by
the continuity equation, we also consider contributions of
purely transverse %Ay, p~y, and cony exchange
currents. These transverse currents are not constrained
by the nuclear potentials, but their contribution is small
except at the highest values of momentum transfer con-
sidered. The three-body exchange currents associated
with the small three-nucleon interaction are neglected.

The matrix elements of the current operator are evalu-
ated with the Monte Carlo method. ' ' This method is
particularly convenient because the calculation of the
matrix elements of two- (or more) body operators is in
practice no more complicated than that of a one-body
operator, and can be done exactly. The method can be
used with any wave function, such as the Faddeev ground
state; ' here we have used the variational Monte Carlo
wave functions' because they are convenient and
presumably accurate enough for the present work. Nev-
ertheless, we hope that this work will be repeated with
the more accurate Faddeev wave functions.

The magnetic form factors are calculated with several
different parametrizations of the electromagnetic form
factors of the nucleon. It should be emphasized here that
the modern semiempirical pararnetrizations of the elec-
tric and magnetic form factors of the nucleon are
not in good agreement with each other even at relatively
low values of momentum transfer. The theoretical uncer-
tainty in the calculation of the magnetic form factors,
starting from a given interaction model, is dominated by
that in these parametrizations. Within the uncertainty
limits, the predicted values of the magnetic form factors
of the trinucleons are in good agreement with the experi-
mental data when the Argonne' interaction is used, but
not with the Urbana' model. The main difference in
these models is between their isospin-dependent tensor
forces.

The previous study of the magnetic form factors of the
trinucleons, which is closest in spirit to the present work,
is that of Ref. 8. In that paper the form factors were cal-
culated using interactions based on the Paris potential,
and components containing up to one 6 particle in the
ground-state wave function were treated explicitly. The
exchange current operators used in Ref. 8 were con-
structed from meson exchange mechanisms whereas we
use currents that are, as far as possible, derived from the
interaction model. Our results differ from those of Ref.
8, in which reasonable agreement with data was obtained
only when the Dirac F(q) form factors were used in the
main exchange current operator, whereas we obtain good
agreement with the Sachs G(q) form factors. The con-
tinuity equation is exactly satisfied when the longitudinal
currents are calculated from the interactions, and the

I

Sachs form factors are used for both one- and two-body
currents.

This paper falls into four sections. In Sec. II we de-
scribe the form of the electromagnetic current operator.
A short description of the Monte Carlo method used to
evaluate the matrix elements of the current operators is
given in Sec. III. In Sec. IV we present the numerical re-
sults for the magnetic form factors using different param-
etrizations of the electromagnetic form factors of the nu-
cleon, and a concluding discussion. A number of useful
formulas are given in the Appendix.

II. ELECTROMAGNETIC CURRENT OPERATOR

A. General structure of the current operator

The electromagnetic current operator is written as a
sum of single-nucleon and two-body exchange current
operators. The impulse approximation for the magnetic
form factors includes only the contribution of the single-
nucleon current of the usual form

j(q) = [Gg(q)+Gz(q)~, ](p'+p)1

Pl~

+ -[GM(q)+GM(q)~, ]o Xq .
4m~

(2.1)

B. Model-independent exchange current operator

The continuity equation, which links the two-body ex-
change current operator to the nucleon-nucleon interac-
tion, has the form

V j,„(x;r„r2)+i[u (r„r2),p(x)]=0, (2.2)

where p(x) is the charge density. The Urbana and Ar-
gonne potential models have the explicit form

Here q is the momentum transfer to the nucleon and p
and p' the initial and final nucleon momenta. The nu-
cleon mass is denoted by m& and the electric and mag-
netic form factors are normalized so as Gz(0)=Gz(0)
=1, GM(0)=0. 88 and GM=4. 706.

The exchange current operator is separated into a sum
of a model-independent and a model-dependent part.
The model-independent component is constructed from
the nucleon-nucleon interaction by the methods devel-
oped in Refs. 14—16. The model-dependent part of the
exchange current operator, which is purely transverse
and therefore not constrained by the form of the
nucleon-nucleon interaction via the continuity equation,
is constructed from the commonly considered meson ex-
change current mechanisms that have the longest range.

v(r, —r2)=v'(r)2)+u (ru)crt a2+u'(r)q)Su+[v'(ru)+u '(r)2)o) o2+u "(r)2)Stq]rt

+[v (r~p)+u (r~2)'r~''r2]L S+[v (r&z)+u '(r&2)r& r2] —,'(o& Lo'z L+oz Lo
&

L)

+Iu (r,z)+u" (r,z)o, o2+[v '(r, 2)+u " '(r, z)o, tr2]~, vz]1. (2 3)

In Refs. 18 and 19 these interactions are given using the velocity-dependent operators L S, (L S), and L; they can be
easily cast in the above form by noting that
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(L S)~=—,'L —
—,'L S+—,'(o. , Lo.

~ L+o~ Lo, .L) . (2.4)

Only the first three terms v', u, and u' commute with p(x); all the rest generate two-body currents.
The most important term in j„is the isovector exchange current associated with the isospin-dependent static com-

ponents v', v ', and v' of the nucleon-nucleon interaction. These components can actually be fairly well described as
being due to one-pion and one-rho-meson exchange. The expressions for the one-pion and the one-rho-meson exchange
current operators are well known: '

j (k„kz) = —3i (r, X rz), u (kz )o,(o z.kz) —u (k i )o z(o, k, )

ki —k2
(o., k, )(o~ k~)[v (k~) —v (k, )]

ki —k2
(2.5)

j (k„k,)= —3i(r, Xr, ), u (k, )o, X(o,Xk, )
—u (k, )o, X(o, Xk, )

v (kz) —v (k, )+
~ ~ [(k,—k~)(o, X k, ) (o.i X k~)

k, —k

+(o, Xk, )o.
~ (k, Xk~)+(o ~Xk~)o, (k, Xk~)]

k, k2
[vs(k~) —u (k, )]

3 k, —k
(2.6)

Here k, and k2 are the fractional momenta delivered to
nucleons 1 and 2. The functions u (k), u (k), and u (k)
are, respectively, the tensor components of the pion and
rho-meson and central component of the rho-meson ex-
change interaction

u "(k)= J dr r jz(kr)u' (r), (2.14)k'
u'(k)=4w f dr r jo(kr)v'(r) .

0

The current operators jI,s and jv obtained by using

Vis(k), Vv(k) and Vv(k) in place of u (k), u (k), and

v~(k) in Eqs. (2.5) and (2.6) satisfy the continuity equa-
tion with the empirical potentials u ', v", and u' in the
model interaction used to fit the nucleon-nucleon scatter-
ing data and calculate ground-state wave functions. In
this way consistency between the interaction model and
the exchange current operator has been achieved. It is
worth noting that this method of constructing the isovec-
tor exchange current operator has recently been given a
more formal justification that does not rely on the explicit
boson exchange analogy.

The utility of this approach was proven for the case of
the parametrized Paris model of the X-X interac-
tion. ' ' ' Here we use the Argonne and Urbana mod-
els' ' to construct these current operators. It is, in fact,
interesting to analyze the generalized pseudoscalar and
vector exchange components of these interaction models.
The contributions of the PS and V exchanges to the

S; v;.~ interaction between nucleons are compared in

Figs. 1 and 2 with the single point pion and rho-meson

5; v, .~J potentials, respectively. It is evident from these
figures that the PS and V exchange tensor interactions in
these models are quite similar to those due to m and p ex-
changes, respectively ( . ). (f /4m. =0.081,
g /4m. =0.55, and ~=6.6).

In the last term of the generalized p-meson exchange
current operator (2.6) we use the Fourier transform of the
isospin-dependent central potential u'(r) in place of the
u (k). The v (r) in the Urbana and Argonne models
does not closely resemble the p-meson exchange interac-
tion (Fig. 3).

The exchange current operators (2.5) and (2.6) have to

(2.15)

2
1

m +k
v (k)=—1

3 m
(2.7)

2
(1+l~)

m +ku (k)= ——gp

3 2m~
(2.8)

u (k)=g 1

~ m,2+k2 (2.9)

Here m and m are the meson masses, f is the pseu-
dovector +X', and g and ~ are the vector and tensor
pNN coupling constants. The currents (2.5) and (2.6)
satisfy the continuity equation when the u', u ', and v'

interactions are given exactly by m. and p meson ex-
change, which is generally not the case.

The method of obtaining current operators j~s and jv,
which satisfy the continuity equation for any given u',
v ', and v" potentials, is outlined in Ref. 15. In this
method these potentials are attributed to exchanges of
families of pion-like pseudoscalar (PS) mesons and p-like
vector (V) mesons. The sum of all T= 1 PS- and V-
exchange terms is then obtained as

(2.10)Vis(k) =
—,'[2v "(k)—u '(k)],

Vv(k)= ,'[u "(k)+u '(k)],—

Vv(k) =v'(k),

(2.1 1)

(2.12)

where

(2.13)'(k)= I dr r [jo(kr) 1]v '(r), —
0
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FIG. 1. Pseudoscalar exchange part of the isospin-dependent
tensor component of the Argonne and Urbana U&4 potentials
(PS-A and PS-U, respectively), and the bare one-pion-exchange
tensor interaction.

FIG. 3. Isospin-dependent central component of the Ar-
gonne and Urbana U l4 potentials (VS-A and VS-U, respectively),
and the bare rho-meson-exchange central interaction.
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FIG. 2. Vector exchange part of the isospin-dependent tensor
component of the Argonne and Urbana U, 4 potentials (V-A and
V-U, respectively), and the bare rho-meson-exchange tensor in-
teraction (in absolute value).

be multiplied by a nucleon electromagnetic form factor,
which by the continuity equation (2.2) should be the
Fourier transform of the isovector component of the nu-
cleon charge density. The nonrelativistic continuity
equation requires that it should be the Sachs form factor
Gz(q) used in the one-body current. In the context of
Dirac theory, Gz(q) includes a relativistic correction pro-
portional to the Pauli form factor F2 (q)

2

Gz(q) =F, (q) — Fz (q) . (2.16)

Since the relativistic correction arises from the purely
transverse Pauli term in the electromagnetic current
operator of the nucleon, it drops out of the relativistic
continuity equation Bp"=0, suggesting that F& (q)
should be used to multiply the exchange current contri-
butions (2.5) and (2.6). However, in an approach that
uses Dirac spinors to describe nucleons, there are addi-
tional exchange current contributions from meson ex-
change diagrams with intermediate nucleon-antinucleon
pairs that are coupled to the electromagnetic field by the
Pauli coupling term. Their contribution essentially pro-
vides the relativistic correction in Eq. (2.16), and thus,
even in this approach, GE(q) should be used to multiply
the contributions (2.5) and (2.6). This argument was first
obtained in Ref. 30, but because of an overall sign mis-
take, with the opposite conclusion. We shall return to a
discussion of this form factor diC'erence, which is numeri-
cally significant, in Sec. IV.

The isovector exchange current operators (2.5) and
(2.6) are the ones of greatest importance for the magnetic
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form factors of the three-nucleon bound states. The
contribution of the other current operators to be con-
sidered below is typically of an order of magnitude small-
er than that given by the exchange current operators (2.5)
and (2.6).

The explicitly velocity-dependent components of the
nucleon-nucleon interaction also require the presence of
exchange current operators. The most important
velocity-dependent component is the spin-orbit interac-
tion. The question of the proper form for the exchange
current operator to be associated with the spin-orbit in-
teraction is an old problem of photonuclear theory. '
One part of this exchange current operator can be con-
structed directly by minimal substitution in the spin-orbit
interaction, but this procedure still leaves an incomplete-
ly determined nonlocal current operator, associated with
the isospin-dependent spin-orbit interaction, which is
proportional to (r, Xrz), . The first part, while satisfying
the continuity equation by construction, does not, howev-
er, agree with the form of the corresponding operators
that are given by meson exchange diagrams. '

We shall use here the form for the exchange current
operator associated with the spin-orbit force which was
derived in Ref. 14. This current operator is constructed
by minimal substitution in the interaction, but only after
the interaction has been cast in a form valid in a general
reference frame. This requires the separation of the
spin-orbit interaction into two components u, and vb,
which are a priori not known separately as only their sum
gives the usual (known) spin-orbit interaction. For in-
teraction models, the forms of which are consistent with
that of a relativistic boson exchange amplitude, a method
was found in Ref. 14 to obtain the spin-orbit potential
components v, and v& as linear combinations of the
(known) five spin components of the potential:

u, (k) =—u (k) — v'(k)SO 7 c

32m~

(1+~z, )~(~) rz+r, , ),
(1+~, , )~(r, rz+ ~z, ),
Va b Va g

(2.20)

(2.21)

and the u, b are obtained from u, v', u, v ', and
SO2~

In addition to the linearly velocity-dependent spin-
orbit interaction, all realistic models of the nucleon-
nucleon interaction contain quadratically velocity-
dependent terms. ' These are, on the one hand, relativis-
tic corrections to the central and spin-spin interactions,
which are proportional to p /2m&, ' and, on the other
hand, quadratic spin-orbit interactions. To construct the
associated exchange current operators from these interac-
tion components in a way that is consistent with boson
exchange mechanisms is, in general, difficult or impossi-
ble, because of the many approximations typically used to
simplify the structure of these interaction components. '

Moreover, the Urbana and Argonne potentials contain a
term proportional to I, which does not appear in any
natural way in boson exchange models. Therefore we
construct the exchange current operators associated with
the terms of second order in L in these potentials by
direct minimal substitution

p,.—+p, —
—,'[Gz(q)+GE(q)r, , ] A(r; ) (2.22)

into these interaction components. The terms linear in
the vector potential A are written as

dxj x -Ax (2.23)

and j(x) is identified as the exchange current operator as-
sociated with the L and (L.S) components. We should
point out that the Argonne and Urbana potentials also
contain the isospin-dependent terms I. ~, ~2 and
(L S) r, rz. The minimal substitution in these com-
ponents is performed after symmetrizing as follows:

m~
+u (k)+v'(k) — u (k),

2
(2.17) L r) 'rz= —,(L v).wz+rz. rzL ) .2 i 2 2 (2.24)

ub(k)= —v (k)+
z

u'(k)3 so 7

32m~2

2m~—u (k) —v'(k)+ u (k) .
2

(2.18)

However, as is shown in Sec. IV the numerical efT'ect on
the magnetic structure of the three-body nuclei of the ex-
change current operators associated with the isospin-
independent and isospin-dependent Lz and (L.S) com-
ponents of the Argonne and Urbana potentials is very
small.

The current operator associated with the L.S interaction
is then given by

jso(k, , kz) = ——[(1+hz, )[u. (k, )o z X (k, —q)

+ub(k, )o. , Xk, ]

+(1 +,r, )[ u( k) zoX(kz —q)

+vb(kz )o z Xkz] I .
(2.19)

The current operator associated with the j' S~, v.
z in-

teraction is also obtained from Eq. (2.19) with the re-
placements

C. Model-dependent exchange current operators

In addition to the model-independent exchange current
operators considered above, we shall also take into ac-
count the corrections from the most important transverse
model-dependent exchange current operators. These are
the pion and p-meson exchange current operators associ-
ated with excitation of intermediate b, 33 resonances (Fig.
4) and the pm'y and cour' exchange current operators il-
lustrated by the Feynman diagrams in Fig. 5.

The pion exchange current operator that is associated
with excitation of intermediate 633 resonances is
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j ~(k„k2)=i
4f2 (o, k, )k, (o2 k2)kq

GM(q) 4r, ,, +4r2, ,
25m~m (m. —m~) ' m +k~ ' m +k~

(o, Xk~)(cr2 k2)—(v, Xr2), I +k2
(o ~ X k, )(o, .k, )

m +k, Xq. (2.25)

Here mz is the b, 33 mass and GM(q) the isovector magnetic form factor. In Eq. (2.25) the AND, coupling has been ex-
pressed in terms of the vrNN coupling constant f by using the static quark model. Similarly, the yNb, transition
form factor has been expressed in terms of the isovector magnetic form factor with the same justification.

Although in early work on exchange current corrections to nuclear magnetic transition rates the 633 pion exchange
current operator was thought to be as important as the model-independent pion exchange current operator (2.5), it has
since then been realized that its effect is strongly reduced by the corresponding p-meson exchange contribution. This
is associated with the general cancelation between the pion and p-meson exchange tensor interactions. The p-meson
exchange current operator is

(o., Xk, ) Xk, +4&2,
m +k)

g (I+~)
j ~(k„k2)= i — GM(q) 4r, ,25m,',(I,™~)

—(r, Xr2),

(o2Xk~) Xk2

+k2

o, X[(cr2Xk~) Xk~]
m'+k,

(cr2X [(o,Xk, ) Xk, ]
m +k

p 1

Xq. (2.26)

In this expression the pNE and yah coupling constants
have again been eliminated in favor of the corresponding
pe% and yXN coupling constants with the help of the
static quark model. Finally, we shall introduce form fac-
tors at the baryon-meson vertices in the expressions (2.25)
and (2.26) to take into account the eKect of the finite size
of the baryons and mesons. These form factors are intro-
duced by the replacements

A —I

m2 +k2 m2 +k2 A2+k2
(2.27)

2 2 2
1 1 Ap

—
mp

m2+I 2 m2+k2 A2+I 2
P P P

in the meson propagators. The cutoff masses A and A
do, of course, represent arbitrary parameters, but we
shall here use the values A =1200 MeV and A =2000
MeV suggested by studies of the reaction ~+a —+pp. It
is important to note that once both the pion and p-meson
exchange current operators (2.25) and (2.26) are taken
into account, the resulting nuclear matrix elements are

1

not very sensitive to the choice of cutoff mass scales A
and A. If the p-meson exchange current (2.26) is
dropped as was done, for example, in Ref. 39, the results
are, in contrast, extremely sensitive to the cutoff mass
value.

Within the usual meson exchange framework the pry
and co~y exchange current operators are completely
model dependent and, being purely transverse, they are
unrelated to the nucleon-nucleon interaction. Within the
framework of the recently developed topological soliton
or Skyrme" model framework the former one of these ex-
change current operators becomes linked to the chiral
anomaly and thus also attains a degree of model indepen-
dence. ' Although at low values of momentum
transfer both the p~y and comp exchange current opera-
tors contribute only very small corrections to the magnet-
ic form factors, the pay exchange current operator gives
a very important correction to the magnetic form factor
of the deuteron. ' '

The expression for the p~y exchange current operator
1S

p
W% %0~

(b)

FIG. 4. Pion and rho-meson-exchange current operators that
involve excitation of intermediate 533 resonances.

FIG. 5. p~y exchange current mechanism. The ~my ex-
change current operator is similar with the co meson in place of
the p meson.
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.fwg pg'p~yj „(k„k~)=i ~, .r2G (q)k, Xk2
m m

The operators j"' and j' ' are associated with the one-
and two-body parts of j

cr, k1

(k, +m )(k2+m )

o.2.k2

(k, +m~)(k2+m )
(2.28)

j"'(q; r;p, o.
, ~, , )

[GE—(q)+ GE(q)r;, ] [p;,e '
j2pl~

[GM(q)+ 6M(q)~, , ]q X n, e
Pl~

(3.3)

G„(q)= 1

1+q /m „ (2.29)

Here G (q) is an appropriate electromagnetic form fac-
tor, which according to the usual vector-meson-
dominance model, would be

j' '(q;r, r, p, p, o, cr r, r )

dk1 dk2 ik r. iaaf. .r.
1 i 2 j

(2m)' (2')'
X(2m) 5(k, +k~ —q)j' '(k„k2) (3.4)

j„=i G (q)k, Xk2
Pl Pl

o. , k,

(k, +m )(k~+m )

cr2 k2

(k, +m )(k2+m )
(2.30)

where G (q) is the electromagnetic (e.m. ) form factor as-
sociated with the corny vertex, which again, according to
the vector-meson-dominance model, is

G (q)= 1

1+q /m
(2.31)

gp.y
is the coupling constant for the p~y vertex for

which we shall use the value gp z 0 4 The exchange
current operator that corresponds to the con.y exchange
current mechanism in Fig. 5 is

and j' '(k„k2) are the momentum-space expressions of
the two-body current operators given in Sec. II. The ex-
pressions for j' '(q) are listed in the Appendix.

The expectation value (3.1) is computed, without any
approximation, by Monte Carlo integration. ' The
ground-state wave function is written as a vector in the
spin-isospin space of the A nucleons for any given spatial
configuration R=[r„r2r3[. For the given R, we calcu-
late the state vector j (q x) ~0 ) by performing exactly the
spin-isospin algebra with the methods described in Ref. 1.
The momentum-dependent terms in j (qx) are calculated
numerically; for example,

(3.5)

where 6; is a small increment in the r, component of
R. The R integration is performed with the Monte Carlo
method by sampling the R configurations according to
the Metropolis algorithm.

In the limit of q ~0, FT(q) behaves like
For the ~my coupling strength we use the value g„
=0.68. FT(q) = — p,1 q

v'2 m~
(3.6)

III. MONTE CARLO CALCULATION

A convenient expression to calculate the transverse
elastic form factor FT(q) is obtained if the coordinate sys-
tem is oriented so that the momentum transfer q lies in
the x direction, and the z axis is taken as the quantization
axis for the magnetic quantum number. ' ' It is then
found that

F,(q) =&2(O„~J,(qx) ~0&, (3.1)

= g j"'(q;r;p;o. ;r;, )
i =1

A

+ g j' '(q;r, r,.p;pJo, .o. r;v ) .
i(j~1

(3.2)

where oz ) denotes the ground state recoiling with
momentum q=qx (x is the unit vector in the x direc-
tion), and j (qx) is the y component of the current opera-
tor in momentum space

j(q)= f dxe'q'"j(x)

where p is the magnetic moment of the nucleus in nuclear
magnetons (nm), and the magnetic form factor is then
defined as

m~ FT(q)
FM(q) =V'2

p q
(3.7)

IV. MAGNETIC FORM FACTORS OF H AND He

The calculated magnetic form factors of H and He
are compared with the experimental data' ' in Figs. 6
and 7. The ground-state wave functions are calculated
using the Argonne two-nucleon and Urbana model VII
three-nucleon interactions, with the variational Monte
Carlo method. It should be pointed out that these wave
functions give binding energies, charge radii and D- to S-
state ratios in the d-p and d-n channels, which are quite
close to the empirical values. ' Further tests of their ac-
curacy have been carried out by direct comparison with
results obtained with exact Faddeev or Green's function
Monte Carlo wave functions, as, for example, those for
the two-body correlation functions ' and the longitudi-
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FIG. 6. Magnetic form factor of H as a function of the
four-momentum transfer. The calculated form factor includes
the exchange current contributions; the curves labeled H, GK,
IJL, and D are obtained, respectively, with the Hohler, Gari-
Krumpelmann, Iachello- Jackson-Lande, and dipole parametriz-
ations of the nucleon electromagnetic Sachs form factors.

nal energy-weighted sum rule. The exchange current
operator used in these calculations is obtained from the
Argonne U; as discussed in Sec. II. The four theoretical
curves show results obtained with the nucleon form fac-
tor parametrizations of Hohler (H), Iachello, Jackson,
and Lande (IJL), Gari and Kriimpelmann (GK), and the
dipole fit (D). All the theory curves follow the experi-
mental data quite well, the results obtained with the IJL
five-parameter dipole parametrization of the nucleon
form factors being particularly close to the data.

As mentioned in Sec. II, we have used the Sachs form
factors GF(q) and Gg(q) in the isovector and isoscalar
exchange current operators associated with the isospin-
and momentum-dependent terms in the N-X interaction.
Much poorer agreement with the data is obtained if one
uses the Dirac F, form factors in these exchange current
operators as shown in Figs. 8 and 9. It is important to
note the di6'erence between these results and those ob-
tained in previous calculations, which typically have not
come close to the data unless using the Dirac F& form
factor for m. and p exchange currents. These earlier cal-
culations have relied on simple meson exchange current
operators that are not fully consistent with the interac-
tion used to calculate the ground-state wave function.
One of the difterences between the present and earlier re-
sults for the exchange current contributions to the mag-
netic form factors is that the pion-like PS component of
the isospin-dependent tensor potential is stronger for the
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FIG. 7. Magnetic form factor of He as a function of the
four-momentum transfer. The calculated form factor includes
the exchange current contributions; the curves are labeled as in
Fig. 6.

FIG. 8. Calculated magnetic form factor of H, as a function
of the four-momentum transfer, obtained with the Iachello-
Jackson-Lande parametrizations of the electromagnetic form
factors of the nucleon. The curve labeled F& is obtained by us-

ing the Dirac in place of the Sachs form factors in the nuclear
current operator.
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FIG. 9. Same as in Fig. 8, but of 'He.
FIG. 11. Same as in Fig. 10, but of the isoscalar combination

of the 'H and 'He magnetic form factors.

10

potential models used here (Fig. 1) than for the Paris po-
tential.

Figures 10 and 11 compare the calculated isovector
and isoscalar form factors with the experimental data.
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FIG. 10. Isovector combination of the H and He magnetic
form factors, as a function of the four-momentum transfer, ob-
tained with the Argonne and Urbana vI4 potentials, and the
Iachello-Jackson-Lande parametrization of the electromagnetic
form factors of the nucleon. Both the impulse approximation
(IA), and impulse approximation and exchange current contri-
bution (IA+ MEC) results are displayed.

10
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FIG. 12. Main isovector exchange current contributions, as

function of the four-momentum transfer, obtained with the Ar-
gonne and Urbana v&4 potentials. The Iachello-Jackson-Lande
parametrizations of the nucleon electromagnetic form factors
are used.
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These figures also include the results obtained using
ground-state wave functions and exchange currents ob-
tained from the Urbana u, and Urbana model VII V, .k.
It appears that the isovector form factors obtained from
the Urbana u,- are not in good agreement with the data.
The v, r2 tensor potential v "(r) in the Urbana v;. is
much weaker than that in the Argonne v; . For example,
the Urbana, Paris, and Argonne deuterons have 5.2, 5.8,
and 6.1% D states. The dominant isovector exchange
current contributions obtained from the Urbana and Ar-
gonne u; are compared .in Fig. 12. They are quite simi-
lar; the main difference between these models is in their
single-nucleon (IA) current contributions shown in Fig.
10.

All the contributions to the isovector and isoscalar
form factors obtained with the Argonne interaction are
shown in Figs. 13 and 14. In the region of the diffraction
minimum (4—6 fm ) the pion-like and p-like exchange
currents are dominant, while the 6 and corny terms be-
come relatively more important at larger momentum
transfers. The contributions of the currents associated
with the velocity-dependent interactions to the isovector
form factors are entirely negligible.

In contrast, the currents associated with the velocity-
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FIG. 14. Individual contributions to the isoscalar combina-
tion of the 'H and He magnetic form factors, as functions of
the four-momentum transfer, obtained with the Iachello-
Jackson-Lande pararnetrizations of the nucleon electromagnetic
form factors. The contributions due to the single-nucleon
current (IA) and the exchange currents associated with the
spin-orbit (SO), L (LL) and quadractic spin-orbit (SO2) com-
ponents of the Argonne u &4 interaction, and the pay mechanism
are displayed.

tO
Ca

c0
O

10

10'

10

Isoscalar
Ar gonne Urbana

Isovector
Ar gonne Urbana

TABLE I. Contributions from the di6'erent components of
the nuclear electromagnetic current operator to the isoscalar
and isovector combinations of the magnetic moments of the
trinucleons.

0—7 l I I I I t I I I I I l I I I I

0 2 4 6
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FIG. 13. Individual contributions to the isovector combina-
tion of the H and He magnetic form factors, as functions of
the four-momentum transfer, obtained with the !achello-
Jackson-Lande parametrizations of the nucleon elect'romagnetic
form factors. The contributions due to the single-nucleon
current (IA) and the exchange currents associated with the
pseudoscalar (PS) and vector (V) parts of the isospin-dependent
tensor component, the central isospin-dependent component
(VS), the spin-orbit (SO), L (LL) and quadratic spin-orbit (SO2)
components of the Argonne v &4 interaction, the 633 resonance
(6), and the co~y mechanisms are displayed.

IA
PS
V
VS
SO
LL
S02
P7TQ

CO&f

+0.406 +0.405

—0.0696
+0.0052
—0.0116
+0.0056

—0.0431
+0.0049
—0.0105
+0.0051

+0.361

He
H

Ar gonne

—2.288
+2.960

Total +0.336
Experiment +0.426

—2.189
—0.295
—0.0593
+0.0004
+0.0043
+0.0003
—0.0003

—0.0232
—0.0624

—2.624
—2.553

Urbana

—2.274
+3.00

—2.192
—0.281
—0.0746
+0.000 01
+0.0020
—0.0002
+0.0004

—0.0229
—0.0668

—2.635

Expen ment

—2.127
+2.979
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dependent interactions, particularly the spin-orbit, give
the leading correction to the isoscalar form factor (Fig.
14). These corrections are small (Fig. 11), but they spoil
the agreement between the IA and experiment at small q.
This problem may be specific to the spin-orbit com-
ponents of the potential models considered here, as these
exchange current contributions are much smaller if eval-
uated with the Paris potential.

The contributions of the various terms in the current
operator to the isoscalar and isovector magnetic mo-
ments are compared in Table I. The predicted isovector
magnetic moments are very close to the empirical value—2. 553 nm for both potential models (

—2.624 nm for
the Argonne and —2. 635 nm for the Urbana potential).
On the other hand, the predicted isoscalar magnetic mo-
ment is close to the empirical value 0.426 nm only for the
Urbana potential (0.361 nm). The considerably lower
value 0.336 nm obtained with the Argonne potential is a
consequence of the large negative exchange current con-
tribution due to the spin-orbit component of that poten-
tial. It is worth noting that with the Paris potential we
obtain a much smaller value (

—0.0069 nm) for the ex-
change current contribution associated with the spin-
orbit interaction, in agreement with the corresponding es-
timate for the magnetic moment of the deuteron found in
Ref. 14.

It is interesting to compare the present exchange
current contributions to the magnetic moments with the
results obtained in Ref. 49 by solving the Faddeev equa-
tions with the Reid soft core potential. In Ref. 49 the
exchange current operators were based on simple meson
exchange diagrams with no short-range form factors.
The "model-independent" spin exchange current mecha-
nisms were found to contribute —0.241 nm to p in Ref.
49. The values found here for the corresponding contri-
bution from the pseudoscalar exchange current operator
(2.5) constructed from the Argonne and Urbana poten-
tials are considerably larger in magnitude (

—0.295 nm
and —0.281 nm). This is due to the fact that the pseu-
doscalar exchange part of the tensor components of the
two potential models considered here is stronger than the
bare pion exchange tensor potential at intermediate range
(Fig. 1).

The contribution to p of the vector-meson-like ex-
change current operator (2.6) found here ( —0.0593 nm
and —0.0746 nm) represent 20%%uo enhancements of the
contribution of the pseudoscalar exchange current opera-
tor (2.5). This is in reasonable agreement with the result
found in Ref. 15 for the corresponding enhancement of
14%, due to vector-meson exchange, of the pseudoscalar
exchange current contribution to the amplitude for radia-
tive np capture. The contributions to p of the exchange
currents associated with the explicitly velocity-dependent
interaction components are small.

The contributions to p from the model-dependent ex-
change current operators in Table I differ considerably
from those obtained in Ref. 49. The reason that we ob-
tain a two times larger contribution from the may ex-
change current mechanism ( —0.023 nm) than found in
Ref. 49 ( —0.012 nm) is due to our use of a larger value
for the cuXX coupling constant g„. Here g„ is taken to

be 14.6, which is the value used in the Bonn potential,
whereas in Ref. 49 the SU(3) value of 6.82 was used. One
may, however, argue that the smaller value for g„may be
more reasonable since the co exchange interaction in bo-
son exchange models takes into account effective mul-
timeson exchange (e.g., mp exchange) in addition to the
simple single-omega-meson interaction, and that this is
rejected in an unrealistically large value for the coupling
constant.

The contribution to p in Table I from the exchange
current operators associated with intermediate 633 reso-
nances ( —0.062 nm) is much smaller than that found in
Ref. 49 ( —0. 166 nm). The reason for the present small
value is the large canceling effect of the p-meson ex-
change current operator (2.26), which was not considered
in Ref. 49.

The contribution to the isoscalar magnetic moment p
from the p~y exchange current operator (2.28) found
here (0.0056 nm and 0.0052 nm for the Argonne and Ur-
bana potentials, respectively) is somewhat smaller than
that found in Ref. 49 (0.01 nm). The exchange current
contributions associated with the velocity-dependent po-
tentials have not been considered in previous work. It is
interesting to note that especially the contribution due to
the spin-orbit interaction is very sensitive to the potential
model.

The predicted total values with the Argonne (Urbana)
potential model for the magnetic moments of He and H
are —2.29 nm (

—2.28 nm) and +2.96 nm (+3.00 nm),
respectively. These are close to the empirical values,
—2. 13 nm and +2.98 nm, and we regard them as satis-
factory.
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APPENDIX

In this Appendix we list the configuration space ex-
pressions of the exchange current operators given in
momentum space in Sec. II. They are defined as

dki dk2 jk .(p —x)j"'(q) =f d x e'q "J,—,e '

(2m) (2m)

2 2 ".(2)(k k ) (A 1)

We find that the transuerse components of jets, jv, and jvs
are given by
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jps(q) 3(v i X r2), e gps(r)at(a2 r)+e gps(r)a2(at. r)

+e '
Gps, (r)[a,(a2.r)+a2(a, r)+r(a, cr2)]+i—Gps 2(r)a, (o2 q) —i —Gps 3(r)az(a, q)qR A A . 1 . 1

r r

. 1 . 1
i——Gps 4(r)r(a, .r)(az q)+i—Gps 3(r)r(a, q)(oz. r)

r r

—Gps 6(r}r(a,.q)(o2 q) — Gps7(r)r(a, r)(az r) (A2)

jv(q) =3(r, Xr2), e 'gv(r)a, X(a2Xr)+e 'gv(r)a2X(a& Xr)

—e'q' 2Gv ((r)[(a2Xr)Xo, +(a, Xr)Xa2+2r(a) o2)]

. 1 . 1+i—Gv 2(r)(a2Xq) Xa, i —G—v 3(r)(o, Xq)Xa~
r r

i G—v 4—(r)r(o. , Xr) ~ (a2Xq)+i Gv 5—(r)r(o. , Xq) (a2Xr)

—Gv 6(r)r(o, Xq).(a z Xq) — Gv 7(r)r(o, Xr) (o 2 Xr)

+—e'q' —Gv z(r)(azXq)o, .(qXr) —Gv 3(r)(a, Xq)a2 (qXr)

i [—Gv—4(r}+Gv 3(r)][(azXr)a, (rXq) —(a, Xr)o2 (r Xq)]

. 1
i [Gv —2(r—)+Gv 3(r)][a2X(a& Xq) —a& X(cr2Xq)] (A3)

jvs(q}= —(T, Xr2},e' '
Gvs(r}r (A4)

where

r=r, —r2, r= —, R= —,'(r, +r2) .
r

(A5)

G, ,(r) =6, 4(
—r),

+ 1/26, 6(r)= dx e ' q'( ,' x)E,(x;r), ——
(A12)

(A13)

We have defined

1 00

gps(r)= — f dr'r' u '(r')
3r

+2r f dr'u' (r')/r'
r

(A6)

gv(r) =
2 f dr'r' v '(r') r f dr'v "(r')/r'—

3r r

(A7)

2d'+r E,(x;r)
dr

+ 1/2
Gvs(r)= dx e '"" Evs(x;r),—1/2

(A14)

(A15)

where a =PS and V, and the q dependence of the 6, ;,
i = 1, . . . , 7, Gvs, and E, is not explicitly shown.
E,(x;r) a =PS, V, and VS are defined as

—ix rG, ~(r)= dx e '"q' 3E,(x;r) 3r E,(x;r)——1/2 dr

—ix .rG, ,(r)= dx e '"q' E,(x;r) rE, (x;r)——1/2 dr

(A8)

—rL. (x)
E,(x;r)= g e

, 4m
' 1/2

(A16)

+ 1/2
G, 2(r)= dx e ' t'( —,'+x)E, (x;r),—1/2

(A9)
2

L(x)= m + (1—4x ) (A17)

6, ,(r}=G,,( —r),
+ 1/2

G, „(r)= dx e '"q'(
—,'+x)—1/2

X E,(x;r) rE, (x;r)—d
dr

(A10)

(A11)

The coefficients 3; and m; are determined in the follow-
ing way. The terms involving the 6, functions in Eqs.
(A2), (A3), and (A4) arise because of the terms propor-
tional to [u, (k, ) —v, ( zk)] (/zk—k& ) in Eqs. (2.5) and
(2.6). The configuration-space expression of such terms
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requires the evaluation of

dk, dkz [u, (k, ) —u, (kz)]
K, (q)= dxe'q'"

(2ir) (2~) k —k

pand

u. (k) = g, „a=PS, V, VS .
;=) k +I, (A19)

1 1 e 2 2ik (r —x) ik (r —x)
(A18)

In order to perform the above integrals ef5ciently, we ex-

The mass parameters are those of the Paris potential,
while the 2,-' coefFicients are determined by fitting the ex-
pressions (2.10)—(2.12). We then find

Ka(q)= g A K (q), (A20)

Ka(q) eiq R P eiP r

(2m)
2

+p +m, -

2

+—p +m'
2 I

(A21)

By using Feynman's parametrization

p1 1

DD~ "o [(D, D~)y+D—~]
=„~ dy

K can be written as

+1/2 . 1 —«L (~j
Ka(q) eiq R dx e

—ixq r .
e i

—]/2 8~L; (x)

(A22)

(A23)

with L; (x) defined as in Eq. (A17).
The current associated with the isospin-independent and isospin-dependent spin-orbit components of the potential is

written in momentum space as

jso(k„k~) = ——
I [P(2)v, (k, )+Q ( l)v,'(k, )]o @ X(k, —q)+ [P(2)v„(k, )+Q(1)ui, (k, )]o'i Xk, + 1~~21, (A24)

P(i)= —,'(I+~, , ), Q(i)= ,'(~, ~~+~;,—),

by combining Eqs. (2.17), (2.18), (2.20), and (2.21). The r-space expression is then found to be

(A25)

jso(q)= —,
' e ' i(o, X q) H(r;12) +(criXr) Ha(r;12)+(ozXr) Hi(r;12)

df dr

+e ' i(o~Xq)H, (r;21)—(ozXr) H, (r;21)—(o, Xr) Hb(r;21)
dr dr

(A26)

H. b(r;ij ) =P (i)g. ,(r)+ Q(j )g,'b(r), (A27)

gp(r)= dk k jo(kr)vp(k), p =a, b, ar, b~,
2a

(A28)

For example, g, (r) is expressed as oo

g'(r) =— dr'r'u'(r') 1—
2 «

2

(A32)

g, (r)= —gso(r) —
z

v'(r)+g (r)+g'(r)
32m~

m~
g (r), (A29)

g (r)= —— dr'r' u (r') 1—
2 « r 2

(A33)

where

Derivatives of the g,p =a, b, av, and b~, easily follow
from the equations above. In obtaining Eqs. (A30)
—(A33), as well as Eqs. (A6) and (A7), we have used

g'o(r) = —f "dr 'r'v'o(r '),
«

g (r)= dr'r' v (r')
« r r

(A30)

(A31)

1 r)r
—J dk jo(kr) jo(kr') = '

0
(A34)
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—f dk jo(kr)jz(kr')=
1T 0

0 r &r'

r 2
1—

Zr r
r &r'.

tential. This procedure generates in the I. and quadratic
spin-orbit potentials two additional terms, linear and
quadratic in A. The term linear in A is written in the
form

As already mentioned in Sec. II, the exchange currents
associated with the I. and quadratic spin-orbit corn-
ponents —,'(L cr iL.o z+L.ozL o i ) are constructed by
minimal substitution

term linear in A= —f dx j(x) A(x),

where j(x) is the current density operator, and

j(q) = f dx e'q'*j(x) .

(A37)

(A38)

p;~p; —P(i) A(r;), (A36)

where p, is the nucleon momentum and A the vector po-
We find after some straightforward algebraic manipula-
tions

ji L(q) = [u (r)+u " (r)o i o z][D (q)(ir —r X L)—
—,'D+ (q)r X (r Xq)]

+[v LL'(r)+u "L '(r)cr, crz][D' (q)(ir —r XL)——,'D'+ (q)r X(r X q)],
jsoz(q)= —,'u (r)D+(q)o. i (rXq)crzXr+ —,'u (r)D (q) I o i L,ozXrI

+ ,'v (r)D+(—q)oz.(rXq)o, Xr+ ,'u (r—)D (q)Icrz L, o, XrI

+—,'usoz'(r)D'+(q)o, (rXq)crzXr+ —,'us '(r)D' (q)Icr, L,ozXrI

+ —,'usoz'(r)D'+(q)oz (r Xq)o i Xr+ —,'u '(r)D' (q)I ozL, c'ri Xr],
where

(A39)

(A40)

D+(q)—:P(1)e '+P (2)e (A41)

D+ (q) =g(2)e '+Q (1)e

We finally list the expressions for the j,j ~, and j currents (that for j„„is similar to that of j ):

(A42)

2

j ~(q)= i — I4r, ,e '[g ~(r)cr, Xq+g'~(r)(cr& r)rXq]
25 pyz~ pyg Pl g 77k~

+4rz, e '[g c, (r)crzXq+g'c, (r)(crz r)rXq]
—(ri Xrz), e '[g ~(r)(o, Xcrz) Xq+g„'q(r)(oz r)(cr, Xr) Xq]

+(xiXrz), e '[g &(r)(crzXo i)Xq+g'&(r)(o i r)(crzXr) Xq]I, (A43)

g (1+ic)
j~z( q)=i

3 I4r, ,e '[g a(r)o, Xq+g'a(r)(cri r)r Xq]
25m~ PPl Q Pl pf

+4rz, e '[gpss(r)ozXq+gpa(crz r)rXq]
—(xi Xrz), e '[g z(r)(cr, Xoz) Xq+g'z(r)(crz r)(cr, Xr) Xq]

+(xi X rz), e '[gzc, (r)(o zXo, )Xq+gzc, (r)(cr, r)(crz Xr) Xq]

+m~[4r, ,e 'fza(r)criXq+4&z, e 'f~z(r)crzXq

—(r, Xrz), e 'f z(r)(cr, Xcrz) Xq

+(r, Xrz), e 'f z(r)(crzXcr, ) Xq]I, (A44)

where

f,c,(r) = 1 —m, r —W, r
e ' —e ' ——1—

2

ma —A r
A, re ., a —m, p (A45)
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(A46)

gpg p~r;qR 1 . 1
J (q)= if—„'T('T2e' —G ~, (r)—qXcr, i—G z(r)qXr(q o', )+6 3(r)—qXr(r cr&)

m~m T

—6~, (r)—qXcrz+iG'~2(r)qXr(q crz)+Gp~3(r) —qXr(r cr2)
I"

+ 1/26,(r)= f dx e ' q'E (x;r),—1/2

6 2(r)= f dx e '"q'(
—,
' —x)E (x r),—1/2

6 3(r)= f dx e '"q'[1+»A (x)]E (x;r),—1/2
—A (x))rE (x r)= eP ' 4~

(A47)

(A48)

(A49)

(A50)

(A51)

2

A (x)=— (1—4x )+m ( —,'+x)+m ( —,
' —x)

4

' 1/2

(A52)

The functions G'„are obtained from 6 by the replacement

A (x)~A' (x)=A „(—x) . (A53)

We note that Eq. (A47) has been obtained for the case of bare nNN and pNN vertices. The effect of monopole form fac-
tors at these vertices is easily included by noting that

1
p2 m2

1
p2 m2

1 1

k2+m 2 k2+~2
1

k2+m
(A54)
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