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Wentzel-Kramers-Brillouin-type approximations for bound states
in short-range nonsingular potentials
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A recently proposed matrix formulation of the WKB quantization rule and the usual WKB
quantization rule are tested in the case of short-range potentials in one dimension which are non-
singular at the origin. Such potentials simulate optical potentials in nuclear physics. We compare
the results for the bound states of these two semiclassical quantization rules with the exact solution
of the Schrodinger equation and find that usually both of these approximations yield good results.
In particular, the newly proposed matrix formulation of the WKB quantization rule produces re-
sults either comparable to or better than results obtained with the usual WKB quantization rule for
the low-lying states which are very interesting from a physical point of view as they simulate the
ground and a couple of excited states of the nuclear optical potential.

I. INTRODUCTION

The Wentzel-Kramers-Brillouin (WKB) quantization
rule' has proven to be very usefu1 for finding an approxi-
mate solution of the Schrodinger equation for a diverse
class of problems for a variety of potentials. The class of
problems range from the eigenvalue-eigenfunction prob-
lem for the bound state to the calculation of transmission
probability or phase-shift for the continuum states. In
the bound-state study the WKB approximation scheme
has been applied to (harmonic oscillator-type) confining
potentials suitable for some quantum-mechanical models
or the Coulomb or screened Coulomb-type potentials ap-
propriate to problems in atomic and molecular physics.
The latter class of potentials always has a singularity at
the origin which is common to many effective potentials
in atomic and molecular physics.

The original WKB approximation for solving the one-
dimensional wave equation is simple and transparent but
has different shortcomings. A number of variants have
been introduced since the early days of quantum mechan-
ics to overcome these defects. More recently, a matrix
formulation of the original WKB (mWKB) quantization
rule has been suggested and applied to one-dimensional
confining polynomial potentials of the type '

V(q)- ~q ~

", p )0, and to the one-dimensional Coulomb
potential V(q) —

~q ~

'. Though the mWKB quantiza-
tion rule is numerically easier to apply than the usual
WKB quantization rule, for calculating binding energy,
in the cases studied ' the WKB method always yielded
results superior to the mWKB method. It is well known
that the WKB-type approximations should yield good re-
sults when the potential is varying slowly, at least for the
highly excited states. '

In this work we apply the WKB and mWKB quantiza-
tion rules to a new class of potentials in one-
dimension —short-range potentials with no singularity at
the origin. These potentials simulate optical potentials or
effective interactions in nuclear physics. They are finite

at the origin and support a small number of bound states
in contrast to confining potentials or long-range poten-
tials with or without screening, which usually have a
large or sometimes infinite number of bound states. The
WKB-type approximations have not been extensively ap-
plied to study the bound states in short-range nonsingular
potentials. We find that both WKB and mWKB approxi-
mations yield good results for bound states in these po-
tentials. In particular, for the low-lying states the
mWKB method yields results which are either compara-
ble to or superior to those obtained with the WKB quant-
ization rule.

We find it appropriate to mention a few words about
the role of effective interaction or optical potential in nu-
clear physics. They can reproduce certain bound and
continuum states of a quantum-mechanica1 nuclear sys-
tern where only a relatively few degrees of freedom are
active. For example, a H- He or a He-' C optical po-
tential should be able to explain the bound states where
H, He, and ' C clusters dominate and such bound states

are relatively few in number. They are easily described
well by an effective interaction and not so easily by, for
example, a shell-model-type description. In this paper we
concentrate on a numerical study of the WKB and the
mWKB quantization rules for these states. The superior
results obtained by the mWKB in certain cases suggests
its usefulness in dealing with these types of problems.

We also artificially varied the range parameter of these
effective interactions to generate a large number of excit-
ed states —sometimes even ten in number —and calculat-
ed the binding energies of these states by the WKB and
mWKB approximation schemes and by the exact solution
of the Schrodinger equation. Even in this single-channel
one-dimensional- problem, numerically it was extremely
tedious and time consuming to find these excited states
via an exact solution of the Schrodinger equation unless
one could make a good initial guess about the binding en-
ergies. No such guess is needed in the WKB or the
mWKB approximation schemes, and the WKB or the
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mWKB energy, while used as an estimate for the exact
solution of the Schrodinger equation, greatly facilitate
the task of the numerical solution of the Schrodinger
equation, especially for the excited states.

It is well known that the one-dimensional Schrodinger
equation has both symmetric and antisymmetric solu-
tions for potentials satisfying the property V(q) = V( —q),
the antisymmetric solutions being identical with the solu-
tion of the s-wave three-dimensional Schrodinger equa-
tion with a local potential V(r). Hence our conclusion
and results are applicable to the case of the three-
dimensional s-wave effective interaction in nuclear phys-
1CS.

In Sec. II we present a brief summary of the WKB and
the mWKB approximation schemes. In Sec. III we
present and compare the mWKB, WKB, and the exact
Schrodinger energy spectra for some short range-model
potentials of finite depth, which are of interest in nuclear
physics. In Sec. IV we present a brief discussion of our
results.

II. THE IWKB FORMULATION

In a recent paper the mWKB quantization rule was
introduced and applied to the case of a particle of mass m
subject to some (confining) potential V(q). The usual
WKB quantization rule is given by'

fp dq =(n+ —,')h,

formulation. The WKB quantization rule (1) for finding
energy is now replaced by

fP dq =(n+ —,')hA, (7)

III. NUMERICAL INVESTIGATIONS

In this work we calculate the WKB, mWKB, and the
exact energy spectrum of the following nonpolynomical
interactions

where A 2=I.
The relationships between the mWKB and the WKB

energy spectra for the power-law potentials V(q) = Iq I
",

p&0, for the binomial interaction V(q)=q +Xq ",
p =2, 3, 4, 5, and 6, and for the one-dimensional
Coulomb interaction V(q) = Iq I

' has been previously
studied and the results were compared ' with the super-
symmetric WKB ' and the exact solution of the
Schrodinger equation whenever applicable and available.
It is interesting to observe that supersymmetric quantum
mechanics has reviewed fresh interest in the study of the
WKB quantization rule. Though a systematic compar-
ison of WKB and mWKB results with the exact solution
of' the Schrodinger equation was made only in some
selected cases because of the unavailability of the exact
results in all the cases, the usual WKB formulation yield-
ed more accurate results than the mWKB formulation
whenever such comparison was possible.

p =2m[E —V(q)], (2)

where E is the total energy. The usual solution of Eq. (2)
of interest in Eq. (1) is

where p and q are canonical momentum and position
variables and

v„ lql &R,
V, (q)= '—

Vo, exp( p I q I ) /q, —
q ~ R,

v„ lql &R,
V, (q)= '—

Vozexp( p lq I )/I q I

—
q ~ R

V3(q)= Voexp( —pq ),

(8)

(9)

(10)

P =2m [E—V(q)]I, (6)

which should be considered as a matrix realization of Eq.
(2). In view of Eqs. (4)—(6), p in this approach may be ex-
pressed in terms of the Pauli matrices which define the
D4 Clifford algebra of two generators, which readily pro-
vides the two-dimensional representation of the mWKB

p = [2m[E —V(q)]I '

The WKB energies are calculated from Eqs. (1) and (3)
and they are quite accurate for large quantum numbers
or the excited states.

The solution of Eq. (2) of interest in mWKB formula-
tion is taken to be

P = (2mE )'~ a +i[2m V(q)]' al„j&k,
where the carets over the variables denote matrix repre-
sentations, a's satisfy the D2s Clifford algebra

a ak+aA. a =26.kI,
with j,k =1,2, . . . , s, s being the number of generators of
the algebra, 5-k the Kronecker 5 symbol, I the identity
matrix. From Eqs. (4) and (5) we have

with Vp = 100 MeV R = 1.6275 fm Vp]= VOR exp(pR ), Voz = VOR exp(pR ), and p varies from
0.01 to 9. The value of m is taken as the reduced mass of
the deuteron-neutron system, e.g. , m =2m„/3, where m„
is a nucleon mass. All three interactions (8)—(10) are of
short range, finite everywhere, and are similar to effective
interactions of nuclear physics. Interaction (8) with
Vp= —30.325 MeV, R=1.6275 fm, and p=0.2 fm ' is
the realistic neutron-deuteron effective interaction fitted
to experimental trinucleon observables. ' Interaction (9)
is similar to a typical effective interaction in nuclear
physics in being constant for Iql &R and having a Yu-
kawa tail. Interaction (10) is the Gaussian potential
which also simulates effective interaction in nuclear phys-
1cs.

Now, remembering that the energies and the potentials
are negative, Eq. (4) is rewritten as

P=i(2mIEI)' a.—(2mlV(q)l)'~ ak .

In Eqs. (4) and (11) the subscripts j and k are arbitrary,
jAk. If we substitute the representation (11) for the
momentum in Eq. (7) and square the resultant equation
we obtain
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2f I
I'(q)

I

'"dq — f IE I

'"dq =(n+ &) g

(12)

where use has been made of Eq. (5). The WKB energies
are given by

(13)

Equations (12) and (13) were solved numerically for cal-
culating the mWKB and the WKB energies. The exact
solution of the Schrodinger equation was also found for
the bound states.

In Tables I—III we show the WKB, mWKB, and the
exact energies for the three potentials for some values of
the parameter p. It can be proved ' that for any
confining potential or for any potentia1 of finite depth the
relation E„(mWKB) ~ E„(WKB) holds, i.e., the nth
mWKB energy level is lower or equal to the nth WKB
energy level. Since both WKB and mWKB schemes are
nonvariational in nature, the associated energy levels
could be above or below the exact energy levels. This is
clearly seen in Tables I—III and in Fig. 1 below. We see
from Tables I—III that the energies of the (antisym-
metric) first excited (n = 1) states calculated via the
mWKB method are closer to the exact solutions than
those calculated via the usual WKB method. These
states are of greatest relevance as they correspond to the
ground states in the three-dimensional s-wave model.
The symmetric states do not have a three-dimensional
counterpart. For the (symmetric) ground state (n =0)

both the WKB and mWKB methods yield good results
and the mWKB energies are very similar to the WK8 en-
ergies. Depending on the potential model used the
mWKB ground state (n =0) energies could be a little
better or a little worse than their %KB counterparts, as
can be seen from Tables I—III. For the (symmetric)
second excited state (n =2) the mWKB energies are usu-
ally a better approximation of the exact energies than the
WKB energies except for the smallest values of p, where
the WKB energies are better. The smaller p corresponds
to a potential of longer range. For the higher excited
states (n ~ 3) the WKB result is a better approximation
of the exact result unless p is increased sufficiently
without destroying these levels. For a reasonably large p
only few levels exist and the mWKB is a better approxi-
mation of the exact result than the WKB. Such a p cor-
responds to a range of a few Fermi which is the range
typical in nuclear physics. For longer range potentials
the WKB method reproduces the higher excited states
(n ~ 3) better than the mWKB method.

To illustrate these results better we plot in Fig. 1 the
energy ratios

g mWKB( ) HEXA( )yEmWKB(

(14)

g WKB(p) EEXA(p))E KW(Bp)

as functions p for n=O, 1, and 2. Here EXA, WKB, and
mWKB refer to the exact, WKB, and mWKB calcula-
tions for a particular p, respectively. Consistent with
Tables I—III, for n =0 and 1 the mWKB results (denoted
by solid circles in Fig. 1) are, in general, closer to unity
than the WKB results (denoted by squares in Fig. 1) and

TABLE I. The WKB, mWKB, and the exact Schrodinger energy spectrum (s) for certain values of p
and n for potential V&. The (?) means that this state could not be calculated reliably because of numeri-
cal problems.

0.01

0.3

0.6

S

WKB
mWKB

WKB
mWKB

S
WKB

mWKB

WKB
mWKB

S

WKB
mWKB

S

WKB
mWKB

S

WKB
mWKB

—89.07478
—93.08536
—93.12316
—88.89598
—93.06390
—93.09945
—88.52759
—93.02494
—93.05635
—88.08688
—92.98196
—93.00872
—87.63603
—92.94212
—92.96448
—86.42668
—92.90434
—92.90434
—85.67028
—92.84223
—92.84223

—59.52378
—55.23027
—56.39535
—58.68878
—54.33830
—55.47916
—57.11252
—52.65477
—53.74743
—55.25524
—50.67523
—51.70327
—53.38454
—48.68950
—49.64289
—48.50048
—43.51206
—44.21350
—45.54832
—40.45653
—40.96040

—24.61283
—23.48366
—25.53936
—22.54694
—21.14496
—23.14683
—18.79204
—16.81925
—18.68910
—14.60504
—11.88486
—13.53481
—10.68971
—7.17839
—8.50648

—7.93954
—8.493S4

—10.01412
—5.39497
—5.95432
—7.23537
—1.70994
—2.19487
—2.91480

('p)

—0.04774
—0.08708
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TABLE II. Same as Table I for potential V&.

0.01

0.1

0.3

0.6

S

WKB
mWKB

S

WKB
mWKB

S

WKB
mWKB

S

WKB
mWKB

S

WKB
YI1WKB

S

WKB
mWKB

S

WKB
mWKB

0

—90.79118
—93.37342
—93.43844
—90.38780
—93.30209
—93.36064
—89.69296
—93.19097
—93.23903
—88.95274
—93.08941
—93.12737
—88.28313
—93.01010
—93.03979
—86.66921
—92.92911
—92.92911
—85.77311
—92.85043
—92.85043

—66.74322
—63.58259
—64.80279
—64.98377
—61.60567
—62.81457
—61.98737
—58.26731
—59.44217
—58.85872
—54.79681
—55.91287
—56.00601
—51.65979
—52.69838
—49.44695
—44.55471
—45.30959
—45.96972
—40.87702
—41.40934

—41.01292
—41.07883
—43, 13004
—36.53937
—36.34083
—38.41187
—29.29231
—28.46462
—30.50824
—22.04803
—20.32906
—22.24476
—15.77825
—13.03507
—14.70499
—3.63842
—0.01514
—0.03077

—27.55223
—27.69289
—29.84159
—20.90136
—21.14427
—23.21451
—11.00909
—11.38065
—13.09005
—3.01801
—3.39921
—4.33828

(~)
—0.00404
—0.00858

hence are better approximations to the exact calculation.
Even for n =2, for most of the p's of interest in nuclear
physics Lp, )0.3 fm ' for potentials (8) and (9), and
p) 0. 1 fm for potential (10)] the mWKB method pro-
duces better results than the WKB method. The same is
true for the antisymmetric (n =3) state provided that p
is slightly increased and the potential is still similar to a
nuclear optical-model interaction. This last state corre-

sponds to the first excited state in the three-dimensional
s-wave model. As we have pointed out before, the results
for n= I corresponds to the three-dimensional s-wave
ground state, and in this case [Fig. 1(b)] both the approxi-
mations produce very good results and consistently the
mWKB method produces better result than the WKB
method. This is true for the n =3 state provided that p is
not too small. This demonstrates the usefulness of the

TABLE III. Same as Table II for potential V3.

0.01

0.1

0.3

0.6

S

WKB
mWKB

S

WKB
mWKB

S

%KB
mWKB

S

WKB
mWKB

S

WKB
mWKB

S

WKB
mWKB

S

WKB
mWKB

—94.53543
—94.47964
—94.68653
—83.51833
—82.94955
—83.56461
—72.94080
—71.23770
—72.22783
—63.77637
—60.41666
—61.70872
—55.79634
—50.33599
—51.85956
—36.51927
—22.62047
—24.36099
—24.86801
—4.41229
—5.36250

—83.84877
—83.79532
—84.38165
—53.12932
—52.57078
—54.04788
—27.18644
—25.54394
—27.30657
—9.61010
—6.81799
—7.99515

—73.65004
—73.59751
—74.51573
—28.21536
—27.66074
—29.43022
—1.59784
—0.58374
—0.85543

—63.95295
—63.90132
—65.10152
—9.76740
—9.23066

—10.57320
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mWKB method in nuclear physics problems.
Finally, we compared the mWKB, the WKB and the

exact energy spectra for the Yukawa potential simulated
with the function

'&,exp( —plql)/Iql, lql &R
&( )='

4 q Voexp( —lsR )/R, q (R, (15)

In this paper we have computed the energy levels of
some nonpolynomial, nonsingular, short-range potentials
of physical interest. They pre supposed to simulate opti-
cal potentials in nuclear physics. The exact solution of
the Schrodinger energy spectrum has been compared
with that obtained by the usual WKB (Refs. 1 and 2) and
a recently proposed mWKB (Ref. 3) method.

The mWKB method is simple numerically and uses a
different (matrix) representation of the classical momen-
tum. In general, both WKB and mWKB methods pro-

E

with Vo = —100 MeV and R = 10 fm. The value
R =0 gives the usual Yukawa potential. The cutoff at
R =10 was introduced for avoiding accidental numer-
ical difficulties with the integrals in Eqs. (12) and (13).
Otherwise, our results are the same as those of the Yu-
kawa potential (15) with R =0. In this case we found
that the WKB results were either comparable to or better
than the mWKB results for n =0 and n = 1, regardless of
the value of p, contrary to the results for nonsingular po-
tentials given by Eqs. (8)—(10). However, for p&0.05
fm ' the mWKB spectrum is better than the WKB spec-
trum for all even quantum numbers n )2. Additionally,
for p&0. 1 fm ', the mWKB results are better than the
WKB results for all n &2. This shows that even in the
case of a singular potential like the Yukawa interaction
the mWKB method may give a good account of the ener-

gy spectrum for certain values of the potential parame-
ters. We do not show detail of these results as the present
work concentrates on the study of nonsingular potentials
only.

IV. DISCUSSION

duce good approximations to the exact energy eigenval-
ues. One may have some advantage with the mWKB
method over the WKB method in the case of short-range
nonsingular interactions. Usually the mWKB energies of
the ground and the first two excited states lie closer to the
exact energies than the corresponding WKB energies.
Furthermore, if the range of the interaction is reduced
without destroying the energy levels, the m%'KB spec-
trum approximates the exact spectrum better than the
WKB spectrum even for higher excited states (n & 2). In
this respect the mWKB method should be considered to
be complementary to the WKB method. The latter
should normally be used to calculate the energy spectrum
for higher excited states, while the former appears to be
advantageous to estimate the energies of the ground and
the lowest excited states of a short-range nonsingular in-
teraction, and this advantage increases as the range of the
interaction is decreased. The low-lying states of a non-
singular potential simulate the optical-model states of nu-
clear physics and this demonstrates the usefulness of the
mWKB method in problems of nuclear physics. We have
also used the WKB and mWKB methods for finding the
bound states in Yukawa-type potentials singular at the
origin and both the methods yielded good results. Spe-
cially, for ranges of interest in nuclear physics [p, &0. 1

fm ' in Eq. (15)] the mWKB method was very promis-
ing. Hence the mWKB method deserves systematic anal-
yses for other types of potentials.
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