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Random-phase-approximation calculations of nuclear response in the continuum
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A method is presented for random-phase-approximation calculations of nuclear response in the
continuum. It utilizes the Lanczos method for solving the basic inhomogeneous coupled-channel
integral equation. The method can provide information on both the direct and statistical decay
components. We illustrate the usefulness of the method by applying it to calculate the 2+ strength
functions for ' 0, Ca, and Pb in the giant quadupole resonance region. It is shown that the cal-
culations reproduce the observed peak positions and widths very well.

Giant resonances (GR) are collective states described
as a coherent superposition of many one-particle —one-
hole (ph) configurations. Since these states appear in the
continuum where the level density is high, the states de-
cay either by emitting particles or by spreading (damp-
ing) into more complicated compound nuclear states.
From a number of studies made in the past, ' the collec-
tive nature of GR has been well established. The decay
properties, however, have not been well understood to
date, and currently the subject is under intensive study
from both experimental and theoretical ' points of
view.

In this theoretical study, we are concerned with the
strength function. One, and perhaps the best, possible
approach is the continuum random-phase-approximation
(RPA) approach. ' ' The central problem there is to
solve an inhomogeneous coupled-channel (CC)
differential or integral equations for particles excited by
an external force. The dimension of the CC equation,
however, becomes very large for heavy nuclei. Take, e.g. ,
the 2+ strength function for Pb. In this case, the di-
mension becomes 298. To solve such a large set of CC
equations in the usual way is extremely time consuming
and practically impossible. Because of this reason, no
calculation has ever been made so far for nuclei heavier
than 4'Ca.

The aim of this paper is to demonstrate that it is possi-
ble to perform the continuum RPA calculation, even for

Pb, with a reasonable computer time, if one modifies
the basic equation slightly, and applies the Lanczos
method' for solving it. Because of the use of continuum
RPA, the calculation can naturally take into account
continuum effects. Damping effect may also be taken
into account by utilizing a complex optical potential for
excited particles, which we do in this approach. %"e thus
present here the formalism of such RPA calculations and
then apply it to the 2+ strength functions in the giant
quadrupole resonance (GQR) region.

The strength function S that we need here may gen-
erally be given as

S =—Im[ —/dr dr'p*(r)R (r, r', E)p(r')],=1

where p is the external field and R (r, r', E) is the response
function defined as'

R (r, r', E)=—(4o~ f+(r)f(r)GQ+(r')g(r') ~@0) . (2)

In (2), ~@0) is the target ground-state wave function, and
f+(r) and P(r) are the nucleon field creation and annihi-
lation operators, respectively. Further, G is the
(particle-hole) Green's function of the target system,

G= 1

E —H —H —V+ieb p

R (r, r'E)=RO(r, r', E)

+ J dr, dr', Ro(r, r„E)
X V(r„r',)R (r'„r';E),

where Ro(r, r', E) is the free response function given as

Ro(r, r', E)=—(C&0~ /+(r)g(r)GO/+(r')P(r') ~@0),
lGo= E —H —H +ish p

In RPA, Ro can more explicitly be given as'

(4)

where E is the excitation energy of the system, Hh is the
hole-nucleus Hamiltonian, and H = T + U„is the Ham-
iltonian for the excited particle p, consisting of the kinetic
energy T and the complex optical potential U . Vis the
effective ph interaction. We assume that V already in-
cludes exchange effects, which means in practice that the
calculation of the direct matrix element of V automatical-
ly generates the antisymmetrized matrix element of the
original interaction Hamiltonian. '

Further, we assume that the interaction V is a local
two-body operator. This requires that we use the well-
known pseudo-potential (5 function) approximation' for
dealing with the exchange term in V, which has, however,
been known to be a good approximation. Under this as-
sumption, R satisfies the following RPA equation
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Ro(r, r';E)=Xh[ph(r)(r~ ~r')ph(r')+ph(r')(r'I E+ +. Ir&ph(r)]
1

—E +Eh Hp+l 8
(7)

where ph(r) is the single-particle wave function for the
single hole state h. Ro is given in terms of ph(r) and the
optical-model Green's function for p, and we may calcu-
late it without any problem.

We now introduce A, (r) through the following equa-
tion:

In solving (9), we further reduce the equation to that
for the radial functions A, h (v) and A, „(v),defined, respec-
tively, as

(y ~
I,

~ ph ) =XJM (j m j h m h ~
JM ) —kph ( v ),1

r

i'(r) = fR (r, r', E)p(r')dr'

= fRo(r, r', EQ(r')dr', (8) &Phl~ly, )=&J~&jhmhj, mplJM & ~hp—(v),

and consider the equation that A, (r) must satisfy. Using
Eqs. (4) and (8), it is easy to show that A, (r) satisfies

A(r)=p(r)+ f dr, dr', V(r, r, )RO(r„r',;E)A(r', ) . (9)

Equation (9) is our basic equation. In contrast to this, in
previous studies, ' the equation for %(r) has been con-
sidered. The merit of dealing with A, (r), instead of 'Il(r),
is in the fact that the former is a function localized only
in the nuclear region. This is not the case for the latter
function. This makes it much easier to solve the equa-
tion.

where y is the spin-angle wave function for p, p being the
time reversal state corresponding to p. Further, the sym-
bols (~~ ) and ( ~~) were used to indicate that the integrals
are carried over only the spin-angle variables, thus leav-
ing the resultant integrals as functions of the radial dis-
tance r. Similarly, we may define the radial functions,
pp„(v) and p„p(v) for p(r). Note that Aph(v) and X„p(v)
correspond to the forward and backward RPA particle-
hole amplitudes. ' In the present case, these amplitudes
are functions of r, and satisfy the following CC integral
equations,

~ph ( v)
pph ( ) + ~p h fd'd»" V;hp h (v ')'gp h ('v ')~p'h'(v )+~h'p' f dv dv Vph, h'p ( v, v )gh'p' (v» )~h'p'( v

Ah (v)=ph (v)+2 h f dv'dv" Vh „.h (v, v')g' 'h(',»v)X h(»")+Xh ~ 1 dv'dv" Vh h. (v, v')gh.+'(v', v")Xh, (v") .

In Eqs. (12)—(13), we omitted, for brevity, the superscript J in Aph(v) and pph(v), etc. Also, Vph p.h. (v, v') is the ph matrix
elements defined as

Vh .h (v, v')=X, , (j m jhmh~JM)(j mpjhmh~JM)vv'(ypph, ~V~phy ) . (14)

go '= f, (v )hi J (v )/IVt j (15)

g +'(v, v') =g 0 '(v, v') —X „,g„(v)(0 ')„„,g„,(v') . (16)

In (15), fi ~ (v) and lii ~ (v) are the regular and irregular
P P

Expressions for Vph h.p (r, r), Vhp p.„,(v, v'), and
Vhp h p (», v') may simply be obtained by interchanging p'
and h', and/or li and h in (14). Further, g'„+'(v,v') is the
radial Green's function for the particle p with the orbital
and total angular momenta I and j, respectively, and
the energy c =E+c.&, while g&+' is the similar Green's
function with s = E+sh. We use—here g +' (i =ph or
hp) given by Ichimura et al, in which care is taken into
account for eliminating contributions from the occupied
hole states. The explicit form of g +' may be given in
terms of the well-known radial Green's function

solutions of H, respectively, while 8'is the Wronskian.
Also 0„„.and g„(v)in (16) are defined as

0 „,= f dv dv'u„(v)g,+ i(v, v')u„.(v),

g„(v)=f dv'g, '()+'(v, v')u„,(v'), (18)

where u„(v)is the radial wave function for the occupied
orbit with the node n The sum .over n and n' in Eq. (16)
is taken over all the occupied orbits (with definite lp and
jp). The second term in (16) serves to forbid p to propa-
gate in the occupied orbits. [The error caused by allow-
ing p to propagate in the occupied orbits, i.e., by neglect-
ing the second term in (16) is, however, rather small; the
errors were foug. d to be less than 5%%uo for those cases con-
sidered in this study. ] g

+' satisfies the outgoing or de-
caying boundary condition, depending on whether c. )0
OI Ep (0.

Let us now define column vectors (1 XX, matrices)
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Ip& =

~ph

~hp

Pph

Php

(19)

those determined from the Schmidt orthonormalization
procedure.

In terms of ID; &, IA, & is expanded as

N

I»= y c, lD, &. (28)
i=0

Inserting (28) into (21), one can easily derive an inhomo-
geneous linear equation for the expansion coefficient C;,
i.e.,

We may rewrite our basic equations (12)—(13) in a matrix
form as

I~&=lp&+vs, l~&, (21)

where V and Qo are the N, XN, matrices, whose ele-
ments are Vh h, and g h 5 h .h. and gh 5h h, respec-
tively.

Using (8), (10), (11),and (21), one can rewrite Eq. (1) as

s= —Im( —(pl~ l~&) .
1

(22)

S may be decomposed into two components, S ~ and S ~;

S ~ describes the contribution from the damping or
spreading process, i.e., the absorption due to 8' in U
(= V~+i W~), while S is due to direct particle emission.
Following the technique used to derive the knockout-
fusion cross-section formula, ' one can show that the
contribution S can be given explicitly as

s'=( —( ap lm, Imp, &),

where %' is a diagonal matrix whose diagonal element is
8 . The contribution S from the particle emission may
then simply be obtained as (we may derive for Si a more
explicit DWBA-type expression, which however, will be
given elsewhere)

s'=s —s'. (24)

IDO&= ~ Ip&,
0

(25)

with

ID;+i&= &&OID;& —g ID, &~,;
l j=P

(26)

(D, IVa, lD, & if j~i+1
0.0 if j &i+1.

N, in (26) is the normalization constant determined from
the condition (D, ID, & =1, ID; & being the conjugate state
to ID; &. The coefficients a,. given by (27) are nothing but

We now discuss the method for solving our basic equa-
tion (21). As already stated, we adopt the Lanczos
method, ' which has been extensively used in the past for
large shell-model calculations. In this method, we ex-
pand IA, & with a set of %+ 1 biorthogonal basic wave
functions ID; &(i =0, 1, . . . , X), which we generate itera-
tively as

g (5,, —a,, )c,=x,6„.
J

(29)

The values of C; are then determined by solving (29).
Note that Eq. (29) can be solved rather easily, because
aj, =0 for j )i +1 [See Eq. (27)]. In addition, the value
of X, i.e., the number of the basic wave functions ID; &,

can be chosen as a small number, much smaller than the
number of dimension N, of the CC equation. This helps
greatly in making the actual numerical calculations possi-
ble and practical. Typical values of N and N, will be
given below.

We have developed a computer code CRFA (continuum
RPA) for carrying out the numerical calculations. As a
test of the method and also the computer code, we have
first repeated the calculation of Shlomo and Bertsch (SB)
(Ref. 7) for the 2+ strength function S for ' 0, Ca, and

Pb. As already noted, for the case of Pb, N, =2 8.
For the ph interaction used in Ref. 7, however, it is possi-
ble to reduce the dimension of the CC equation to half.
This could be done since the matrix elements between the
forward and backward amplitudes are the same as those
between the forward and forward, and the backward and
backward amplitudes, except for a phase factor. khp then

j jp+1
becomes equal to A,„i,[except a factor of (

—1) ' " ].
The CC equations we actually solved could thus be re-
duced to that of N, =149. Note that the dimension is
still quite large. Nevertheless, with the use of the Lanc-
zos method, we were able to solve the equation in 10
seconds with an X-MP Cray computer (for a given excita-
tion energy E). The total time used for reproducing the
2+ strength function of SB turned out to be about 5 min.
For the cases of ' 0 and Ca, the computer times needed
were even much less than the time required for Pb.
The required value of N for obtaining enough accuracy
was about 8, which is far smaller than N, =149. It is
thus seen that the method is indeed very efficient.

It is worth remarking here that the ph interaction used
by SB is a 6 interaction. This reduces the double dimen-
sional integral involved in our basic Eqs. (12)—(13) to a
single integral, making it much easier than otherwise to
carry out the computation. This is, however, not a re-
quired condition. In fact, in a recent study of 6 excita-
tions by charge-exchange reactions, we have carried out
the finite-range calculation, though the calculation was
done in the Tamm-Dancoff —Approximation.

We have then carried out calculations using the mass
quadrupole field as an external field [i.e., assuming
p(r)=X;r; Y2„(Q;)]for the same nuclei as considered
above. Use is made of the same parameters as used in SB,
excepting that the imaginary potential 8' is now added
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FIG. 1. Comparison of calculated distributions of the
energy-weighted quadrupole transition strength in units of the
sum-rule limit with experiment. Histograrns with an 1 MeV bin
are experimental data deduced from hadronic inelastic scatter-
ing experiments of Refs. 26—28.

to the real U in order to account for the damping effect.
In this calculation, it is important to take into account
the energy dependence of 8, not only in the particle-
unbound region, but also in the bound region, since the
calculated width I is expected to depend mainly on 8' .
Fortunately, such information on the energy variation of

has recently become available ' " for n + Ca and
n + Pb. In these calculations, we thus use the 8'
determined in Refs. 23 and 24 for both neutrons and pro-
tons. For ' 0, use is made of the same 8' as that deter-
mined for Ca. Note that in this calculation, we ignore
for simplicity damping effects due to those of hole single-
particle states and also those arising from the interference
between particle and hole states.

In Fig. 1, we present the calculated distribution F(E)

of the energy-weighted quadrupole transition strength in
units of the total sum rule, i.e. ,

F(E)=[ES(E)lf E'S(E')dE'] X 100 . (30)
0

The corresponding experimental data are also presented
by a histogram with an 1 MeV bin. These experimental
data are those deduced from hadronic inelastic scattering
experiments. As seen, the calculations reproduce
the observed distributions fairly well. The calculated
peak energies (Ez) and widths (I ) of GQR are EIt =21.2,
16.8, and 11.1 MeV and I =6.4, 4.4, and 1.8 MeV for
' O, Ca, and Pb, respectively. These are compared
with the experimental values of Ez,„=21,18, and 11
MeV, and I „=7.5, 4.0, and 2.0 MeV, respectively.

As already noted, these calculations ignore the damp-
ing effects of the hole states as well as the interference be-
tween the particle and hole states. In spite of this, the
calculation could reproduce fairly well the observed
width I„.This suggests that the neglected effects are
small as expected from the fact that the dominant contri-
bution to S comes from ph components, whose hole states
are in the last occupied shell, and that. the contribution to
the spreading from such hole states may be small. It
might also be possible that this is achieved because the
two contributions neglected are canceling for each oth-

25, 29

Finally we note that the calculations predicted S~/S at
the peak energy to be 12'Fo, 8%, and 5%, respectively, for
' 0, Ca, and Pb. This result shows that the decay
should be dominated by the damping, which agrees with
the data taken so far, although there are no data which
would permit a quantitative comparison with the calcu-
lated results.

In summary, we have presented an approach for the
continuum RPA response calculations, including the
damping effect as well as the continuum effect. The
damping effects have been treated by means of the imagi-
nary potential for the particle excited by an external
force. The essence of this approach is to use the Lanczos
method for solving the basic coupled-channel RPA equa-
tion. The method was then applied to calculate 2+
strength functions in the GQR region for a few example
nuclei, demonstrating that the calculations are indeed
very fast. It has also been shown that the calculated dis-
tributions of the quadrupole strength GQR agreed well
with the data. The method may thus be used to make
realistic analyses of experimental data.
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