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The results of the Nijmegen soft-core potential model are presented for the low-energy YN in-
teractions. The YN version of the model is obtained by a straightforward extension of the NN mod-
el through the application of SU(3). The potentials are due to the dominant parts of the , 7, 7', p,
, ¢, 8, €, and S* Regge trajectories. This gives the traditional one-boson-exchange potentials. In
addition to these, the J =0 contributions from the tensor f, f’, A, and Pomeron trajectories are in-
cluded in the potentials. The latter give potentials of the Gaussian type. Also the form factors from
Regge poles are Gaussian, which guarantees that the potentials have a soft behavior near the origin.
The multichannel Schrédinger equation is solved in configuration space for the (partially) nonlocal
potentials. We work on the particle basis and include the Coulomb interaction exactly. The
meson-baryon coupling constants are calculated via SU(3), using the coupling constants of the NN
analysis as input. Charge symmetry breaking in the Ap and An channels is included. An excellent
description is achieved of the available low-energy data per degree of freedom (y?>~0.58 for 35 YN
data). In particular, we were able to fit the inelastic capture ratio at rest perfectly. We have
rgr =0.471, where experimentally the average value is rp =0.468+0.010. The obtained values for
the adjustable mixing angles and F/(F + D) ratios agree very well with the literature. We find
apy=0.355 and a7=0.275. For the scalar-meson mixing angle we obtain 8; =40.895°, which lies
between the ideal mixing angles for the scalar ¢?7 2 and qq states. In the Ap system we find a cusp at
the =*n threshold, but there is on the second Riemann sheet no pole in the vicinity causing this
cusp. The predictions of the total cross sections up to the pion production threshold are given and

compared to the experimental data.

I. INTRODUCTION

For nucleon-nucleon NN scattering we have shown
[Ref. 1, henceforth referred to as (I)] that a soft-core
one-boson-exchange (OBE) model, based on Regge-pole
theory, gives an excellent description of the wealthy and
precise NN data. In (I) only 13 free parameters were
used. Moreover, most of these parameters are coupling
constants, mixing angles, or F/(F +D) ratios and hence
rather physical parameters, for which the fitted values
can be checked against those found in other reactions.
The nucleon-nucleon soft-core model of (I) can be fully
derived in the context of the analytical S-matrix theory.?
In this framework the consequences of the Regge poles
for low energy scattering and the corresponding (relativ-
istic) Lippmann-Schwinger equations can be worked out
in a consistent manner. The derivation of the
Lippmann-Schwinger equation in this approach has been
carried out recently in full detail also for the unequal
mass case.® This is useful in extending the model to
baryon-baryon scattering. In this paper we describe the
model for hyperon-nucleon YN scattering and discuss the
results. Because of the composite nature of the mesons in
QCD, the proper description of the OBE potentials is in
principle in terms of Regge trajectories. The large N ex-
pansion in QCD strongly supports this viewpoint.* This
is also the case in the Bethe-Salpeter approach to the QQ
system, where any reasonable interaction leads to Regge
poles. Therefore, in (I) and in this paper the OBE poten-
tials are treated as the dominant parts of the meson
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Regge trajectories. This also includes the J =0 contribu-
tions from the tensor trajectories (f, f’, and 4,). In elas-
tic scattering, however, the most important exchange at
higher energies is pomeron exchange. Therefore in (I) the
traditional OBE model was extended by including the
Pomeron. An excellent agreement was found between
the Pomeron parameters determined from the high-
energy and the low-energy NN data.

The reasons for a combined study of the NN and YN
interactions are the same as that for our former hard-core
model description of the NN and YN data:>~’

(i) To test the assumption of SU(3) symmetry. For ex-
ample, we want to investigate the properties of the scalar
mesons [£(760), S*(975), 8(980), and x(1000)]. Further-
more we want to check whether in a combined NN and
YN analysis the contribution to the interaction from the
J =0 components of the pomeron, f, f’, and 4, can be
included.

(ii) The determination of the F /(F + D) ratios.

(iii) To extract, in spite of the scarce experimental YN
data, information about scattering lengths, effective
ranges, the existence of resonances, etc.

This program appears to be feasible, because a good
theoretical description of the YN interactions can indeed
by given by using SU(3) and the meson-nucleon coupling
constants from the NN analysis

The interactions in the model are described in terms of
the following exchanges.

(1) the pseudoscalar-meson nonet ,17,7’',K with the

2226 ©1989 The American Physical Society



40 SOFT-CORE BARYON-BARYON ONE-... . II. ...

n—n' mixing angle 6p=—23.0° from the Gell-Mann-
Okubo mass formula.

(2) The vector-meson nonet p,$,K *,» with the ¢—w
ideal mixing angle 6, =37.56°.

(3) The scalar-meson nonet 8,5 *,«,e with a free S* —¢
mixing angle 05 to be determined in a fit to the YN data.

(4) The “diffractive” contribution from the Pomeron P,
[, f',and A4,. These interactions will give repulsive con-
tributions to the potentials in all channels of a Gaussian
type and can perhaps partly justify the use of hard-cores
in our earlier work.

The baryon-baryon-meson vertices are described by
coupling constants and form factors, which correspond to
the Regge residues. The form factors are taken to be of
the Gaussian type, like the residue functions in many
Regge-pole models for high-energy scattering. Note also
that in nonrelativistic quark models a Gaussian behavior
of the form factors is most natural. These form factors
evidently guarantee a soft behavior of the potentials in
configuration space at small distances.

The physical nature of Pomeron exchange can be un-
derstood in the framework of QCD as a two-gluon- (or
multigluon-) exchange effect. Low and Nussinov® have
shown that at high energies Pomeron-exchange and two-
gluon-exchange are equivalent. In Ref. 9 it has been
demonstrated that this particular QCD picture of the
Pomeron leads to a good description of the various
diffraction processes. By extrapolating from the higher
energies to low energies, using a Regge-pole model, the
(multi-) gluon-exchange potential between two baryons
was found in Ref. 2. In NN interactions the inclusion of
the Pomeron improved in particular the electric w cou-
pling considerably.! The role of the Pomeron for low-
energy mN and KN scattering has been demonstrated
convincingly using finite-energy sum rules (FESR).! In
fact, it has been shown that the background amplitude,
which remains after the subtraction of the known reso-
nances, produces the Pomeron contribution at high ener-
gies via FESR.!!

In this work we check whether a strong repulsion from
the Pomeron and the tensor mesons together with Gauss-
ian form factors can also give a high quality description
of the YN data. By high quality we understand here a
YN fit with low y? and such that, while keeping the con-
straints forced on the potentials by the NN fit, the free
parameters with a clear physical significance, like, e.g.,
the F/(F + D) ratios apy and ay}, assume realistic values.

In this paper we treat in detail the following YN reac-
tions: (i) the coupled channels Ap —»Ap,2+n,2° ; (ii) the
coupled channels = p—3"p,3%, An; and (iii) the single
channel 3" p—3*p. It turns out that starting from the
soft-core OBE model of Ref. 1, we are indeed able to
achieve a very good description of the YN data and at the
same time maintain values for the free parameters which
are very consistent with other findings. As an application
of the obtained potentials, the properties of the hyper-
fragments might be predicted. The determined value for
the F/(F + D) ratio apy for the pseudoscalar mesons is
the same as that found in the weak interactions.!>!3 Also
the value obtained for the magnetic ratio of the vector
mesons is in perfect agreement with nonstatic SU(6).14
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Like in previous work of the Nijmegan group on YN (e.g.,
Refs. 6 and 7), we use SU(3) symmetry for the coupling
constants. SU(3) breaking is introduced by using the
physical masses of the mesons and baryons in the poten-
tials and Schrodinger equation (see Refs. 6, 7, and 15); al-
lowing for meson mixing within a nonet (n—7’, 0 —¢,
e—S8*); including charge symmetry breaking (CSB) (Ref.
16) due to A3 mixing, which, for example, introduces a
one-pion-exchange potential in the AN channel; and tak-
ing into account the Coulomb interaction. In order to in-
clude the Coulomb interaction exactly, and to account as
much as possible for the mass differences between the
baryons, we solve the multichannel Schrodinger equation
on the physical particle basis. However, the nuclear po-
tentials are calculated on the isospin basis, in order to
limit the number of different form factors (see Sec. VII).

In NN interactions we have fitted all partial waves with
only one form factor parameter. For YN it appears to be
impossible to use only one form factor for all channels.
This would either introduce unobserved bound states in
the model or make a fit to the YN data impossible.
Therefore we have to use several. (Note, however, that
for avoiding unobserved bound states, the freedom to ad-
just form factors is much less powerful than the freedom
of changing hard cores. For instance, changing the form
factors does not change the volume integral of the poten-
tials). In our approach, we have introduced the form fac-
tors per channel. For several reasons we did not choose
to differentiate between the different kind of mesons with
respect to the form factor. First, that would introduce
more parameters in the model for both NN and YN.
Secondly, it is believed that the nature of the short-range
potentials is at present, at least quantitatively, poorly un-
derstood. Probably any OBE model also effectively in-
cludes forces which are not of the OBE type. It is clearly
allowable to parametrize these unknown short-range
forces for the different YN channels independently.

The contents of this paper are as follows. In Sec. II we
define the OBE potentials for the Lippmann-Schwinger
equation. In Sec. III the OBE potentials in momentum
space for pseudoscalar, vector, scalar, and diffractive ex-
changes are given and discussed. In Sec. IV we systemat-
ically describe the Fourier transformation to config-
uration space for the potentials of Sec. III. In Sec. V we
outline the treatment of the multichannel Schrodinger
equation with the nonlocal central potentials derived in
Sec. III. In Sec. VI we discuss the form factor assign-
ments in the context of SU(3). In Sec. VII the results for
the coupling constants, F/(F + D) ratios, and mixing an-
gles are discussed and compared with the literature and
the nonrelativistic quark model. In Sec. VIII we present
the results of the fit to the YN data. Here the results for
the Ap, = p, and =*p data are shown and discussed in
detail. At several points in Secs. VII and VIII the results
are compared with the former hard-core models for YN
scattering of the Nijmegen group (Refs. 6 and 7).

II. DEFINITION OF THE POTENTIALS
FOR THE LIPPMANN-SCHWINGER EQUATION

We consider the hyperon-nucleon reactions
Y(pi,s))+N(p,y,s,)—>Y'(pi,s])+N'(p3,s5) . (1)
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As in Ref. 6, whose conventions we will follow in this pa-
per, we will also refer to Y and Y" as particles 1 and 3 and
to N and N' as particles 2 and 4. The four momentum of
particle i is p;=(E;,p;), where E;=(p?+M?)'/? and M,
is the mass. The transition amplitude matrix M is related
to the S matrix via
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(FISIiY=C(fliy—i2m)*8* P, —P)(fIM|i), (2

where P;,=p,+p, and P, =p}+p5 represent the total
four momentum for the initial state |i ) and the final state
|f). The latter refer to the two-particle states, which we

‘normalize in the following way:

(P} P2IP1,P2) =(27)°2E (p,)8°(p) —py)-(2m)2E (p)8°(p5—P5) - 3)

Three-dimensional integral equations for the amplitudes { f|M|i) can be derived in various ways. See, for example,
Refs. 6, 17, 18, 19, and 20. In Ref. 3 is given a derivation based on two-particle unitarity and the analyticity properties
of the amplitudes, using the N /D formalism. The equation obtained with this method is

1
Mf,-(qf,q,-;s)=Wf,-(qf,q,-;S)+E—);2fd3k,,Wf,,(qf,k,,;s)Go(k,,,s)M,,,-(k,,,q,-;s), (4)

where q; and q s denote the initial- and final-state mo-
menta, and

Golkis)= S OB, (k)

X {s —[E;(k)+E,(k)*+ie)} !, (5

with s =[E,(p)+E,(p)]®. This follows from Eq. (4.27)
in Ref. 3. This same equation has been derived by Ger-
sten, Verhoeven, and de Swart!” in the context of an ap-
proach which uses the Bethe-Salpeter equation. Also in
Ref. 3 it is shown that for pseudopotential { f|W]|i) cor-
responds in the pole approximation to the Feynman-
amplitudes for OBE exchanges with form factors at the
baryon-baryon-meson (BBM) vertices. In order to arrive
at a Lippmann-Schwinger equation, we choose a new
Green’s function g (k;s) which satisfies a dispersion rela-
tion in p?(s) rather than in 5. Then we get, like in Refs. 3,
6, and 20,

where q,, is the on-energy-shell momentum. This Green’s
function is eventually used in the integral equation (4) in-
stead of Gy(k,;s). So the corrections to { f|Wl|i) due to
the transformation of the Green’s functions are neglect-
ed. They are of higher order in the couplings and are
usually discarded in an OBE approach. With the substi-
tution of g for G, Eq. (5) becomes identical to Eq. (2.19) of
Ref. 6. From now on we follow Sec. II of Ref. 6 in detail.
The transformation to the nonrelativistic normalization
of the two-particle states leads to states with

ot ’ .
(pP1,515P252 |P1,311P2,52)

=(27)%8%(p} —p)8(py—p,)d @)

P TPR
S8y S9.8
For these states we define the 7" matrix by

(fITIN=[4M3,(E; +E )] 2 fIM]i)

X[4M ,(E|+E,)]" 12, (8)
- —1 2 21
s)= —q5— 6
glk,;s) 2[E (k,)+E,(k,)] (ky —a, —ie) © and get from Eq. (4) the Lippmann-Schwinger equation
]
(3,41T11,2)=(3,4| V11,2)+ ——= 3 [ d*k,(3,4V|n,,n )——Z—Aﬁ"—"z—(n n,|T11,2) 9)
’ ) ’ ’ (2‘”)3 ~ n\v» 1,72 qﬁ“ki‘*"ls 1>72 ’ ’

and where analogously to Eq. (8) the potential V is
defined as

(fIVI)=[4M 3 (E;+E)1 V2 FIWli)
X[4M ,(E,+E,)]" V2. (10)

Using rotational invariance and parity conservation we

expand the T matrix, which is a 4X4 matrix in Pauli-

spinor space, into a complete set of Pauli-spinor invari-
6,15

ants™

8
T=7 Ti(q},49},9;q,)P; - (11)

i=1

Introducing

[
q=3(q,+q;), k=q;—q;,

(12)
n=gq; Xq,=qXk,
we choose for the operators P; in spin space
Pl=1 ’
P2=0'l'0'2 )
Py=(0 k)0, k)— Lo 0,)k?,
P4=é(a,+02)-n , (13)

P5:(01'n)(02'n) ’
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P6=é(01—02)-n ,

P-,=(01'q)(02'k)+(Ul'k)(az'q) ’
Pg=(0'1'q)(02'k)‘—(01'k)(0’2'q) .

Here we follow Refs. 6 and 15, except that here we have
chosen P; to be a purely “tensor-force” operator.

. In the OBEP approximation we consider only second-
order irreducible diagrams contributing to the kernel,
i.e.,, W=M™2_ Similarly to Eq. (11) we expand the po-
tentials V. Again following Ref. 6, we neglect the poten-
tial forms P, and Pjg, and also the dependence of the po-
tentials on k-q. Consequently the potentials can be ex-
panded as follows:

6
V=T Vi(k%,q*P; . (14)
i=1
In the following we will exploit this decomposition exten-
sively.

III. ONE-BOSON-EXCHANGE POTENTIALS
IN MOMENTUM SPACE

In this section we extend the NN potentials given in
Ref. 1 to the YN channels. The local interaction Hamil-
ton densities for the different couplings are (a)
pseudoscalar-meson exchange

fr -
ﬂpv=z—%¢r,ms¢a“¢p , (15)

m
T

(b) vector-meson exchange
Fy=igy ¥ "+—fV 2 oy, — a3k 16)
v =igy by oy + Yo, (3, —0Th) L (
and (c) scalar-meson exchange

Hs=gsPPds , 17)

where o0,,=[7,,7,]/2i and m_, and J are scaling

masses, chosen to be the charged pion and the proton
mass, respectively. Note that the vertices for
“diffractive” exchange have the same Lorentz structure
as those for scalar-meson-exchange.

Including form factors f (x’—x), the interaction densi-
ties are modified to

Hy(x)= [ d*'f(x' —x)Hx(x') , (18)

where X =PV, V, or S. Because of this ‘“‘convolutive”
form, the potentials in momentum space are the same as
for point interactions, except that the coupling constants
are multiplied by the Fourier transform of the form fac-
tors.

In the derivation of V; we use the following approxi-
mations, which can be justified for low-energy scattering.

(1) We make the expansion
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E(p)=(k*/4+q@*+M*) >’ =M +k*/8M +q*>/2M

and keep only terms up to first order in k?/M and q2 /M,
except for the form factors where the full k? dependence
is kept throughout the calculations. Notice that the
Gaussian form factors suppress the high k? contributions
strongly.

(2) In the meson propagators,

(py—p3)+mi=(k*+m?) .

(3) When two different hyperons are involved at a BBM
vertex (e.g., A and 2) their average mass is used in the
potentials and the nonzero component of the momentum
transfer is accounted for by using an effective mass in the
meson propagator (for details see Refs. 21 and 15).

Due to the approximations we get only a linear depen-
dence on g for ¥,. In the following, we write

V(K% @)=V, (k})+V,,(k})q* . (19)

The OBE potentials are now obtained in the standard
way (see, e.g., Refs. 1 and 6) by evaluating the YN in-
teraction by Born approximation. We write the poten-
tials ¥; of Egs. (14) and (19) in the form

Vi(k%,qH) =3 QX (k%) AN (k% m?, A?) , (20)
X

where X =P, V, S, and D (P =pseudoscalar, V =vector,
S =scalar, and D =diffractive). Furthermore

A(X)(kz,mZ,A2)=;2%_e—k2/A2 21)
m
for X =P,V,S, and
(D12 o2 A2 1 —k*/4m?)
APk, me A )=7/L7 P (22)

for X =D. In the latter expression J/ is a universal scal-

ing mass, which is again taken to be the proton mass.

The mass parameter m, controls the k? dependence of

the Pomeron, f, f', A,, and K** potentials. For the

nonstrange mesons we find, using the approximations

(1)=(5), the following contributions to the different Q{%’.
(a) Pseudoscalar-meson exchange:

k2
QP =g P oP
2 T 813824 2MyMy |’
(23)
QP = o P, P 1
3 = 7813824 M My |

(b) Vector-meson exchange:
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o . K2 K +1/M%~2/MyMy, which holds to a good approxima-
Qj,'= (813824 |1~ SM M —8hf o aNM tion since the mass differences between the baryons are
YN N not large.
K2 k4 For the strangeness carrying exchanges (K,K *,x,K **)
_ +fV v ® .
fleh MM,y 13/ 24 L6MEM M we have a complete symmetric appearance of My and
Yy " . . .
My and an additional minus sign. (For the details see
M 3 Ref. 6.) Therefore the resulting potentials can be ob-
Qiy=glg MMy |’ tained from those given in Eqgs. (23)-(25), by replacing
both My and My by (MyMy)""? and adding a minus
Q= — %kZQgV) , sign. Furthermore we get non-negligible contributions
from the second part of the vector-meson propagator
Q= ng‘f‘fV3_‘MY‘ g +fV_MN (k,k,/m?) of the K * meson giving
3 1 1 2477 J 24
" o _yrrmypn - LTI TM) 26)
i Vi 2 i
m
P Jamyny), 4
8-/’42 where in V% the vector-meson-coupling constants have
—_— to be used, and M, and M, have to be replaced b
Q= 12 Vo+8(ghfy 4+ 1T )M (MyMy)2, ’ v P ¢
4 813824 813/ 24 84 )
3k IV. ONE-BOSON-EXCHANGE POTENTIALS
—frrr (8M M), IN CONFIGURATION SPACE
S1af2a yMy
v In configuration space we describe the YN interactions
MyMy by potentials of the general form
Q( V)— __ V.,V + N
5 g8 tHehf nt+rien) " _
= { Vc(r)+ V[,(r)al-az-l— VT(")S12+ Vso(r)L'S
MM
+85%1Y, YN (16M2M32) , +Vo(r)Q12+ Vaso(r)i(o;—a,)L
£ P yMpy
—1[V%(r)+¢(r)V?1}-P , (27)
ap=—| |ehelitrhrh-E (Mi M) h 2
6 13824 1
J’/LZ 4M%1M1%r whnere
1 s _3(ol-r)(02-r) ( ) 28)
—(ghrh —fﬁgéf;)——————————-———-(‘/’/lzl‘lyMN)l/2 J ) 12 2 g0,),

(c) Scalar-meson exchange:

k2

Q(S)___ S .S 1+
813824 8MyMy

1
Qv({tv)) 8138242M My s

1

QS = o5 ,S , 25
4 g13g242MYMN ( )
1
Q) =S58 ,
5 — 813824 16M§-M§,
o (M} —M3)

() S
Q¢ 813854 MMy

(d) “diffractive-exchange” (Pomeron, f,f’, 4,): The
QP are the same as for scalar-meson-exchange Eq. (25),
but with *g f3g§4 replaced by ?gﬂg D.

In the expressions for QF, QY, and QS given previously,
My and My denote the mean hyperon and nucleon mass,
respectively; My =(M,+M;)/2 and My=(M,+M,)/2;
and m denotes the mass of the exchanged meson. The
form factor mass A will be discussed in Sec. VI. In deriv-
ing these formulas for the Qs we used 1/M3

QIZ:%[(UI'L)(O'

The exchange operator P =1 for hypercharge ¥ =0 ex-
change and P=-—P P, for Y+#0 exchange
(K,K*,k,K**), where P, and P, are the space and spin
exchange operators (for a discussion see Ref. 6). The
Fourier transformation of the nonlocal operators having
a linear q° dependence is given in Ref. 1, Egs. (10) and
(1.

The potentials in Eq. (27) are related to those in Egs.
(20)-(25), by the Fourier-Bessel transforms

Vc(r)=(1/277'2)f dk k2jo(kr)[ Vo (k?)—1k2V (k)] ,

L)+(o,-L)o,-L)] . (29)

Vo(n=01/2a% [ dk k%jo(kr)V,(k?)
Vir=—(1/6n%) [ dk k*j,(kn)V;(k?) ,
Vso(r)=(1/27%r) [ dk k*j,(kr)V,(k?) , (30)

Vo(r=—(1/2a%2) [ dk k*j,(kr)Vs(k?) ,

Vaso(N=(172a%) [ dk kj,(kr)V¢(k?)
¢(n=(1727) [ dk k%jo(kr)V,(k?),

where k runs from O to « and the j, are the spherical
Bessel functions of the first kind.?? In this form the rela-
tion between the potentials in momentum and config-
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uration space is explicit and the behavior of the poten-  this we use the ¢ functions of Ref. 1, Egs. (12), etc., which

tials at » =0 is clearly exhibited. Due to the Gaussian are defined in terms of the integrals (30) by taking
V,=exp(—k2/A%) /(k*+m

form factors the k integrals exist for all r.
With the momentum space potentials of Sec. III, these
Fourier transforms can be carried out analytically.! For  which gives
J

z’%(—mz)"(ﬁ'é(r):(l/&'rz)f dk k2o (kr)(k?)"A(k2,m? A?) ,

3

—rzn;(—mz)”qﬁ'}(r) (1/6m2 fdkk o (kr)(k2)"A(K2,m2,A2) ,
m? 2 3 2 2 A2
2 (m Y'oo(r)=(1/721%) [ dk k*j,(kr)(k?)"A(k%m? A%) .

Introducing the auxiliary functions A% (A, r) by

%(—mz)"“A"C“(A,r):(1/2wz)f dk k2jo(kr)(k?)"exp(—k2/A?) ,
m? m2)y+ +1
~4—( )P FIALT YA )= —(1/672 fdkk‘* o (kr)(k?)"exp(—k2/A?) ,

3
i:;( —m 2 AL A, P =(1/20%) [ dk k%), (kr)(k?)'exp(—k2/A?) ,

one can readily show, by making the substitution k?>—(k2+m?2)—m?, that
¢ TN ) =% (r)+ALT YA, P)

for X =C, T, and SO. Also one has

A

m

d_

ALY A ) =— AT

Ax(A r)

1
2

The functions ¢2(7), $%(r), and ¢, (7) are given in Ref. 1, Eqgs. (13), (17), and (20). They read

¢2(r)=exp(m?/A?) e "™ erfc __Az_r+% —e™erfc ——+— /2mr ,
$%(r)= {exp(m2/A?) |[1+mr + L(mr)?]e ~™erfc | — 2L 4 M
! ’ 2 A

2
”‘-—S‘/": % 1+% % }exp[— ]/2(mr)3
T
#oo(r)= [exp(mz/Az) (1+mr)e  ™erfc —%-i—x —(1—mr)e™erfc

_ 4
Vo

Ar

5> |exP

I/Z(mr)3

For AL(A,r), AL(A,r), and ALo(A,r) we have [compare Ref. 1, Egs. (14), (18), and (21)]

2
1 A Ar
AI(A, _——— | — - | —
C r) 2‘/7,_ lm Xp 2 }9
1 (Al T (ar Pl (ar)
Al A, = | — —_ —r —l
(A, r) PV lm exp 5 > R
1 [a) Ar |’
Alp(A,r)=——= |2 — &L .
inoet 2 -]

2)=A(k%,m? A?)

—[1—mr +L(mr)*]e ™ erfc

Ar
2

(32)

(33)

(34)

(35)

(36)
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It is clear from Eq. (30) that for V,(r) and ¢(r) the basic integrals needed for the Fourier transformation are the same
as for V¢(r), ie., ¢¢(r). Similarly the basic integrals for V,5o(7) and V(r) are readily given in terms of qSSO ) and
¢'7(r), respectively. For instance, Eq. (22) of Ref. 1 concerning the Fourier transformation of the quadratic spin- orblt
potential can readily be obtained from the formulas given in this paper.

For the “diffractive” exchanges, only Gaussian integrals occur in the course of the Fourier transformation and they
can be evaluated in terms of the A% functions or directly [see Ref. 1, Egs. (25)-(28)].

Using these Fourier-Bessel transforms one can perform the Fourier transformation in a straightforward manner. The
results are the following.

(a) Pseudoscalar-meson exchange:

m?2
Ves(r)= 813824W[ yloy 0))pc+S1,6%]1 |P (37)
(b) Vector-meson exchange:
2
m v v |0 m 1 3 240 1 40 o2
Vy(r)=— + — Ve +ocV
y(r) . lg13g24 éc 2MYMN¢C 4MYMN( ¢cteécVo)
4
m 2
+ +
g13f244./1/LM f13g244./l/LM pe+ /13 szy‘ﬁ }
m? My My
+4MYMN gle+f1V37%— + 824+f24m ¢c+f 2¢c (0y0,)
m2 My M
_4MYMN g1V3+f1VsM + 824+f24_/n T+ 13 2 an‘ﬁr Si
mz ‘/MYMN m2
et | |t [l el | T (Mot s b bl LS
4 V' MyM MyM
m yMN v v y¥N 3 0
+— +4( + )———+8
16M§,M1%, I g13g24 813f24 fhg) N 1 e }(mr)z ¢101»
__m? v vy m? | 03 —3)
MyMy 813824 13/2472 AM M)y
V MyMy
‘(gﬂfﬁ—frsgﬁ)—m $% [*1(0,—0,)L |P (38)
(c) Scalar-meson exchange:
2 4
=_Mm S o8 o m a1 m 0 L-S+ m
Vs(r) ar g13824l ¢ — 4MYMN¢ 2MYMN¢SO 16MZM? (mr) 2¢TQ12
2 (M3 —M? 1
mn N_ Y 140 (g —o) LA — (V240 + ¢ 72 (39
+ MYMN 4MYMN ¢SO 2(01 02) 4MYMN( ¢C ¢C ) )
(d) Diffractive exchange:
2 2 2 2
m, 4 mp mp mp
vV D . 1+ _ 2.2 + .
D(r) 4 g13g24‘/ ﬂ/Lz {l 2MYMN(3 2mPr) MYMNLS+ ZMYM le
2 2 ag2
mP (MN My) ._L(o . )‘L e#m%rZ
MyMy | 4MyM, | ' 7?2
1 __erZ —m2r2
+W(V2e Plte TPV | |P. (40)
yMy

In these formulas m is the average mass in the meson isospin multiplet.
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V. MULTICHANNEL SCHRODINGER EQUATION
We have to solve the Lippmann-Schwinger for the YN reactions:
(I 2*p—>="p,
(ID (Ap,=*n,3%)—(Ap,=*n,3%) , | 1)
(II1) (An,3°1,2 7 p)—(An,=%1,27p) .

So, reaction (I) involves only a single two-particle channel, but for (II) and (III) the state vectors |i¢/) are three-
component vectors and the potentials V are 3 X3 matrices in the two-particle channel space. For system (II) we have on
the physical particle basis

ly )Ap Van  Vis+ Vps0
W= [[¥)g+, |, Vu= |Vgrpr Vsrs+ Vsiso|o 42)
| Y )Eop Vzo A Vzo):+ V):ozo

and likewise for system (III) we have

1) An Van  Vaso Vys-
¥m= | 1¥)s0, |, Vin= |Vson Vsog0 Vsos- | (43)
|¢)E-p V):‘A Vz‘zo Vz‘y.'

where V o+ =(Ap|V|=*tn), etc. In the case of exact isospin symmetry of the potential the matrices ¥ and V,; are

connected by an isospin rotation.

Expressing the potentlals on the physical particle basis in the potential matrix elements on the isospin basis, we find
for (IT)

VA \/_% Vas - \/—% Vs
Va= | V3Vas  2Vss(1)+Vss(3)] %[—Vm(%wwn(%)] , (44)
| =V IVas H—Vas(D+Ves(3)]  HVss(3)+2V53(3)]
and for (ITI)
VAa \/_% Vas - \/_2* Vs
Vin= | ViVas  HVss(D)+2V55(3)] ——[ Ves(D)+Vss(D]] . (45)
_\/_%VAE ‘/_32‘[_sz(%)+sz(%)] 3[2Vss(5 H'sz( )]

In Table I we give the channels and states relevant to this work and in anticipation of the further discussions, we also
give here the SU(3) contents of the potentials on the isospin basis.

The multichannel Lippmann-Schwinger equation for the components of the state vector ¥,(q;) correspondmg to Eq.
(9) reads

1
(277')3 i

¥i(a)=¢;(q)+2M, nzz f 8(i1,i2|V|n1,n2)1Zn(q"). 46)

The multichannel Schrodinger equation in configuration space is derived from the Lippmann-Schwinger equation
through the standard Fourier transformation (see, for example, Ref. 1). We find

2.{( —2u; )_lsi,jvz+ Vi,j(")_[V2¢i,j(")+¢i,j(")vz]+M15i,j}¢j(r)=Ei‘/’i(") . 47)
Jj
[

Here p; stands for the reduced mass in channel i, i.e., We make the partial-wave projection of Eq. (47) and
M;;=u;8;;, M;=M; +M, is the total rest mass for  write for the partial wave Yhr =2Crane(uy; /r)Y”))(LSZ’
channel i, and E is the total energy in the center of mass. ~ Introducing the center-of-mass ~momentum  k;
By V; ;(r) is meant the local part of the potentials, i.e., all =2u,(E —M);, and defining fi,j(")=#i,i¢i,j(r)’ we get

terms in Eq. (27) but the last one. from Eq. (47) for the radial Schrodinger equation



2234

TABLE 1. SU(3) contents of the various potentials on the iso-
spin basis.

Space-spin antisymmetric states 'S,, 3P, 'D,, ...

NN—NN I=1 VI =1)=Vy

AN—AN Varld =1)=(9V;;+V4,)/10
AN—3N I=1 Vas(I=1)=(—=3Vy+3V4)/10
SN—3N Ves(I=1)=(Vy+9V4)/10
3ZN—3N =3 Vis(I=3)=Vy,

Space-spin symmetric states 3S,, 'Py, 3D, ...

NN—NN I=0 VinI=0)=V
AN—AN Vand =)=V «+Vg,)/2
AN 3N =1 VasU=1)=(V +—V.)/2
SN—3N VssUU=1)=(V o +Vs,)/2
SN-3N =2 VistI=3)=V,,

I(I+1)

(6i:1+2fi,j){u1','j_ 2 uy; |21 u;

+[ki25i,j —Qu; Vi +fii)]u ;=0 , (48)
which we put into the form

a_ LU +1)

T u
r2

N|u +N'u'+ Au+1IN"u=0. (49)

We now transform away the u' term in the standard way,
by writing

u=Tv , (50)

where the transformation matrix 7T satisfies the differ-
ential equation

2NT'+N'T=0, (51)

with the boundary condition T'—1 for r— . As a re-

sult v(r) satisfies an ordinary local multichannel

Schrodinger equation

I(1+1)
2

v+ |k2—2M W — v, =0, (52)

where the “potential” Win this equation is given by
2M W =(NT) "2M V)T +L(NT)"(N'T")
—[(NT)"'k*T —k?] (53)

and (M), ; =/1,-8,-’ j- This is the multichannel analogon
of Eq. (39) of Ref. 1.

The differential equation for the transformation T has
to be solved numerically. After T is computed we can
solve the coupled-channel Schrodinger equation. For fur-
ther details of handling the Schrodinger equation for cou-
pled channels we refer to Refs. 15 and 23.

VI. FORM FACTORS AND SU(@3)

The states of SU(3) irreps for the NN channels and in
particular the YN channels, are displayed in Table II.
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The partial connection between the YN and NN channels
via SU(3) is evident from this table.

We assume that SU(3) symmetry is broken only
kinematically, i.e., via the physical masses of the mesons
and baryons. In Ref. 7 the SU(3) irreps in the BB chan-
nels form the basis for the parametrization of the short-
range interaction with “hard cores.” Here we follow the
same scheme except that the role of the “hard cores” is
taken over by the form factors. The behavior of these
form factors is controlled by A, the so-called cutoff mass
[see Eq. (21)]. Thus for the S waves the cutoff masses of
the {27} and the {10*} are in principle fixed in the NN
fit. In YN we then have as free-form-factor parameters
the {8,}-, {8,}-, and the {10}-cutoff masses. However,
because of the various SU(3)-symmetry-breaking mecha-
nisms included in the model, we are forced to calculate
the nuclear potentials on the isospin basis. On this level,
we not only have to deal with states belonging to a single
SU(3) irrep, but also with states belonging to a combina-
tion of two irreps (see Table II). In the latter case, we
than allow for a separate form factor. Altogether, this
would imply four different form factors to be used:

Ay, for 1So(EN; I=3),
Ay for 3S(3N; I=13),
Apyr4s, for 'So(ANEN; I=1),

A for 3S,(AN,EN; I=1).

*
10% +8,

Note that in the AN and 2N isospin I =1 channels the
SU(@3) irreps have different weights (see Table I). There-
fore it is justified to use different form-factor masses for
these cases. However, in order to obtain a good fit this
was unnecessary.

The S waves are by far the dominant waves for fitting
the low-energy YN data, which are mainly total cross sec-
tions. The P waves are not very important for the latter
and so from these data the experimental P-wave informa-
tion is meagre. Also from the measured low-energy
differential cross sections there is no evidence for large P
waves. It appeared that we could use the same form fac-
tor for states with different L, but in isomorphic SU(3) ir-

TABLE II. Channels, states, and SU(3) irreps in Y =1 and
Y =2 baryon-baryon scattering.

Y I Channels States SU(3) irreps
1 1Sy, 3P, 'D,, ... {27}
2 NN
0 3s,, P, °D, ... {10*}
1 1So, 3P, 'D,, ... (27}@{8,}
AN,EN
3s,, 'P,, %D, ... {10*}®{8,}
1
-g— Sy, P, 'D,, ... {27}
=N
3S,, P, °D, ... {10}
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TABLE III. S-wave form-factor masses used in this work.

1So s*p {27} A,;=1020.0 MeV
S, =*p {10} A1p=1230.0 MeV
=p {10} A}p=1270.5 MeV
S0 AN,=N {27} +{8,} Azr4g =820.0 MeV
3S, AN,=N {10*} +{8,} A x4 =1270.5 MeV
a

reps, without giving any problems with the data at higher
energies.

It turned out that imposing a form-factor assignment
on the basis of strict SU(3) symmetry leads to a certain
friction between the ='p and the = p channels for the
3§, wave. The capture ratio at rest and the = p cross
sections are very sensitive to the potential in the {10}. In
order to fit these data we would have to allow for a cutoff
mass A in the {10} such that the model would produce
an unobserved bound state in the 3§, =*tp state. To
avoid this, we take a separate form factor for the 35, =*p
and S| =7 p I =1 states. This means that we introduce
an SU(2) breaking for the irrep {10}. This breaking
could not be explained by refining our CSB treatment,
i.e., by including the m—7 and p—w mixing. These
effects turned out to be very small. Also, introducing a
breaking of the 7° coupling? could not solve this.

The amount of SU(2) breaking needed could also be
varied by allowing a medium strong SU(3) breaking in the
{27} form factor, i.e., not taking the value of A,; as
found in NN. This could be justified by arguing that in
the YN channels, Y0 exchange occurs, which intro-
duces some medium strong SU(3)-breaking effects also in
the form factor masses. However, this way we cannot
eliminate the SU(2) breaking completely. The =~ p data
force the A,y in a region where the 3S, is very sensitive to
a possible SU(2) breaking. We now have two choices: (i)
we make the SU(2) breaking in the {10} as small as possi-
ble at the cost of an SU(3) breaking for A,,, or (ii) we
keep strict SU(3) for A,; and introduce a larger SU(2)
breaking for the A, In principle we have no clear
reason to prefer (i) or (ii). The model (coupling constants,
etc.) and the fit to the data do not depend on the choice
made here. In the following we will work with choice (i).
The results for choice (ii) are very similar. Although (ii)
would be more appealing [one parameter less and strict
SU(3) in the A,;], it appears that then the 3S, wave in the
3% p becomes more repulsive and this seems to be un-
favorable for the 3 hyperfragments.?

In Table III we finally summarize the form-factor
prescription as used in the calculations [choice (i), as pre-
viously stated] and give the form-factor masses which
have emerged from the YN fit. As one sees from the
table, our form-factor scheme is finally very simple: (i)
for 27p a 1S, and a 3§, form factor, (ii) for AN—3N a
1S, and a 3§ form factor.

VII. COUPLING CONSTANTS, F /(F + D) RATIOS,
AND MIXING ANGLES

The OBE-coupling constants we employ here for the
description of the YN channels are obtained from the NN
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analysis of Ref. 1 using SU(3) relations. The SU(3) rela-
tions are assumed to hold for the pseudovector couplings
of the pseudoscalar mesons, for the Pauli-Dirac couplings
of the vector mesons, for the coupling of the scalar
mesons, and for the Pomeron and tensor-meson contribu-
tions. We have analyzed the low-energy YN data (see,
e.g., Refs. 6, 7, 15, and 23 for a description) for all YN
channels simultaneously. An excellent solution was
found which appears qualitatively even better than the
Nijmegen hard-core potentials.%’ The handling of SU(3)
for the pseudoscalar and vector mesons has been dis-
cussed in Refs. 7 and 13. Here we briefly discuss the
treatment of the scalar mesons and the “diffractive” ex-
change.

In the scalar-meson nonet the physical € and S* meson
are described in terms of the SU(3) singlet €, and octet
state S using a single mixing angle 6

le) =cosOs|S¢ ) —sinbgley)

|S*)=sin0g|S¢ ) +cosbsley) .

(54)

With this convention, the ideal mixing angle for the sca-
lar mesons in the g g % picture?® is 5 =35.3°, and in the
qq picture is 85 =>54.7°.2’ The convention Eq. (54) differs
from that in Ref. 7. There the same convention is used as
for the vector and pseudoscalar mesons (for definitions
see Refs. 5 and 6). For the vector and pseudoscalar
mesons we stick to the conventions used in Refs. 5 and 6.
Using these expressions for meson mixing the couplings
can readily be expressed in terms of the singlet coupling
g1, the octet coupling gg, the F/(F + D) ratio ag, and the
mixing angle 6.

For the “diffractive” exchanges we take the ‘bare”
Pomeron as an SU(3) singlet. The tensor nonet contains
the f, and the f which are, respectively, the SU(3) sing-
let and octet state. Exact SU(3) and unitarity cause a
strong mixing between the “bare” Pomeron and f,. We
describe this system by P,, which is obviously a SU(3)
singlet. Medium strong SU(3) breaking then gives mixing
of Py and f, leading to the physical Pomeron P and f.
In the NN analysis the combination

g5 :g;NN‘*‘g}NN:g%"'”%MaD“l)zg§ > (55)

and also gz =g A,NN has been fixed. From the expression

for g} one sees that g, and @, can be written in terms of
8ps & 4,nN> and an angle that we call ¥,. One has

g, =cos(¢¥p)gp ,

— (56)
(4(11) —1 )/\/32811'1('(/)]_) )gp/gAZNN .

So, in the YN analysis we have for the diffractive contri-
butions one extra free parameter, the angle ¥,. Another
possible relevant free parameter would be 6, but since
we have used the same mass mp for all diffractive ex-
changes, we have no SU(3) breaking due to these ex-
changes and so the results are independent of 6,. In Ref.
3 a natural kinematical SU(3) breaking is suggested in
A(k2,m?) by using in Eq. 22 MM, instead of /M in the
denominator. However, a recent analysis of the Pomeron
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TABLE IV. Coupling constants for pseudoscalar and vector meson Y=0and Y =+1 exchanges.

I&

M NNM AAM AZM 33IM ANM ZNM
T g 3.69822 CSB 3.38318 3.32840
f 0.272 04 CSB 0.202 61 0.19315
7 g 1.805 74 —1.84905 4.456 48
n' g 1.958 94 4.02537 1.567 18
K g —3.98122 1.207 49
f —0.964 66 0.283 36
p g 0.891 47 CSB 1.78295
f 3.762 55 CSB 3.149 85 2.069 40
¢ g —0.31477 —1.53976 —1.53976
f —0.424 14 —3.09542 1.902 46
1) g 2.946 63 2.006 66 2.006 66
f 0.909 59 —1.14016 2.694 85
K* g —1.544 08 —0.89147
f —3.36708 1.693 15

couplings?® suggests that there is almost no SU(3) break-
ing of this kind.

In Tables IV and V we have listed the coupling con-
stants. All figures refer to rationalized couplings, i.e.,
they should be understood as g/V'4m. Furthermore
“CSB” refers to the couplings due to charge symmetry
breaking and are given by  gxam(CSB)
=—0.0271gynm8 asM - .

The value found for apy agrees very well with the
determination in weak interactions.!>!*> The advantage
of our combined NN and YN analysis, in contrast to most
other analyses, is that apy enters in many coupling con-
stants simultaneously (NNng, 227, AZw, ANK, 3INK,
AAng, and 231,) and is vital to several measured cross
sections and ratios. Also, the value obtained for a is in
full accordance with relativistic SU(6)."* Note that here
a$, has not been fitted, but is theoretical input. Another
important free parameter is the scalar mixing angle 6.
The fit appears to be rather sensitive to this parameter,
but there is still some room for variation by making at
the same time adjustments for i, and A;,. We obtained
05~40.9°, a value between ideal mixing for the scalar
g2 ? and the scalar g7 states. In the region where the
data can be fitted successfully the 3 p elastic and inelas-
tic cross sections depend rather steeply on 65. A recent
determination of 65,29 based on a study of I'(S* —7w),

gave O3=32°. For the angle i, we obtained the value
15.5°, which means that the Pomeron is dominantly an
SU(3) singlet as is also found in high-energy scattering.

The singlet couplings g, can readily be calculated using
the values of the tables and the formulas (this paper and
Refs. 5 and 6) for the meson mixings.

In Table VI we give the singlet and octet coupling con-
stants, mixing angles, and F /(F + D) ratios.

For a discussion of the NNM-coupling constants we
refer to Ref. 1. In the discussion of the YYM and YNM-
coupling constants we shall restrict ourselves mainly to
the pseudoscalar mesons, because there is independent in-
formation on them available from the application of the
Goldberger-Treiman relation and the analysis of KN
scattering. We compare in the following our values with
those in the literature, i.e., as given in the compilations of
coupling constants.!>13

In Refs. 12 and 13 are given gis,/4m=131+2 and
gis,/4m=11%£1. We have g5 /47=11.09 and
84sn/4m=11.42, which agree very well with those from
the literature. To a certain extent, this is no surprise be-
cause (i) we have used SU(3) for the pseudovector (PV)
coupling, and (i) we found a perfect F/(F +D) ratio.
Pilkuhn showed*® using the Goldberger-Treiman relation
in combination with superconvergence that one can ex-
pect that only the pseudovector couplings satisfy SU(3)

TABLE V. Coupling constants for scalar meson and “diffractive” ¥ =0 and Y = *1 exchanges.

M NNM AAM ASM S3M ANM SNM

F) g 1.277 34 CSB —0.42116 3.284 16

S* g  —083894  —2.56308 —3.11453

€ g 4.76773 2.77698 2.14025

K g —2.63359  —2.00682
A, g 0.44372 CSB —0.01427 1.15196

f g —1.10989  —2.05561 —221779

Pof g 2.74708 2.70161 2.866 06

K** g —0.81469  —0.51408
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TABLE VI. Coupling constants, F/(F + D) ratios, mixing angles, etc. The values with an asterisk
have been determined in the fit to the YN data. The other parameters are theoretical input or deter-
mined by the fitted parameters and the constraint from the NN analysis.

Mesons {1} {8} F/(F+D) Angles
Pseudoscalar f 0.184 55 0.272 04 apy=0.355* 0p=—23.00°
Vector g 2.529 34 0.89147 ay=1.0 6,=37.50° -

f 0.979 82 3.762 55 ap=0.275*
Scalar g 3.75548 127734 o5 =1.28555 05 =40.895°*
Diffractive g 2.85507 0.44372 ap=1.022 67 ¥p=15.50°*

very well.

From K *N forward dispersion relations one has deter-
mined the YNK-coupling constants. Typically one finds!2
gink /4m=13.912.6 and gyx /4m=0.910.4. We have
gink /4m=16.0 and giyx/4m=1.44, again in good
agreement. These values are also perfectly compatible
with the determinations of the effective coupling

gi=(giyk +0.84gyx) /4 .

In Ref. 12, for example, one quotes g2 =16.6+0.7, which
is also close to our determination gy=17.2. The con-
clusion we draw from this comparison is that the use of
SU(3) for the PV coupling has led to a seemingly perfect
realistic description of the pseudoscalar meson exchange
in the present model.
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- We close this section by making some remarks on the
couplings of the vector mesons in the context of the naive
nonrelativistic quark model (henceforth referred to as
QM). For similar observations pertinent to model D
(Ref. 6) and F (Ref. 7), see Ref. 31. Because
gnne/ V'47=—0.31 is fairly small and since we use ideal
mixing, it is clear that the QM relations

8350 =8AA0— 38NNw» 8336 —8ans> 8nng=0  (57)

are indeed satisfied approximately in Table IV. To illus-
trate further how close we obey QM relations for the
electric couplings we look at

gnne= —sinfy,g, +cosh,(4as, —1)gs /V3 . (58)

Imposing the QM restriction gyy,;=0 one gets that

TABLE VII. Comparison of the calculated and experimental values for the 35 YN data that were in-
cluded in the fit. The superscripts RH and M denote, respectively, the Rehovoth-Heidelberg (Ref. 33)

and Maryland (Ref. 34) data. The laboratory moments are in MeV/c and the total cross sections in mb.

Ap—Ap ¥2=1.0 Ap—Ap x2=2.6
Da U?x]g Oth Da ng Tth
145 180+22 192.8 135 209.0+58 209.2
185 130+17 138.8 165 177.0+£38 163.6
210 118+16 113.2 195 153.0£27 127.9
230 101+12 96.4 225 111.0x+18 100.4
250 83+9 824 255 87.0+13 79.2
290 5719 60.8 300 46.0t11 56.6
Stp—>=tp x*=0.2 S p—3Tp ¥2=2.6
p2+ aexp Oth P2~ aexp Oth
145 123+62 107.3 142.5 152438 1374
155 104+30 99.9 147.5 146130 135.5
165 92+18 91.4 152.5 142+25 133.9
175 81+12 84.3 157.5 164+32 132.4
162.5 138+19 131.0
167.5 113+16 129.8
S p—3 x2=6.5 2 p—An x2=2.7
p):+ T exp Oth Pz— O exp Oth
110 396191 178.3 110 174147 219.1
120 159+43 157.5 120 178+39 191.7
130 157+34 140.5 130 140128 169.6
140 125+25 126.3 140 164+25 151.4
150 111+19 114.2 150 147+19 136.2
160 115+16 103.8 160 124+14 123.4
rg?=0.468+0.010 rif=0.471 ¥*=0.1
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FIG. 1. Potentials for channels in definite SU(3).

g1
V2 =1.
2,6 tanf, =1 (59)

From Table VI we find for this combination 1.26, which
is rather close to the QM value. Models D and F here
give 2.34 and 1.75, respectively.’!

For the magnetic couplings G™=(f +g) one would

have a}=2 following static SU(6), whereas we have the

o (mb)
[
150 +
@ —
Sl 1
100 } e E
1
50 |
1 1 |
150 160 170
Plab(MeV/c)

FIG. 2. Calculated = *p “total” cross sections compared with
experimental values of Ref. 35.

relativistic SU(6) value.‘_‘_‘ The QM would require, using
ap=2, that GI"/G§V6=1 and we have for this com-
bination 0.308. Models D and F give here, respectively,
0.423 and 0.255.

Usually OBE models have larger relative strengths for
the tensor couplings of vector mesons than the QM (see,
e.g., Refs. 12 and 13). In this respect the present soft-
core model is closer to the QM than other models. Note

do /dcos(©){mb)

BE

50

B

1 1 1

-0.5 00 05

cos(©)

FIG. 3. Calculated 7 p differential cross sections compared

with experimental values of Ref. 35.
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FIG. 4. Calculated Ap elastic total cross sections compared with the Rehovoth-Heidelberg (Ref. 33), Maryland (Ref. 34), and

Berkeley (Refs. 39 and 40) data.

that (f/g) NNp=4.2, where the QM predicts for this ratio
3.7. For the other ratios we have (f/g)yn,=0.31,
(f/8) \nx*=2-2, and (f/8)sp,x=—1.9. These values
are closer to the QM than those for the models D and F.

VIII. RESULTS OF THE CALCULATIONS
A. Determination of the free parameters
The values for the eight free parameters in the soft-

core model are determined in the YN analysis in a param-
eter search to a selected set of 35 best low-energy YN

a(mb)
Ip—-Ip
200
[ ( ——
:.—L—“_"—u——c ’__I__*
! T3
e
100 ¥ 1
1 |
150 160
P[ab(MQVIC)

FIG. 5. Calculated =7 p “total” cross sections compared with
experimental data (Ref. 35). ’

data (Table VII, the data are from Refs. 32-37). The
fitted parameters and the values obtained are given in
Tables IV and V.

The lowest total y?>=15.7 reached for the 35 data and 8
free parameters, i.e., x* per degree of freedom=0.58. In
Table VII we compare the calculated model values with
the experimental ones. In calculating the cross sections
the P-wave contributions have been included. (Note here
that the 'P-*P, transitions are not included in our calcu-
lations.) In counting the number of free parameters we
could have been less conservative and say that apy and
ay are fixed during the search. After we noticed that we
could fix these parameters on the “theoretical” ideal
values, we did not allow them to vary. So actually we

do/dcos (6){mb)
Ip-Ip
100 } [
—0—
'—‘_1—0—4‘__.’_‘ ,[
/:.—4
50 }
@4
1 1 1
-05% 0.0 05 cos(©)

FIG. 6. Calculated =7 p differential cross sections compared
with experimental data (Ref. 35).
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TABLE VIII. 2*p and 3 n S- and P-wave effective range parameters in units of fm. The super-
script C denotes the presence of the Coulomb interaction.

ISO 3S1 3P0 3P1’ 3P2 IPI
a€ —3.63 0.305 —2.33 1.63 —0.099 —0.97
r¢ 3.27 —20.15 4.77 —17.66 10.60 13.74
a —4.71 0.247 —2.12 1.49 —0.101 —0.88
r 3.36 —26.86 4.93 —8.33 26.30 14.56
TABLE IX. ="p nuclear bar phase shifts in degrees.
ps+ MeV/c) 200 400 600 800 1000
Ty, (MeV) 16.7 65.5 142.8 244.0 364.5
1So 36.63 27.13 12.82 —10.05 —13.59
S, —7.95 —10.46 6.51 40.70 51.17
€ —1.83 —4.24 —2.31 3.74 5.80
3Py 4.42 7.53 0.80 —10.31 —22.35
P, 1.71 4.27 4.10 1.06 —3.61
3P, —3.14 —10.40 —18.46 —26.86 —34.90
°p, 0.54 3.14 6.61 10.81 15.91
€ —0.35 —1.80 —2.90 —2.85 —1.67
D, 0.27 1.14 0.81 —1.67 —17.25
'D, 0.28 1.64 3.93 6.59 8.52
’D, —0.43 —2.43 1.08 1.10 0.21
*D, 0.03 0.46 —5.11 —8.57 —12.91
TABLE X. Ap and An S- and P-wave effective range parameters in units of rm.
ISO 3S1 3P0 3PI 3P2 1P1
Ap a —2.73 —1.48 —0.033 0.016 —0.200 0.088
r 2.87 3.04 —154 2887 11.62 —38.5
AN a —2.78 —1.41 —0.096 0.061 —0.20 0.062
r 2.88 3.11 72.3 40.86 10.44 32.7
An a —2.86 —1.24 —0.156 0.108 —0.199 0.037
r 2.91 3.33 62.6 —42.1 9.62 388
TABLE XI. Ap nuclear bar phase shifts in degrees below the =N thresholds.
pa MeV/c) 100 200 300 400 500 600 633.4
Ty (MeV) 4.5 17.8 39.6 69.5 106.9 151.1 167.3
1Se 27.43 33.47 30.13 23.78 16.61 9.47 7.21
38, 17.08 24.78 26.07 25.32 25.68 33.36 51.97
€ 0.20 1.15 2.91 5.61 9.83 18.31 27.78
P, 0.03 0.12 —0.09 —1.30 —3.79 —17.30 —8.56
p, —0.06 —0.40 —1.25 —2.70 —4.70 —6.59 —17.74
’p, —0.02 —0.26 —1.03 —2.47 —4.49 —6.69 —17.20
’p, 0.14 0.95 2.61 4.78 6.99 8.99 9.61
€ 0.00 —0.01 —0.07 —0.24 —0.50 —0.83 —0.98
3D, 0.00 0.05 0.31 1.06 2.79 6.69 8.51
'D, 0.00 0.04 0.28 0.90 1.93 3.27 3.76
D, 0.00 0.07 0.38 1.10 2.29 3.89 4.51

D, 0.00 0.03 0.19 0.57 1.18 1.92 2.18

[
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TABLE XII. Ap—Ap,2%n,2% total cross sections in mb
above the N thresholds.

pa MeV/e) Ty MeV) Ap—Ap Ap—3Ztn Ap—3%p
650 175.5 26.20 6.29 2.49
700 201.4 17.02 7.94 4.18
750 228.7 14.48 8.37 4.27
800 257.2 13.56 8.21 4.11
850 286.9 13.32 7.82 3.88
900 317.8 13.40 7.36 3.64
950 349.7 13.62 6.90 3.40
1000 382.6 13.92 6.47 3.19

have effectively six free parameters. The potentials in the
different SU(3) irreps are shown in Fig. 1. Combining
these figures with Table I gives a qualitative picture of
the potentials in the different isospin channels.

B. =*p,3 n scattering

The =*p “total” cross sections®® (for the definition see
Ref. 23) are compared with the experimental values in
Table VII and Fig. 2.

The calculated cross sections agree very well with the
experimental data. The angular distribution at p;+ =170

MeV/c is shown in Fig. 3. This distribution has y?=5.0
for seven data points. The spin singlet Coulomb interfer-
ence is about three times larger in magnitude than the
triplet Coulomb interference, giving in total a destructive
Coulomb-interference result. In the overall result for the
angular distribution this is partially compensated by the
1S,-1P, interference term. The scattering lengths and
effective ranges in the S and P waves are given in Table
VIII. The 'S, scattering lengths and effective ranges are
similar to those of model D (Ref. 6) and model F (Ref. 7).
The 3S, low-energy parameters are similar to those of
model D. In model F there is more repulsion. It was
found by Yamamoto and Bando®® and by Dover and
Gal’! that model D is favored over model F as far as the
3N potential well depths are concerned. So the present
soft-core model seems to meet the requirements from the
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FIG. 7. Calculated =~ p— =°n total cross sections compared
with experimental data (Ref. 32).

potential well depths calculations.

In Table IX the nuclear bar phase shifts for =*p are
listed. We note the great difference between the 3S,
phases from the soft-core model and models D and F.
This difference is caused by the attraction in the potential
for r <0.5 fm for the {10} (cf. Fig. 2). In D and F this at-
traction was masked by the hard cores and so only the
medium- and long-range repulsion was visible. Changing
the cutoff A in the {10} from 1230.0 to 1000.0 MeV/c the
scattering length @, (3S,) ranges from 0.31 to 0.70 fm.
This way the sign change in the 3§ 1 phase shift could be
shifted to higher energies, while keeping a good fit to the
3*p total cross sections through an adjustment of the
cutoff in the {27}. However, then the fit to the £~ p cross
sections tends to deteriorate, in particular if we make A,
too small. Note that in this case the S, wave is more
repulsive and this makes this solution perhaps less attrac-

TABLE XIII. Inverse-scattering-length and effective-range matrices at the 2% and =~ p thresholds.
The order of the states (1-4) reads Ap(3S,), Ap(®D,), 2tn(3S,), 2% (3S,), and An(3S,), An(®D,),

=%(3S,), 2~ p(3S,), respectively. The dimensions of the matrix elements are in fm~'/~" (4 ~!) and
fm!~/~"(R). The subscript C denotes the presence of the Couloumb interaction in the 3~ p channel.
Ap—Z=% An—3"p (An—>Z27p)c

A1 R A7! R A7} R
11 12.33 57.22 9.73 35.00 9.74 35.16
12 —31.88 —95.73 —26.03 —53.15 —26.38 —54.82
13 —1.45 —6.29 —0.83 —3.57 —0.73 —2.64
14 1.07 3.92 1.00 2.18 1.11 2.92
22 92.20 112.86 80.85 37.96 82.52 41.66
23 1.08 15.04 0.16 8.50 —0.09 6.89
24 —0.83 —9.35 0.20 —7.06 —0.04 —8.75
33 0.24 —0.62 —0.34 —2.77 —0.27 —2.45
34 —0.78 —3.81 —0.74 —3.29 —0.69 —2.97
44 —0.27 —3.53 0.23 —1.04 —0.39 —0.71
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tive for the calculation of the = hyperfragments. ?

The P waves are not fitted in the soft-core model to the
angular distributions; they are straightforward predic-
tions. This in contrast to the P waves in models D and F.
The triplet P waves are similar to those from D and F,
which is not surprising because all models fit the NN
phase shifts and both the NN and the 2N triplet P waves
are in the {27}. The !P, phase shifts are rather
moderate. This in contrast to the behavior of the !P; in
D and F.

C. AN scattering

The low-energy parameters of the .S waves are given in
Table X. In the soft-core model we clearly have
la,| > |a,|. Compared to models D and F |a,| and |a,|
have become larger and smaller, respectively. The
effective range r, is reduced whereas , is about the same.
The consequences of this for the hypertriton 3H are un-
clear. The effects of the changes in the scattering lengths
and effective ranges can compensate each other to a cer-
tain extent.>® Note that in our AN calculations we get
different values for the low energy parameters in the
charge +1 and O states, notably because of the inclusion
of charge-symmetry-breaking potentials.

The fit to the low-energy Ap data is even better than in
models D and F. In Table VII it is shown that the six
Rehovoth-Heidelberg data have y?>=1.0 and the six
Maryland data have y2=2.6.

In Fig. 4 the Ap elastic total cross sections up to p, =1
GeV/c are drawn for the experimental data. The solid
line is the fit with the soft-core model (for p, <0.4 GeV)
and the soft-core model predictions (for p, >0.4 GeV).
The calculated elastic cross sections above 0.6 GeV/c are
very well compatible with the Berkeley-71 data.*°

In Table XI the Ap nuclear bar shifts are given and in
Table XII we show the elastic and inelastic Ap cross sec-
tions for p, from 650 MeV/cto 1 GeV/c.

The large cusp of 42.5 mb at the = # threshold in Fig.
4 is due to the enhancement in the 3S, waves, which is
caused by the coupling of the AN and =N channels and
the rather strong interaction in the >S;-wave 3N channel.
This cusp is also seen in Refs. 41 and 42, where a large
peak was found in the AN invariant mass at E_

=2128.7+0.2 MeV and 2129.0+0.4 MeV, the 37 n
threshold being located at 2128.97 MeV. To analyze this
cusp we made, as in Ref. 7, a multichannel effective range
approximation (ERA) around the 2% threshold, i.e.,

pL+1/2(E J)—lpL+1/2

=_A*l+_;‘_(p2__p(2))l/2R (pZ_p%)l/Z . (60)

Here K’ is the mutilated K’ matrix, where, as before®,
we cut out the 3D1 SN waves, A ! is the inverse scatter-
ing length matrix, R the effective range matrix, p£ 172
and (p2—p32)!/? are diagonal matrices with elements
pE*1% and (p?—p?)!/?, where py; denotes the momen-
tum at the 2% threshold energy. In Table XIII we give
the results for the effective range approximation.

The radius of convergence of ERA is 5 MeV, as deter-
mined by the pion-exchange cut. We did not find any
poles within this region on the second Riemann sheet.
We see that the situation in the soft-core model is quite
different from, for example, model F, where we found
poles at E =2131.77%+i2.39 MeV on the second sheet,
which again indicates that we now have a weaker interac-
tion in the 3S; waves.

The AN P-wave scattering lengths and effective ranges
are given in Table X. Comparing these values and the P-
wave phase shifts in Table XI with those of the D and F
models, it appears that these are qualitatively similar to
those of model F and not model D. This seems favorable
for A— N well depths calculations. **

D. 37 p scattering
1. " p—>Z2Tp

The fit to the total cross sections (for the precise
definition see, e.g., Ref. 23) of the Heidelberg group®’ is
given in Table VII and shown in Fig. 5. The data are
well described (y?=2.6 for six data points).

In Fig. 6 we compare the predicted angular distribu-
tion at p;- =160 MeV/c with the Heidelberg data (Ref.
35). The curve of the soft-core model for this distribution
is intermediate to the ones obtained for models D and F.

In Table XIV we give the total nuclear cross sections
for 27 p elastic scattering up to p, - =600 MeV/c. Here

TABLE XIV. 3 p—3"p,3%, An total cross sections in mb above the SN thresholds.

py- (MeV/c) T, (MeV) S p—>2Tp S p—3 S p—An
50 1.0 547.9 575.1 757.3
100 4.2 176.5 207.6 254.4
150 9.4 138.1 116.7 136.1
200 16.6 123.6 74.9 87.5
250 25.8 108.6 51.1 62.2
300 37.0 91.0 37.2 47.1
350 50.1 74.0 29.0 37.3
400 65.0 59.7 23.9 30.4
450 81.8 48.7 20.3 25.3
500 100.2 40.4 17.5 21.5
550 120.3 33.9 15.3 18.5
~ 600 141.9 29.1 13.5 16.1
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FIG. 8. Calculated =~ p— =% total cross sections compared
with the Massachusetts data (Ref. 37).

also as in D and F the scattering is mainly given by the
38, wave for Ps- =300 MeV/c. At the higher energies

the P waves dominate the total nuclear cross sections.
The contributions of the higher L waves are always very
small.

2. 3 p—>3

The calculated total cross sections are compared to the
measurements of the Heidelberg group>? in Table VII and
Fig. 7. The result fits the data excellently, this of course

o(mb)
AN I p—An

200 | \I

100 |

1 | |

120 140 160

FIG. 9. Calculated 37 p— An total cross sections compared
with experimental data (Ref. 32).

FIG. 10. Calculated =7 p— An differential cross sections
compared with experimental data (Ref. 32).

with the exception of the datum at p,— =110 MeV/c.

In Table XIV we give the total nuclear cross sections
for 2 p—3%% up to Ps— =600 MeV/c. Here also as in
D and F the scattering is dominated by the 3§, wave for
Ps— =250 MeV/c. At the higher energies the P waves
dominate the total nuclear cross sections. The contribu-
tions of the higher L waves are always very small. In Fig.
8 we compare the calculated total cross sections in the
momentum region 150=p,_ =600 MeV/c with the un-
published data of the Massachusetts group (Ref. 37). In

o (mb)
I p—An
100 | "I—‘
\
50 o ’—I—"_l__‘
1\? o
200 300 400 500
PiaplMev/c)

FIG. 11. Calculated 2~ p— An total cross sections compared
with the experimental data of the Massachusetts group (Ref.
37).
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contrast to the result of model D the soft-core model pre-
diction agrees very well with these data.

3. " p—An

In Table VII and Fig. 9 we compare the calculated to-
tal cross sections with the measured values of the Heidel-
berg group (Ref. 32). A good fit is obtained which is
comparable to that for model D and much better than for
model F.

In Fig. 10 we compare the calculated angular distribu-
tion for p, - =160 Mev/c with the Heidelberg data (Ref.
32). The curve is rather flat, showing a rather small
forward-backward ratio. This is as in model F, whereas
the data tend to indicate a greater forward-backward ra-
tio. .

In Table XIV we give the total nuclear cross sections
for 27 p—An up to p, =600 MeV/c. Below p;_ ~200
MeV /c is for 65% provided by the *S,-3S, transition and
for 25% by the 3S,->D, transition. Forp,- 2350 MeV/c
these transitions account for 60% of the total cross sec-
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tions. The other half is provided essentially by the P
waves.

In Fig. 11 we compare the calculated total cross sec-
tions in the momentum region 150=p . =600 MeV/c

with the unpublished data of the Massachusetts group
(Ref. 37). In contrast to the result of model D the soft-
core model-prediction agrees rather well with these data.

Finally we mention the excellent value that we are able
to reach for the inelastic capture ratio at rest rzg =0.471
(cf. Table VII) which is almost equal to the averaged ex-
perimental value. 1>36:37
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