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Three-body unitarity, the cloudy bag model, and the Roper resonance
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We present the details and results of a Faddeev calculation of ~N scattering in the P» channel in
the region of the Roper resonance. Our equations respect two- and three-body unitarity, treat the
nucleon and delta on an equal footing, and have a pole with correct residue at the nucleon mass.
The input is from the cloudy bag model. Resonance behavior is exhibited without the inclusion of a
bare Roper bag, although not in detailed agreement with experiment. If a bare Roper bag is includ-
ed, the phase shifts vary far too rapidly in the resonance region, implying that identifying the lowest
radial bag excitations with the Roper leads to a physical Roper that is much too narrow.

I. INTRODUCTION

The ~X system has recently become the subject of
renewed interest. There are three notable reasons for this
interest. First is the need for reliable amplitudes to be
used as input to ~-nucleus calculations. This is becoming
increasingly important as higher energy pion beams be-
come available and the details of the ~X interaction
beyond the delta resonance are probed. Second, the ~X
system is a nice testing ground for QCD motivated had-
ron models. Finally, and closely related to both preced-
ing points, there is the question of the nature of some of
the ~X resonances. On the one hand we have models
that attempt to describe these resonances as various exci-
tations of three-quark states, ' while others have point-
ed out that they may be due to the opening of inelastic
thres holds. "

Considerable effort has been expended on various
quark models of hadrons. An example is the nonrela-
tivistic quark potential model' and, more recently, the re-
lativized quark potential model. In these models, a
confining potential for the quarks is postulated, the re-
sulting Lagrangian diagonalized in some basis, and the
resulting eigenenergies compared with the experimental
hadron spectrum. At a later point, the decay modes of
the states are investigated by computing matrix elements
of some Lagrangian describing the decay vertex between
states obtained via the initial procedure. This points to a
serious Raw in these models; namely, that pionic self-
energy graphs are not included when computing the mass
spectrum of the baryons. These terms will have a
significant contribution not only to the widths but also
the positions of the predicted masses. The situation is
even worse when one considers the excited states that
have substantial widths, often with substantial partial
widths for decay to two pion states. The lowest in energy
of these states is the Roper or X*(1440). The data tables
list its mass at 1400—1480 MeV with a full width of
120—350 MeV. It decays 30—50% of the time to ~~N,
the rest being to ~X. Of the a~N contribution, 10—20%

is via wb, , 10—15% is via pX, and 5 —20% is X(7rrr)&
where (rrrt)s is the strong isospin 0, S-wave ~tr interac-
tion. Clearly from these observations, the state listed in
the data tables as the Roper has been extracted from an
energy dependent background dominated by the +~X,
~b, , pX, and X(rrtr)s thresholds. This means that a mod-
el that purports to predict the masses of such states
should include this energy dependent background. In
particular, this means that such a model should include
the coupling of the baryons to the pion cloud.

The cloudy bag model " provides a reasonable start-
ing point in this regard. Here the coupling to the pions
enters naturally by restoring chiral symmetry to the MIT
bag. Since this provides a description of the pion-baryon
interaction we are now able to examine the scattering. In
this way we can ensure that the energy dependent back-
ground, and in particular the various thresholds, can be
included in a natural way. Using an SU(3) extension of
the cloudy bag model that couples kaons to the baryons,
it has been shown' that the A*(1405) emerges as a KN
bound state, rather than a quark state. Similarly, in the
cloudy bag model the 6 is predominantly a three-quark
state as opposed to the ~X resonance state of the Chew-
Low picture. ' Although the cloudy bag model bears
some similarity to the old Chew-Low model, it differs in
one important respect, as a consequence of its consistency
with QCD. That is, the nucleon and delta are treated on
an equal footing. Also, the bare ~%~V, ~%A, and ~Ah
coupling constants are all related.

There have been several treatments of mX scattering
based on the cloudy bag model. The first calculations
obtained good results for the P33 channel by iterating the
delta pole and crossed diagrams in a Lippmann-
Schwinger equation. Later, Rinat' calculated scattering
in the P» channel using iterations of just the nucleon and
Roper pole diagrams (treating the bare Roper as the
lowest radial excitation of the nucleon). In that calcula-
tion, the Roper pole provides the only attraction and it
was necessary to adjust the Roper radius separately from
that of the nucleon in order to obtain reasonable agree-
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ment with experiment. The calculation of Suzuki et ah.
achieves surprisingly good results for T (500 MeV by
uniterizing the pole and crossed diagrams in a Heitler
equation. Although they conjecture that the contribu-
tions from multiple scattering are negligible, our experi-
ence' is that this is not so.

All of these early cloudy bag model calculations use
the version where the pions couple to the quarks only at
the bag surface and therefore do not incorporate the con-
tact diagram that arises when the pions are allowed to
couple throughout the bag volume. The contact diagram
allowed calculations of S-wave scattering which were not
possible in the original form. Cooper and Jennings'
have shown that the low energy S waves can be well
reproduced. The first attempt to include the contact dia-
gram in the P» channel did not succeed in reproducing
the low energy experimental phase shifts. However, in an
earlier paper, ' we demonstrated that this problem is
cured by ensuring that the P» amplitude has a pole with
correct residue at the nucleon mass. The success of the
cloudy bag model for low energy scattering suggests that
it should form a good basis for calculations above the
pion production threshold.

Having chosen a Lagrangian to work with, we now
need to find a scheme for calculating unitary scattering
amplitudes. Here we are confronted with two problems.
Firstly, the P» channel contains the nucleon pole. This
means that our scattering amplitude must have a pole at
the physical nucleon mass with the appropriate residue.
Secondly, since the Roper resonance occurs above the
pion production threshold, our amplitudes should be con-
sistent with two- and three-body unitarity. In summary
then, what we seek is a solution that treats the nucleon
and delta on an equal footing, has a pole with correct
residue at the nucleon mass, and satisfies two- and three-
body unitarity. Such a scheme has not been attempted
before. Recent calculations using the cloudy bag mod-
el ' use the Lippmann-Schwinger equation which only
satisfies two-body unitarity and is therefore inappropriate
in the vicinity of the Roper resonance.

In order to develop a suitable framework for a calcula-
tion of ~N scattering that includes a correct description
of the inelastic thresholds, we presented in Ref. 17 a for-
mal derivation of a set of three-body equations for the
~X-~~X system. The derivation utilized the technique of
classification of diagrams according to their reducibility
that has been used successfully in the md% system. '

As a guide to the classification process, we consider the
basic interactions to be governed by the cloudy bag mod-
el. The resulting coupled integral equations sum the
subset of all diagrams (generated from the B~~B vertex
and vrB +~B contact diagr—ams) that are needed to ensure
two- and three-body unitarity. We note that a similar set
of equations for the ~X-m~X system has been derived us-
ing projection operator techniques by Fuda. ' However,
his equations admit only the B~~B vertex as the basic
interaction. Also we note that there has been no attempt
to perform a numerical calculation based on these equa-
tions.

To the best of our knowledge, there have been two oth-
er calculations of the vrX system within the framework of

a set of integral equations that respect two- and three-
body unitarity. The first is due to Aaron, Amado, and
Young in the late 1960s. They find that 5 and p produc-
tion are important mechanisms in the D/3 D33 and P$3
channels. However, they do not perform a detailed cal-
culation of the P» channel ~ Also, in the light of modern
bag models, their theory is inadequate in the sense that it
does not treat the nucleon and delta on an equal footing.
More recently, Garcilazo and Mathelitsch have per-
formed a very similar calculation to Aaron, Amado, and
Young. Again, their calculation does not treat the nu-
cleon and delta on an equal footing. They generally ar-
rive at similar conclusions; namely, that some of the m.X
resonances may be caused by threshold eA'ects. However,
the agreement with experiment is again only qualitative.
Particularly, the agreement in the P» channel to a pion
lab energy of about 900 MeV is very poor.

The three-body equations presented in Ref. 17 have an
important consequence for low energy scattering when
three-body unitarity can be neglected. That is, the ver-
tices forming the crossed diagram are dressed and should
reproduce the physical coupling constant. However,
most two-body calculations that consider this diagram '

have the bare coupling constant in the crossed diagram as
well as the pole diagram. Putting this into practice in
Ref. 15, we found that we were able to reproduce the low
energy P» phase shifts quite well. We also determined
the bare coupling constant needed to reproduce the ex-
perimental value by evaluating the same series of dia-
grams that are summed by the scattering equations. Us-
ing this procedure we found that we needed a much
smaller value of the bare coupling constant than found by
previous authors who evaluate only the lowest order
contributions.

From the derivation of the equations given in Ref. 17,
it is clear that the input is the solution to the same set of
equations but at lower energy. (At such energies, it
should be possible to neglect most of the contribution to
three-body unitarity as was done in Ref. 15.) However, in
order to achieve equations that are practical from a com-
putational point of view, we require that the input ~X
and ~~ interactions be described by separable potentials.
Unfortunately, neither the crossed diagram nor the con-
tact diagram which form the input to the equation is se-
parable. In the P» channel, these two diagrams provide
the attraction required to cancel the repulsive nucleon
pole and hence should be treated with care.

To overcome this dilemma, we need to find a suitable
approximation to the combined crossed and contact dia-
grams that is separable. If we pre to not depart too far
from our goal of summing all diagrams from the La-
grangian consistent with two- and three-body unitarity,
we must ensure that the approximation we choose is con-
sistent with the calculation of Ref. 15. The way we
choose to do this is by making a separable expansion of
the combined crossed and contact diagrams using an en-
ergy dependent extension of the standard EST (Ernst,
Shakin, and Thaler ) method.

In this paper we present the details and results of a full
three-body calculation of the ~X system, which includes
coupling to the ~A and pX channels. %'e begin in Sec. II
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with a brief review of the equations derived in Ref. 17.
To perform calculations with these equations they must
be cast in a form suitable for numerical solution. The
steps involved are to rewrite the equations for the case of
separable input, symmetrize with respect to the two
pions, and perform a partial wave expansion. These steps
are similar to the corresponding steps needed to produce
numerical results for the ~%%system. ' However, the
symmetrization involves some subtleties not present in
the 1rNN system (due mainly to the fact that the particles
we are symmetrizing can be created and destroyed) so we
include the details of the symmetrization in the Appen-
dix.

In Sec. III we provide a full description of the two-
body input used in the calculation. The derivation of the
equations clearly indicates that the input should be the
solution to the same equations but at lower energy. How-
ever, to keep the calculation manageable, we require that
the input be separable. In Sec. III we show how the se-
parable expansion method of Ref. 23 is used to resolve
this.

The renormalization procedure employed to ensure
that the P&& amplitude has a pole with correct residue at
the nucleon mass is presented in Sec. IV. In particular,
we show how the renormalization of the input two-body
amplitude effects the renormalization of the three-body
equations.

The results are presented in Sec. V. Most notably, we
find that resonance behavior that is nearly in accord with
experiment is possible without the inclusion of a (radially
excited) bare Roper bag, while inclusion of such a state
leads to a dressed Roper that is much too narrow. Our
concluding remarks are presented in Sec. VI.

II. SUMMARY OF EQUATIONS

In Ref. 17 we presented a set of equations for the ~8-
~nB system that respect two- and three-body unitarity
and treat the nucleon and delta on an equal footing. For
completeness and to establish the notation, we begin by
presenting a summary of these equations.

The equations of Ref. 17 are derived by considering
classes of diagrams of a given reducibility. By explicitly
exposing all diagrams with n-particle intermediate states,
a set of equations can be derived that satisfy n-body uni-
tarity. The first step in deriving equations satisfying
three-body unitarity is to derive the two-body equations.
As described in Ref. 17, the total ~B~m.8 amplitude

(o)
TBB 1S

f (1)—f(2)+f(2) T(1)

and the baryon propagator is

(d
—1 y(1) )

—1

where the one-particle irreducible self-energy X"' is

y(1) y(2)+f (2) f (1)$

(2.2)

(2.3)

(2.4)

Also, do is the bare baryon propagator. This is a diago-
nal matrix with elements given by

d() (E)=(E—m()„) (2.5)

Ts'J1'= T~~+ gF' '(i)6; GF' ' (j)
I,J

X(l+gT1I~)+ g Fd (1)G5;2Md '(A, )GT2~,

where o, can be any of the baryons in the single baryon
space. We variously take this space to include just the
nucleon and delta or the nucleon, delta, and Roper.
However, we always restrict the baryon in the pion plus
baryon space to the nucleon and delta. In these equa-
tions, g is the vrB propagator. The driving term for the
vertex and propagator dressing is the one-particle irre-
ducible amplitude Tzz which is given by

TBB TBB+ TBBgTBB
(&) — (2) (2) (&)

Since we have now exposed all two-particle intermedi-
ate states, Eqs. (2.1)—(2.6) describe the rrB scattering pro-
cess in a manner consistent with two-body unitarity. By
taking the two-particle irreducible amplitudes from the
cloudy bag model we have the set of equations that was
examined in Ref. 15. To obtain three-body unitarity we
must continue until all three-body states have been ex-
posed.

As discussed in Ref. 17, in carrying out this procedure
we are forced to neglect the contribution from the
8~++8 vertex. This appears in the cloudy bag model
Lagrangian as a different time ordering of the contact di-
agram. Including diagrams of this type increases the
complexity of the resulting equations to the point where
it becomes dificult to find a convenient closed form for
the quasi-two-body scattering amplitudes. As pointed
out, ' it is possible to include the lowest order contribu-
tions of this vertex perturbatively. We do not attempt
this at this stage.

By neglecting contributions from 8~~+8 vertices,
Eq. (2.6) becomes

T(0) = T(1)+f(1)tdf (1)
BB BB (2.1)

(2.7)

Here f'" is the one-particle irreducible B~vrB vertex
function and d is the dressed baryon propagator. The
parenthesized superscript specifies the irreducibility of
the amplitude.

Since we take the ~B space to include mX and m.A, T~&
is a 2X2 matrix. The rank of the B~vrB vertex matrix f
depends on how many baryons are included in the B
space. For example, if we include X, 6, and Roper, then
f is a 3 X 2 matrix. In this case d will be a 3 X 3 matrix.

The dressed vertex function f ' " is given by

with

T)„'~ = g o)„;Fd ' (i)(1+gT1'1~)+ g 6)„~Md '(a)GT"~ .

(2.8)

Here the indices i and j run over the two pions (labeled 1

and 2) while A, and a run over the pions and the baryon
(the baryon is particle 3). The amplitude T"2I is the one-
particle irreducible amplitude for scattering from a state
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which is a bound or resonant state of two particles with
the third one spectating. We depart from usual spectator
notation in that for A, =1,2, A, specifies the interacting
pion while I,=3 represents the case of a ~m interaction
with a baryon spectator. The amplitude Fd '(i) is the
disconnected ~B—+mmB amplitude in which pion i in-
teracts with the baryon. It is given by

F"'(~)= g5;,d '(j)f"'(0,
J

(2.9)

where d (j) is the propagator of pion j. This amplitude
is illustrated in Fig. 1. Also in Eqs. (2.7) and (2.8) we
have the disconnected mmB~vr~8 amplitude Md '(a)
given by

FIG. 2. The disconnected m~B —+m~B amplitudes: (a)
M' '(i}and (b) M' '(3)

Md '(i)= g5;Jd„'(j)T~~~~(i),
J

M' '(3)=d 'T'"(3) .

(2.10)

(2.1 1)

The latter approach has the advantage of not requiring
the solution to the integral equations [Eqs. (2.7) and (2.8)]
for the fully off-shell amplitudes.

The coupled equations for the mB-m. mB system that we
proceed to solve in the following sections are given by
Eqs. (2.13)—(2.15).

Here, T"'(3) is the m m amplitude which we assume
satisfies an equation of the form

T(1)(3) T(2)( 3)+ T{2)(3)d d T(1)(3) (2.12)

where T' '(3) is the mm potential. The amplitude Md '(a)
is illustrated in Fig. 2. Finally, we note that 6 is the free
three-particle propagator.

As noted in Ref. 17, to solve for the full mB am. plitude
we can either solve Eqs. (2.7) and (2.8) for Tzz and then
use Eqs. (2.1)—(2.4) to obtain Tz~' or we can solve directly
for T~~ by solving the system of equations

T~~ = V~~(1+gT~~')+ g Fd '(t)G5(~Md '(A. )GTp~,

III. TWO-BODY INPUT

In order to perform calculations using the equations
summarized in Sec. II we must perform two major opera-
tions. First, we must write the equations for the case of
separable two-body input interactions. In the same step,
we symmetrize the equations with respect to the two
pions. This is necessary since in the original derivation
the pions were regarded as distinguishable. We have
presented this derivation in the Appendix. The second
task is to expand the matrix nature of the equations and

(2.13)

TPz =g 5&;Fd ' (i)(1+gT&z)+ g 5& Md '(a)GT'z,
(2.14)

with

f (2)td f(2)+ T(3)+ y F(2)(l)G5 F(2)'t(J) (2.15)

/
/r

Q

C3
/

/

Q

FIG. 1. The disconnected mB —+m~B amplitude, Fd '(i}. FIG. 3. The graphical equivalent of Eqs. (A6) and (A7}.
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perform a partial wave expansion. Since this is done in a
similar way to the mNN system we refer the interested
reader to Refs. 25 and 26.

The integral equations that we obtain are given in Eqs.
(A6) and (A7). They are depicted graphically in Fig. 3.
These equations include coupling of 1rB states (where the
B is dressed by the two-body input ~B interaction) to
states where one pion interacts with the baryon while the
other spectates (denoted mB*), and states where the two
pions interact and the baryon spectates (denoted pB).
The driving terms of the integral equations are the
baryon and pion exchange terms shown graphically in
Figs. 4 and 5. Their derivation is similar to that for
other three-body systems. '

We have now only to specify the two-body input to our
equations in order to complete the description of the cal-
culation. The two-body -input enters through the mB,
mB*, and Bp propagators ~z, ~ +, and ~ as well as

through the one-particle irreducible ~BB vertex function
f ' ". The derivation of the equations that we have
presented clearly indicates that the input arises as the
lower energy solution of the same equations such as that
presented in Ref. 15. However, the practical necessity to
use separable input means we need to find separable ap-
proximations to the nonpole potentials used in Ref. 15.
Since the crossed diagram is energy dependent we use the
modification of the Ernst, Shakin, and Thaler scheme
described in Ref. 23. Such a scheme allows a rank N ap-
proximation to the potential, that ensures the resulting t
matrix is exact at N selected energies.

We are now confronted with a small notational prob-
lem. We need to distinguish between the amplitudes that
are solutions of the full three-body equations and those
that are the approximate solution of the two-body equa-
tions that are used as input to the three-body calculation.
The convention we use is to place a bar over quantities
that are solutions of the two-body equations. Hence, T~~
becomes T, etc. (the BB subscript is unnecessary for the
two-body amplitudes since there is no coupling to m.B or
pB states).

By a slight generalization of the expansion method of
Ref. 23, it is possible to ensure that the separable expan-
sion for the P» channel preserves the renormalization re-
sults of Ref. 15, i.e., the ~NN coupling constant does not

pj, jp, tp

J, jp, tp

lk, k k

rL~, p rr

k I», k'

+~ ~ J a tcx Pr &p» &p

FIG. 5. The m exchange diagrams, Z ''p j(p,p';E).

change upon the replacement of T' ' by a separable ex-
pansion. We take our (partial wave expanded) separable
potential to be of the form

N
T~"'(E)= g T '(E;)lu;)&;, (E)~u, lT" (E, ) . (3.l)

(3.3)

Although the above procedure guarantees the half-oft'-
shell amplitude to be exact at select energies, there is no
such guarantee for the full-ofT'-shell amplitude. As a re-
sult, the separable expansion is not guaranteed to give the
renormalization in Ref. 15, and in particular, it does not
preserve the value of the vrNN coupling constant. This
results from the term T'"(mt')g(mt')f' ' lN) in the ex-
pression for f" (m&)lN) as given in Eq. (2.2). Here, we
observe that

To maintain the energy dependence of the original poten-
tial, T' '(E), we take for the strength t(, , (E), the solution
of the equation

N

(u lT' '(E)lu„&= y (u lT' '(E;)lu;)
i j=1

XX;,(E)& u, I
T (E ) I u„& .

(3.2)

In the case we are considering here we note that lu;)
must be a 2 X 1 matrix to account for the coupled mN and
~A channels. To guarantee that the separable expansion
Tz '(E) gives the same half-off-shell T matrix as the origi-
nal potential T' '(E) at selected energies E;, we need to
choose the functions lu; ) to be the scattering wa've func-
tion for the potential T' '(E) at the energies E, . In this
case the form factors of the separable approximation are

Lp, p'
T(1) f(2)t (T(2)+T(2) T(1)) f(2)t

T(2) (
J(2)'t+ T(1)f (2)t)

T(2)f (1)$ (3.4)

Hence by choosing one of the lu, &'s to be given as

FIG. 4. The baryon exchange diagram, Z;.@(p,p', E). lu; ) =g (m~)f'"
(m)v) lN ), (3.5)
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TABLE I. Form factor parameters for &rN input [see Eq. (3.7)].

Ijt (i)

Pl)(1)

P) I (2)

2
5

50
2
5

50
50
2
5

50

CNi p
(fmn +1/2)

0.1942
0.0235

—0.413 X 10
—0.3453
—0.0303

0.984X 10-"
—0.3044
—0.1137
—0.0192

0.810X 10

PNi p
(fm ')

2.626
5.260

31.22
2.619
5.407

30.02
2.704
1.497
3.345

21.79

1

3
5

1

3
5
7
1

3
5

2
5

50
2
5

50
50

2
5

50

Caip.
(fmn +1/2)

0.2199
0.0255

—0.644 X 10-'
—0.4044
—0.0372

0.512 X 10-'
—0.3044
—0.1333
—0.0157

0.825 X 10-'

3.006
5.706

31.72
2.271
5.115

31.50
2.704
1.911
4.438

32.49

we are guaranteed that

Ts")(m„)~u, &=T("(m~)~u, &

where

T' ttr(p, p', E)= g Pr(a, p)A) (E)gr(/3 p ) (3.10)

n 0', iL

P,'"(a;p)= g
u=) (I+p'/P' „)

(3.7)

where (T stands for the labels Ij t, i, and a (1jt specifies the
partial wave). The functions A, (E) are fitted by A,'~'(E)
where

g ljt CIjt
Aljt(E) )J + 'l +Eljt

E —B'J' F. —D'J'
Ij IJ

(3.8)

The parameters for these functions are given in Tables I
and II. We use a rank 2 approximation to the P» input
and rank 1 for the P33 We stress that these parameters
are not fitted to experimental data but to the functions re-
sulting from performing the expansion described above.

To summarize, the total potential in partial wave y is
then"

(2)
( )J(2) ( i)

Vr&(p, p', E)= T' '~ (,p', E)+
E —mo,

(3.9)

=T' '(m)v)g(m)v)f'" (m)v)~iV) . (3.6)

In this way f"' (mz) ~N ) retains its value when T' '(E)
is replaced by the separable approximation Ts '(E).

In practice we implement the above prescription by
calculating the form factors and A, functions and then
fitting them with suitable functions. To be precise, we fit
the form factors (p, ~a~T' 'J'(E;)~u;) (a=%, b, ) with
functions P,'.~'(a;p) of the form

The subscripts i and j run over the (arbitrary) rank of the
separable expansion. We have shown explicitly the ma-
trix nature of the potential using the labels a and P. The
label y is used both to specify the partial wave and the
corresponding baryon. In partial waves other than the
P» and P33 this reduces to just the nonpole part, T' '. In
this calculation, however, we have not included any m.X
channels other than the P» and P33 The scattering am-
plitude T' ' can now be calculated by iterating this two-
term, separable potential in a Lippmann-Schwinger equa-
tion. Similarly, the nonpole part of the amplitude, T"',
that is used to determine the dressing of the vertices in
the crossed diagram is obtained by solving the two-body
equations [Eq. (2.6)] for the potential, T' '.

The separable approximation to the nonpole potential
T' '(E) obtained in this way reproduces very well the
on-shell nonpole and total amplitudes obtained in Ref.
15. However, as noted in Ref. 15, the width is too nar-
row in the P33 channel. Hence, rather than propagate
this error in the form of a mA threshold that is too close
to the real axis, we choose to use a larger bare coupling
constant in the P33 input than that necessary to correctly
reproduce the nucleon pole in the P» channel. In the
P» channel we use f0=0.03196 and mo)v=1086 MeV
while in the P33 channel we have fo

=0.07 and

Rpg = 1475 MeV. The results of this expansion pro-
cedure are illustrated in Figs. 6 and 7. Figure 6 shows
the P&& phase shifts while Fig. 7 is the P33 In both cases,
(a) are the total phase shifts, the data being from the

TABLE II. A(E) parameters for nX input [see Eq. (3.8)].

—17.33
—10.71
—5.769
17.41

B
(MeV)

2660
2670
2798
1744

C;,

2.179
2.287
2.428
0

D;,
(MeV)

1502
1504
1515

—11.82
—7.565
—5.292
—3.112
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Karlsruhe-Helsinki phase shift analysis, while (b) are
the nonpole phase shifts with the solid curves showing
the results of the separable expansion and the dashed
curves showing the results of Ref. 15. The small
difFerence in the nonpole amplitudes is a reAection on the
quality of fit for the on-shell phases of our expansion,
while the total phases give an indication as to the accura-
cy of the expansion for the oA'-shell amplitude. In both
the P» an F33 channels it is clear from the results that
the separable expansion gives an accurate representation
of the ~X amplitude calculated in Ref. 15.

The ~B and m.B* propagators ~z and ~ + arise from
the pole and nonpole parts, respectively, of the vrB input
amplitude T' '. The resultant amplitude for the partial
wave y is given by

&y, lg(E)ly, &„

= g f "dp p'y, '(a,p)g (p;E)yr(a, p) .
0

(3.13)

Using Eq. (3.11) in Eq. (2.2) and expanding out the ma-
trix nature of the equation gives

f(1) (p E)—f(2) (p)

+ g P'(a;p)rg(E)

15. The matrix ~ describes the propagation of the ~B res-
onance 8* in the presence of a spectating pion. The ma-
trix &pr ~g(E) ~pr & is a square matrix of rank equal to the
rank of the expansion with elements given by

T'P'(p, p';E) = g P'(a, p)r'rj(E)P~'(P, p') . (3.1 1) X g j dp p PJ(y p )

r, '(E) =~, '(E) —&y'lg(E) ly'& (3.12)

with the propagator g being the same as that used in Ref.

I
]

I I I I
i

I

The matrix rz (which is actually the mB* propagator r „
corresponding to a B* in partial wave y) is given by

Xg, (p', E)f",~(p') . (3.14)

In this equation, the label /3 labels a baryon when appear-
ing as a subscript to f and the corresponding B' channel
when labeling P and r.

For the ~B channels we need to define the diagonal
matrix ~~. This arises from the pole part of the ampli-
tude obtained by iterating the potential of Eq. (3.9).

30

150
I I

[
I I t I

[
I I I I

i
I f I

100

I » & i I I I I I I ~ I I

50

80 0

60

20

20

e 15
cf

10

100 200 300
T (MeV)

FIG. 6. The two-body input in the P» channel. The total
phase shifts are shown in (a) while the nonpole are in (b). The
data in (a) are from Ref. 27 while the dashed curve in (b) comes
from the calculation of Ref. 15.
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From Eq. (A2) we know that ~z is just the dressed baryon
propagator in the presence of another pion. Hence we
have the elements of ~~ given by

C

(fm'+ ' (fm ')
mo

(meV)

TABLE III. The parameters for the m~ input (from Ref. 28).

r (E)=[E—mo —X"'(E)] (0,0)
(1,1)

0.9051
0.3430

1.916
2.336

896.8
811.7

—g I dpp'f."p.(p)gp(p &)
0

Xf "p (p; E) (3.15)

with the function f"' given by Eq. (3.14). From Ref. 15
we know that Eq. (3.15) for a=N can be written in the
form

Z2E

(+ ™N)[ (+ mN)Z2N~2N(+)]
(3.16)

&'"(3)( 'E)= (p) (p')
—mo

(3.17)

with the form factor [which also appears in the crossed
diagram; see Eqs. (A13) and (2.9)] given by

where X2& arises from an expansion of the form given in
Ref. 15. Hence, rz(E —e~(p)} has residue Z2~ at the
mN on-shell pole [the energy function e~(p) is defined
later in Eq. (3.21)]. Since 7~(E —e~(p) ) plays the role of
a ~N propagator in the integral equation of Eq. (A6), the
factor of Z2& must be taken into account when extracting
the phase shift and inelasticity from the amplitude Xzz.

The ~B-~~B equations we have presented include cou-
pling to channels in which the two pions interact while
the nucleon or delta is a spectator (see Fig. 5). This is in-
cluded via the m~ amplitude that first appears in Eq.
(2.11). In principle, this amplitude can be obtained by
iterating the ~m interaction present in the cloudy bag
model Lagrangian in a Lippmann-Schwinger equation.
For this calculation, however, we choose to use instead a
phenomenological fit to the ~m scattering data. This en-
sures that we correctly include the thresholds generated
by the ~mresonance. s in the (t, j)=(0,0) and (1,1) chan-
nels. The effects of using the cloudy bag model descrip-
tion of the m~ interaction can be studied at a later date.
Johnstone and Lee use a similar approach in their study
of the importance of mm correlations in mN scattering,
and we use their ~m parametrization here. The potential
T' '(3) that we use in Eq. (2.12) is

e (p)=(p +m )' +(p +m )' —m

e +(p)=(p +m )' +(p +m ~ )' —m

e (p)=(p +m )' +[p +(2m ) ]' —2m

(3.21a)

(3.21b)

(3.21c)

For the p channels, the a labels the spectating baryon.
If the B* has the same quantum numbers as a baryon
channel B, then we take m + to be the mass of that
baryon. Otherwise we take m + =m&+ m . This choice
ensures that the thresholds appear at the correct energies.

The numerical solution of three-body equations has by
now become routine. The main difhculty that arises is to
ensure that all singularities of the kernel are avoided. We
use the technique of contour deformation to avoid these
singularities, with the contour shown in Fig. 8. The con-
tour must eventually return to the real axis. This restric-
tion is caused by the Bessel functions that appear in the
contact term which would oscillate wildly if the imagi-
nary part of the integration momentum extended to
infinity.

The parameters for the (tj )=(0,0) and (1,1) resonances
are listed in Table III. The phase shifts for these parame-
trizations can be seen in Ref. 28.

The function ~ appears in the three-body equations,
Eq. (A6) in conjunction with a B propagator d [see Eq.
(2.11)]. Hence the r appearing in Eq. (A6) is actually a
block diagonal matrix with one element corresponding to
pX propagation and the other to pA.

Each of the ~ functions appearing in Eq. (A6) has an
energy argument of the form E —ei(p) where E is the
three-body c.m. energy and p is the integration momen-
tum. With the choice of relativistic kinematics that we
use, the subsystem energy ei (p) is defined by

gp J

P (1+ 2ZP2)J+1(p) = (3.18)

With this separable potential the one-particle irreducibie
~m amplitude is easily found to be

T"'(3)(p,p', E)=f (p)~p(E)fp(p'), (3.19) imz

with

fp(p)
~ (E)= E —mo —I dpp (3.20)

FIG. 8. The contour of integration.
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IV. RENORMALIZATION

In this section we discuss the renormalization pro-
cedure. Although this has been discussed thoroughly in
Ref. 15 for the two-body equations, there are some
subtleties specific to the three-body equations.
Specifically, care must be taken since we have two
different levels of baryon dressing. A single baryon —the
baryon appearing in the pole diagram —is dressed by
solving the three-body equations. It will receive dressing
from diagrams like that shown in Fig. 9 (although we ex-
pect such contributions to be small). On the other hand,
the baryon in a ~B intermediate state will not receive
dressing from such contributions. Its dressing is deter-
mined by the separable approximation to the low energy
solution discussed in the preceding section.

We will discuss here only the case when the Roper is
excluded from the single baryon space. Including the
Roper simply means we must follow the procedure out-
lined in Ref. 15 in order to diagonalize the dressed single
baryon propagator.

The renormalization procedure is driven by requiring
that the scattering amplitude have a pole at the physical
nucleon mass and that the residue at that pole reproduce
the physical mNN coupling co. nstant. From Eqs. (2.1),
(2.3), and (A5), the requirement that there be a pole in the
P» partial wave of X~~ at the physical nucleon mass sim-

ply means

d '(mz)=do '(m~) —X'"(mz)=0, (4.1)

or
(&)m ON mN ~NÃ (4.2)

The residue of the dressed baryon propagator at this pole
Is Z2N where

On the real axis we must avoid the on-shell momentum

po and logarithmic singularities arising from the m~X
and ~md thresholds, which are always at smaller momen-
ta than po. Away from the real axis the most restrictive
singularity is a square-root branch point from the half-
on-shell ~-exchange amplitude at po —im . As illustrat-
ed in Fig. 8, the contour we choose avoids all of these.
We find it necessary to use a total of 36 Gaussian quadra-
tures distributed along this contour.

a
N (4.3)

To extract the renormalized coupling constant, we must
put the external legs of the ~X—+vrX amplitude on shell
and take the residue at the nucleon pole. However, when
we put the external legs on shell we gain a factor of Z2N
coming from the ~B propagator. That is, we have
different baryon renormalization constants coming from
the single baryon propagator and the ~B propagator
since the degree of renormalization is different in each
case. Hence the relationship between the renormalized
coupling constant f"z~ and the bare coupling constant
f0 that enters into the pole diagram is'

."xiv(po m~)

~ex po
(4.4)

Here po is the (imaginary) on-shell momentum at the nu-
cleon pole, R is the bag radius and u (poR) is the bag ver-
tex function. Since X'" is proportional to fo, this can be
solved to find the value of fo that gives f++=0.08.
Then Eq. (4.2) can be used to determine the bare nucleon
mass.

When a Roper pole diagram is included we must diago-
nalize the baryon propagator using the procedure out-
lined in Ref. 15. In this case, we add the constraint that
the P» phase shifts go through 90' at the Roper reso-
nance energy in order to fix the bare Roper mass.

V. DISCUSSION AND RESULTS

We are now in a position to begin calculations of the
m.X amplitudes at energies above the pion production
threshold. At this stage, our interest is primarily in the
P» channel in the region of the Roper resonance. From
the Reuiew of Particle Properties the important decay
modes of the Roper are ~N (50—70%), ~A (10—20%),
pN (10—15 %), and (arm)&N (5—20%) All .of these
thresholds are included in our calculation. However, if
we include a bare Roper pole diagram then we are miss-
ing some of the contribution for decay to pN and (rrrr)&N
since we do not have a direct vertex for R~pN or
R +nrrN. In sum—mary, the set of coupled equations we
solve are Fqs. (A6). The driving terms are given by Eqs.
(A12) and (A13) with the two-body input described in
Sec. III.

When including the pole, crossed, and contact dia-

FIG. 9. A diagram that contributes to baryon dressing in sin-

gle baryon states but not in m.8 states. FICs. 10. A diagram that dresses the contact diagram.
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grams through Eq. (A12) we must give some considera-
tion to the value we choose for their strengths. We ex-
pect that, at low energies, this calculation will be an ex-
tension of the two-body calculation reported in Ref. 15.
However, in that case the residue of the ~B propagator at
the on-shell pole was unity while now it is Zz, a conse-
quence of dressing the baryon in the ~B intermediate
state. This means we must examine the strengths of the

diagrams to ensure we are being consistent. For the case
of the crossed diagram, the extra factor is just what is
needed to ensure that the vertices reproduce the experi-
mental coupling constant. Since in Ref. 15 we used this
criterion when setting the strengths of these vertices, we
have ensured consistency in the crossed diagram. Simi-
larly, the strength of the pole diagram is fixed in both
cases by insisting that the residue at the nucleon pole
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FIG. 11. Results for the P» phase shifts (a), inelasticity (b),
and Argand diagram (c) with no bare Roper diagram. All
curves have f = 80 MeV. The solid curve has R = l fm, the
dashed has R=0.9 fm, and the dash-dotted curve has R=0.8
fm. The data are from Ref. 27.

FIG. 12. Results for the P» phase shifts (a), inelasticity (b),
and Argand diagram (c) with no bare Roper diagram. All
curves have R= I fm. The solid curve has f =90 MeV, the
dashed has f =80 MeV, and the dash-dotted curve has f =70
MeV. The data are from Ref. 27.
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TABLE IV. Three-body channels included in the P» calculation.

Channel

No.
Two-body

interaction Spectator

N

N

reproduce the physical coupling constant. However, the
effective strength of the contact diagram in this case is a
factor of Z2 different than in Ref. 15. Hence we would
need to increase the bare contact diagram by Zz~ in or-
der to maintain consistency with the previous calculation.
This translates to using f =80 MeV in the contact dia-
gram instead of f =90 MeV. However, we observe that
the single scattering term Zz~ ~z Z~ z includes a con-
tribution from the diagram in Fig. 10 which dresses the
bare contact diagram. Hence we consider the strength of
the bare contact diagram, 1/f, as a parameter. Howev-
er, we note that the best results were achieved using
f —80 which suggests that the renormalization due to
Fig. 10 is small. We note that f and the bag radius R
are the only two parameters in the calculation.

In order to see if the Roper resonance can be described
simply by the coupling to the inelastic channels, we begin
by examining the results in the P& I channel in the absence
of any bare Roper pole diagram. The eight coupled
channels included in the calculation are listed in Table
IV. In Fig. 11 we show the results for a range of the bag
radius parameter R with the strength of the contact dia-
gram fixed by f =80 MeV. The solid curve has R = 1

fm, the dashed curve has 8 =0.9 fm, and the dash-dotted
curve has R =0.8 fm. The effect of varying f can be
seen in Fig. 12. Here R is set to 1 fm while the solid
curve has f =90 MeV, the dashed curve has f =80
MeV, and the dash-dotted curve has f =70 MeV. The
strange structure of the phase shifts when the radius is
decreased and when the strength of the contact diagram
is increased becomes less puzzling if one looks at the Ar-
gand diagrams. Here we see that there is a gradual
widening of the loop until it almost encircles the point

TABLE V. Renormalization results with no bare Roper dia-
gram.

(0,—,
' ). Hence we see that strong resonance behavior is ex-

hibited for a small bag radius or for a strong contact dia-
gram. However, this behavior is not in good quantitative
agreement with the data.

The bare aNN coupling constant, bare nucleon mass,
and nucleon wave function normalization determined
from the renormalization procedure are tabulated in
Table V for each case discussed above.

Although the calculation does not produce good quan-
titative agreement with the experimental data, the quali-
tative features are rather interesting. Firstly we note
from Fig. 12 that the contact diagram is capable of pro-
ducing a very strong and narrow resonance. Since this
resonance occurs just above the ~A threshold we suspect
that the contact diagram may be producing a narrow ~A
resonance. Also we notice that we have the correct
mechanisms necessary to explain the dip in the inelastici-
ty that corresponds to the opening of the ~~X threshold
at T] b

= 170 MeV. We observe that this structure is sen-
sitive to the bag radius and prefers a larger radius.

We now consider the effects of including a bare Roper
pole diagram. We can include the Roper using either the
[56] representation in which the spatial part of the wave
function is totally symmetric, or using the [70] represen-
tation corresponding to a spatial wave function of mixed
symmetry. We now add to the renormalization pro-
cedure the constraint that the PI I phase shifts go through
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FIG. 13. The region of parameter space in which all renor-
malization constraints cannot be satisfied (shaded regions) when
the Roper is included in the (a) [56] and (b) [70] representations.
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90' at the Roper resonance energy. Hence we are now
placing three constraints on the amplitude in the P&&

channel. These are (a) there must be a pole at the nu-
cleon mass, (b) the residue at that pole must give the
physical md% coupling constant, and (c) there must be a
resonance at the Roper resonance (although the width is
not constrained). Perhaps not surprisingly, we find that
there are some values of the parameters R and f where
it is impossible to satisfy all of these constraints. In Fig.
13 we show the region of parameter space in which all
these constraints can be satisfied (the unshaded regions
C) for the case of the [56] [Fig. 13(a)] and [70] [Fig. 13(b)]
representations. For parameters in the shaded region 3,
it is impossible to find a value of the bare coupling con-
stant that will reproduce the physical value of
f zz =0.08 for any value of the bare Roper mass. In re-
gion B, this can be achieved but it is not possible to find a
value for the bare Roper mass that will produce a reso-
nance at the right energy. The constraint that there must
be a resonance at the Roper position effectively screens
out values of the parameters that produce phase shifts
that bear little resemblance to experiment. As we can
see, using the [70] representation constrains the parame-
ters much more than does the [56] representation.

In Figs. 14 and 15 we show the P]& results when the

[56] representation of the Roper is used, for a fixed value
off and a range of bag radii (Fig. 14) and for a fixed bag
radius and two values of f„(Fig. 15). The values of the
bare masses and coupling constants are given in Table VI.
Figure 14 has f fixed at 90 MeV with R=1.0 fm (solid
curve), R=0.9 fm (dashed curve), and R=0.8 fm (dash-
dotted curve). These curves show that the width of the
Roper is somewhat sensitive to the bag radius, preferring
a larger radius. We also note that the phase shifts contin-
ue to rise after passing through 90 and actually continue
through 180'. En Fig. 15 we have the results for a bag ra-
dius of 1 fm with f„=90MeV (solid curve) and f =80
MeV (dashed curve). Up to a lab energy of around 600
MeV, the calculation with f =80 MeV shows reasonable
agreement with the Karlsruhe-Helsinki phase shift
analysis, but at higher energy there is a significant
disagreement, with the phase shifts again going through
180'.

We now explore the consequences of using the [70] rep-
resentation of the Roper. As noted, we are now more re-
stricted in the ranges of the two parameters [see Fig.
13(b)]. We show in Fig. 16 the results for R =0.8 fm with

f =90 MeV (solid curve) and f =85 MeV (dashed
curve). We had expected that the [70] representation
would give a larger width to the resonance which is
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FIG. 15. P» results when a bare Roper is included using the
[56] representation and R= 1 fm. The solid curve has f =90
MeV and the dashed curve has f =80 MeV. The data are from
Ref. 27.
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indeed borne out by these calculations (compare the solid
curve of Fig. 16 with the dash-dotted curve of Fig. 14).
However, in the case of the [70] calculation, we are un-
able to find a value of the bare Roper mass that gives a
resonance at the correct energy for a large bag radius. At
the smaller bag radii, the inelasticity in the vicinity of the
Roper is poorly reproduced.

To illustrate the effect of dropping our insistence that
there be a resonance at the Roper energy, we show in Fig.
17 a calculation using the [70] representation with R= 1

fm and f =80 MeV. Here we use a "reasonable" value
of 1600 MeV for the bare Roper mass. The other bare
values are given in Table VI. This explains why it was
not possible to find a value of the bare Roper mass that
would force the phase shifts through 90' at the Roper res-
onance. The reason is that, for these values of R and f„
the Argand diagram loops too strongly and never crosses
the imaginary axis.

Part of the motivation for this project was to see if the
Roper resonance could be reproduced without actually
having a bare Roper three-quark state. That is, we want-
ed to see if the nearby ~mN, aA, and pX thresholds and

the strength of the ~X interaction could combine to pro-
duce the observed resonant behavior. For this purpose
the model we have solved contains all the important in-
gredients. Specifically, it has all of the above-mentioned
thresholds (included via the exchange diagrams of Figs. 4
and 5) and the low energy behavior has been shown to be
good. ' As we have seen, resonant behavior is possible al-
though not in detailed agreement with the data. If this
then means that a bare Roper three-quark state is needed
then our calculation is missing one ingredient. That is
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FIG. 17. Case where the P» phase shifts do not go through
90' despite having a bare [70) Roper pole term. f =80 meV
and R=1 fm.
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TABLE VI. Renormalization results with the bare Roper diagram included.

Roper
type

[56]
[56]
[56]
[56]
[70]
[70]
[56]'
[70]

R
(fm)

1.0
1.0
0.9
0.8
0.8
0.8
1.0
1.0

(Mev)

90
80
90
90
90
85
80
80

0.049 22
0.040 71
0.043 75
0.040 16
0.040 06
0.033 97
0.041 71
0.042 19

~ox
(MeV)

1115.7
1111~ 3
1202.6
1437.5
1369.4
1390.8
1115.8
1109.6

Z2N

0.6965
0.6705
0.5955
0.4117
0.4493
0.3898
0.6664
0.6793

mop
(MeV)

1580.1
1639.8
1576.7
1527.0
1704.3
1811.9
1589.4
1600.0

'No coupling to m.~ channels.
Not constrained to give resonance.

the ability for the Roper bag to decay directly to pN and
(~rr)z¹ This would be included if we were able to in-
clude the B~~mB vertex and deserves further investiga-
tion.

It is interesting to consider the relative importance of
the mm interaction to the calculation. In Fig. 18 we show
the effects of neglecting the mm channels for R = 1 fm and

f =80 MeV and using the [56] representation. That is,
we only include channels I —5 from Table IV. The solid
curve includes the ~m channels while in the dashed curve
they are omitted. Clearly the effect on the phase shifts is
minimal while the inelasticity is affected dramatically.

VI. CONCLUSION
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FIG. 18. P» results with (solid curve) and without (dashed
curve) the nn channels. f„=80MeV and A=1 fm and a bare
[56] Roper pole.

In this paper we have presented the details of a scheme
for calculating the pion-nucleon scattering amplitudes
from the cloudy bag model Lagrangian (or any similar
chiral Lagrangian). This scheme is in the form of a set of
coupled integral equations (derived in Ref. 17) whose in-
put is specified by the given Lagrangian. The resultant
amplitude in the P» channel has the correct position for
the nucleon pole, and the value of the residue at this pole,
i.e., the m.XN coupling constant. This same amplitude
also satisfies two- and three-body unitarity. This implies
that we have included the thresholds for the reactions
~X~~mX, pX, and ~h. To the best of our knowledge,
this is the erst calculation that achieves these three goals.
In the development of these equations, the basic interac-
tions are taken from some Lagrangian. In our case we
have used the version of the cloudy bag model Lagrang-
ian in which the pions interact throughout the bag
volume. " However, to keep the equations manage-
able, we have made a number of approximations. (i) We
have neglected contributions from the Lagrangian that
change the number of pions by two or more. Such con-
tributions could be included in perturbation theory.
Neglecting these terms means that the interactions we
use are the B~m.B vertex and the ~B~mB contact term.
This also implies that on inclusion of the Roper as a radi-
ally excited three-quark state, we do not allow this Roper
bag state to decay directly into a pN and (mm )sN. (ii) We
have assumed that the original chiral Lagrangian at the
quark level can be truncated to include only the lowest
order terms in the pion field. This approximation, which
was implemented to get the cloudy bag model, is valid for
large bag radii (R = 1 fm), where the multipion contribu-
tion to the physical nucleon is negligible. (iii) Since the
bare masses and coupling constant are set by the renor-
malization procedure, the only two parameters in the cal-
culation are the bag radius and the strength of the con-
tact diagram (proportional to f ). We have used the
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APPENDIX: SEPARABLE INTERACTIONS
AND SYMMETRIZATION

For practical applications, we must write the three-
body equations of Sec. II [see Eqs. (2.13)—(2.15)] for the
case of separable two-body interactions. The technique
for doing this is similar to that used for the ~NX equa-
tions. ' ' We begin by writing the 3~3 amplitudes,
Md '(A, ) in separable form as

I„'"(~)= i~-.B*
& (Ala)

(A lb)

bag radius as a parameter in the present calculation. As
for the strength of the contact term, it should, after re-
normalization, be the pion decay constant for chiral sym-
metry to be satisfied. However, the solution of the cou-
pled equations contributes to the renormalization, and at
this stage it is difticult to determine the contribution from
this renormalization. We therefore were forced to treat
the strength of the contact term as a parameter.

In the present investigation we have considered the
possibility of including in our calculation a radially excit-
ed three-quark state (the bare Roper bag), or not includ-
ing any such state. In this way we hoped to determine if
the N*(1470) has a three-quark component. In general,
we find we have better agreement with the experimental
phase shifts in the absence of a bare Roper bag. This is
the case when we include either the symmetric [56] repre-
sentation, or the mixed symmetry [70] representation. In
particular, we find that the inclusion of the bare Roper
bag causes the P» phase shifts to go through 180. This
is inconsistent with the observed data, suggesting that the
N'(1470) is predominantly due to dynamic effects, and
has little contribution from a bare Roper bag. Our con-
clusion is supported by the fact that all attempts at in-
cluding the bare Roper bag into the calculation of the P

& &

phase shifts lead to rapid changes in the phases in the vi-
cinity of the resonance which indicates that the width of
a Roper bag would be too small as compared to the ob-
served width. The suggestion that we should include
both the [56] and [70] representation does not overcome
this problem. In fact, if anything, it would make things
worse, since the coupling between the two resonances has
the effect of reducing the width of the [56] representation
even further, thus making the discrepancy between
theory and experiment larger. One possible solution to
the question of the role of a radially excited three-quark
bag is to associate this state with the N*(1720).

Finally, if we take into consideration the fact that we
have truncated our Lagrangian to the extent of including
only the lowest order terms in the pion field, not included
the q —+qm~ coupling in the Lagrangian, and the fact
that the cloudy bag model is the simplest of the chiral
bag models, the agreement between theory and experi-
ment is remarkably good. Also we note that we repro-
duce at one end of the energy scale, both the nucleon pole
position and its residue, while at the other end of the
scale we reproduce the thresholds for pion, 6, and p pro-
duction, without having a parameter search.

Here, j is used to denote the pion other than pion j.
We denote a mB subinteraction by B and a ~m interac-
tion by p. Separable subinteractions of arbitrary rank are
possible by letting the form factors and ~ functions above
be matrices. If the B* subinteraction is to be rank X +

and B =N, b„ then ivr B *-&. w. ill be a 2XN, matrix and

+ will be a N „XN ~ matrix. From Eq. (2.11) we see

that Md '(3) must be a 2 X 2 matrix due to the spectating
baryon. Hence, if the rank of the ~m. interaction is X
then ~pB & will be a 2X2N matrix and r will be a block
diagonal 2' X 2N'p matrix, the two diagonal blocks cor-
responding, respectively, to an X and 6 spectator.
We also introduce plane wave bases for the ~,8 system
that are eigenstates of the mB propagator, i.e.,

gi~, B&=r, i~, B& .

These must satisfy the completeness relation

pl~, B&&~,Bi=i .

(A2)

(A3)

Note that both r~ and im, B & are 2X2 diagonal matrices.
The physical wave functions are defined by symmetrizing
with respect to interchange of pion labels. That is,

l
B &'= - ( I,B &+ i,B & ),

2
(A48)

i~B* &
= —( ~,Bf &+~~B f & ),

2

ipB& =ipB& .

(A4b)

(A4c)

1
(&~,B,* iGZ',",'i~B &'+ &~,B*, iGTI", i~B &'),

2

(A5b)

(A5c)

Here we observe that the X amplitudes are matrices,
and their dimensions are dependent on the rank of the se-
parable input amplitudes. For example, if we take
B =X,4, then Xzz is always a 2X2 matrix, while X +

is an X + X2 matrix, where X + is the rank of the B*

subamplitude. If we use these expressions in Eqs. (2.13)
and (2.14) then after some algebra we have

BB BB BB B BB +r ++ + + Bprp pB

—Z g +Z g ~~X~~

+Z g, gr gX g, +Z pre~,B p

pg g pg g +JAN ~ Q 7 QXp8

(A6a)

(A6b)

(A6c)

The physical amplitudes can then be written down by
taking matrix elements of the T' ' amplitudes with
respect to these wave functions. We define

(A5a)
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In the above we have Taa' —,' X—Taa(V» (Alo)

vaa —
&

m.B~ Vaa ~vrB) (A7)

Expressions for the Z functions are given at the end of
this appendix. Some care is needed in evaluating the
right-hand side of Eq. (A7). In deriving our equations,
while we have been careful to explicitly show which pion
is being absorbed in the disconnected mmB~~B ampli-
tudes, Fd, we have made no such distinction for the
nB~B amplitudes, f. This is fine at the two-body level
when there is no necessity for such a distinction but in
the three-body equations we must be more careful. This
deficiency can be easily remedied by defining the f's that
appear as the pole diagram's vertices to be the symmetric
combination

f(2) — [f(2)( 1 ) +f (2)(2 ) ]
1

v'2 (AS)

= &7riB~f (1) . (A9)

The last line follows from the indistinguishability of the
plons.

We also must take care when taking symmetric matrix
elements of the three-particle irreducible amplitude Tzz.
When this amplitude was introduced into the equations,
we had only one pion in the initial and final state and it
was not necessary to associate a label with the pion.
However, now that we find it necessary to introduce par-
ticle labels in the evaluation of matrix elements, we need
to guarantee that T~~' is a symmetric operator in our
basis, i.e.,

where we have now explicitly indicated the pion taking
part in the interaction in parentheses. Hence we find that

&vrB~f' '= —'[&vr, B~f' '(1)+ &~,8~f' '(2)]

where Taa'(ij) is the amPlitude for absorbing Pion i and
emitting pion j. Hence we have

&nB~Ta'a'~~8 & =&sr,B~Ta'a'( 1)~ni

Putting this all together we can write

vaa = &vr, 8~f '(1)dof' '(1)~vriB &

+ & ~iBI T,",'( I l ) l~iB &+Z„.
In this equation, Z~z is given by

& ~8
~ g 5; F' '(i)GFd 't(j)~vrB &

Ep J
= &7r,B~F' '(2)GF' 't(1)~7728 & .

Also we have

(A 1 1)

(A12)

(A13a)

Z...=&~,82 ~GF„""(1)~~,8 &,

Z„.= & ~,B~F„"'(2)G~~,B *, &,

z,...= &~,82 ~G~~,B*, &,

Za =v'2& m, B~F„'"(2) G~ pB &,

Z, . =&a&~,B,*~G~pB&,

Z„=v'Z& pB~GF,""(1)~~,8 &,

Z, .=~Z&pBIGI,B*, & .

(A13b)

(A13c)

(A13d)

(A13e)

(A13f)

(A13g)

(A 1311)

In Eqs. (A6), (A12), and (A13) we now have a set of
correctly symmetrized equations for separable input in-
teractions.
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