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Giant resonances at complex excitation energies

J. R. Shepard, D. S. Oakley, and R. J. Peterson
University of Colorado, Boulder, Colorado 80309

(Received 14 July 1989)

We discuss the continuum response of finite nuclei in the giant resonance region in the context of
a nonspectral random-phase approximation which straightforwardly includes correct continuum
boundary conditions. Strongly collective discrete low-energy excitations of the nucleus are associat-
ed with poles with large residues in the random phase approximation particle-hole propagator at
real excitation energies. Giant resonances, by comparison, are associated with similar poles at com-
plex excitation energies where the imaginary part of the pole position corresponds to the escape
width of the excitation. We illustrate these points with calculations of the isoscalar quadrupole
response in Ca. Here giant resonances are readily identified as sharp peaks in the particle-hole
propagator in the complex excitation energy plane and the relation of the peaks to the continuum
response (for real excitation energies) is demonstrated. Our numerical method allows extraction of
transition densities for the giant resonances with continuum effects automatically included and
these are used to compute (e, e') and (m, m') responses; illustrative comparisons with data are made.

I. INTRODUCTION

Collective excitations are familiar nuclear phenomena.
Strong, low-lying quadrupole and octupole excitations
are observed in nearly all nuclei and such excitations are
well described by microscopic many-body theories such
as the random-phase approximation (RPA). Similar col-
lective phenomena are seen in the nuclear continuum in
the form of giant resonances which appear in experimen-
tal spectra as broad and systematic features above some
smoother background. Continuum excitations pose spe-
cial problems both experimenta11y and theoretically.
Apart from complications involving the separation of
various multipoles of the nuclear response, empirical in-
formation about giant resonances must be extracted from
the broad peaks after subtraction of the background.
Theoretical treatments are complicated by the necessity
of including the dynamics of the continuum correctly.
For example, while correct treatment 'of continuum
boundary conditions is not likely to be a problem in the
one-particle-one-hole (p-h) RPA description of discrete
low-lying states, these boundary conditions are essential
for a proper description of the escape widths of resonant
excitations. Passing from the discrete-basis RPA to a full
continuum RPA (especially when finite-range nucleon-
nucleon interactions are employed) requires fundamental
changes in the calculational approach. Furthermore, in
the discrete approach, the nuclear response is built up
from nonoverlapping contributions of individual excita-
tions whose own response is readily factored into prod-
ucts of transition densities. These in turn can be used in
standard reaction codes to generate the observables of
scattering processes. In contrast, for continuum calcula-
tions, various resonances overlap and a smooth back-
ground is present which does not allow, in any obvious
way, the useful factorization possible in the discrete case.
This means that it is not obvious even how precisely to

define a giant resonance; for example, we cannot readily
identify its transition density in the same way as for a
discrete excitation.

In this paper, we examine the continuum RPA p-h
propagator (or polarization insertion) for Ca based on a
relativistic quantum hadrodynamic (QHD-1) mean-field-
theory (MFT) ground state. The p-h propagator is evalu-
ated for complex excitation energies, ~, and giant reso-
nance contributions to the nuclear response are identified
with poles in the p-h propagator in the complex cu plane.
This picture provides a clear theoretical working
definition of what a giant resonance is and permits direct
extraction of a transition density for the giant resonance
even when continuum effects contributing to the escape
width are included. Although the calculations to be de-
scribed below are based on a relativistic model of nuclear
structure, the points we wish to stress are quite general
and apply to any continuum-RPA treatment. Further-
more, while we restrict our attention to 1p-lh RPA, the
picture of the nuclear response that emerges shows how
2p-2h contributions may be readily included in an ap-
proximate way.

II. NONSPKCTRAL DIRAC RPA

QHD-1 (Ref. 1) is a relativistic field-theoretic model of
nuclear dynamics based on the interaction of a nucleon
field with an attractive scalar-isoscalar o.-meson field and
a repulsive vector-isoscalar co-meson field. The mean-
field approximation in this model has been shown to pro-
vide a good description of the properties of the ground
states of doubly magic nuclei with few free parameters.
A random-phase-approximation (RPA) calculation based
on this mean-field theory (MFT) has recently been
developed for the description of 1p-1h excitations in
the doubly magic nuclei. These RPA calculations give
rise to exactly conserved transition currents as well as an
exact treatment of spuriosity in 1 T=0 excitations.
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MF 0 0 MF MF (2.1)

where the MFT propagator GMF is expressed in terms of
the free propagator Go and the self-consistent MFT self-
energy, XM„. The quantity GM„has (at least) two entire-
ly equivalent forms. The more familiar is the "spectral"
representation:

(2.2)

They also account quite well for low-lying collective exci-
tations and can also give a reasonable description of
the electron scattering Coulomb response in the quasi-
elastic region. ' ' The calculations of Blunden and
McCorquodale, which include isovector meson fields
and exchange contributions, account quite well for all of
the levels in ' C up to the 16.1 MeV 2+ T= 1 state.

A variety of numerical techniques have been employed
to solve the QHD-1 RPA and we now focus on the so-
called "nonspectral" method ' ' in which the correct
continuum boundary conditions may straightforwardly
be included. A schematic discussion of this method be-
gins with the single-particle propagator (or Green func-
tion) of the MFT:

V p(x)V p(y)
IIMF(x, y;co)=-

& p) o CO CO~p+ l'g

V~ (x)V& (y)
CO+ CO~p

(2.6)

V yoV'tyo (2.7)

Evidently, HM„has poles at the unperturbed p-h excita-
tion energies and the residue at these poles is the outer
product of the associated transition densities. Note that
the lp-lh matrix element of a one-body operator 8 is

( 8),„=Jd'r Tr[8(r )Vph(r) ]= (f ~ 8~ gq ) .

The RPA is embodied in the schematic integral rela-
tion

where co p
=—e —ep and the single-particle transition den-

sities are defined by

V &(x)=f&(x)1t (x)

and

where
H,„=H „+H „SCH,„, (2.8)

6(ez eF+ ) B(~—F F&)—
Gp(co) = . +

~—Ep+ 1 g CO
—

Gp
—I'g

(2.3)

and where f& is an eigenfunction with eigenvalue e& of
the single-particle Dirac equation containing the poten-
tial XM„. The Fermi energy e~ is the eigenvalue of the
highest-energy occupied orbital. As is evident from Eqs.
(2.2) and (2.3), GMp has poles at the eigenenergies and
residues equal to the outer product of the associated
eigenfunctions. GMF may also be expressed in nonspec-
tral form

where P„(co) and g„(co) satisfy the same Dirac equation
as the g& but with e&~co and where f„ is regular at the
origin while g, is regular at large distances. The non-
spectral form of GMF provides a practical method for
proper treatment of the continuum (or continua —for
both positive and negative energies —in the present QHD
case) which is not feasible using the spectral expression.

The particle-hole propagator for the MFT ground state
is defined schematically as

GM„(x,y;co)= g [g„.& (x;co)1t, .&. (y;co)L9(y —x)
ljm

+P, &(x;co)g„.
&

(.y; co)8(x —y) ],
(2.4)

S@(co)= ——Im Tr[8IIRp~(co)8] . (2.9)

where HRpA is the correlated RPA particle-hole propaga-
tor and E is the interaction kernel which depends on the
meson masses and meson-nucleon-nucleon coupling con-
stants. Using the spectral form of HMF, the integral
equation for HRpA becomes the familiar pair of matrix ei-
genvalue equations [see, e.g. , Eq. (4.5) of Ref. 4]. Quite
generally, we can express HRpA in the Lehmann represen-
tation" and the result has the same form as Eq. (2.6) ex-
cept co &~co„and V &

—+ 2 "' where n labels the nth RPA
phonon. In Ref. 4 the integral form of the RPA equation
is solved directly, and low-lying discrete excitations are
identified as singularities in HRpA at co=m„, real. The
residues at these poles are obtained numerically and the
associated RPA transition density 9'"' can then be ex-
tracted. The transition densities then yield matrix ele-
ments of one-body operators and observables for process-
es like inelastic electron scattering. Comparison of exci-
tation energies and electron-scattering form factors com-
puted in large-basis spectral RPA calculations ' with cal-
culations using the nonspectral method shows that the
two methods are essentially equivalent for discrete excita-
tions.

The linear response of a nucleus to a probe whose in-
teraction vertex with a nucleon is represented by the
operator 8 is expressed quite generally in terms of IIRpp
via

dt's

H FM(M)
= I GMP(&+& )GMF(m')

2m
(2.5) For discrete excitations, a simpler factorized expression is

obtained:

After dropping vacuum-vacuum contributions, the spec-
tral form of GM„[Eqs. (2.2) and (2.3)] may be used to
write

Sg(co) = g i(8)'"'i 5(co —co„),

where

(2.10)
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(2.11)

By construction, the spectral form of the nuclear response
takes on this form for all cu. In the nonspectral calcula-
tions, the factorizable form of the response is not directly
applicable above particle threshold where the analytic
structure of IIRp~(ro) no longer is given by individual
poles on the real axis. The continuum response must be
computed directly using Eq. (2.9). This is numerically
much more complicated than the evaluation of individual
transition matrix elements, (8)'"', as is sufficient in the
spectral method. For example, full distorted-wave im-
pulse approximation calculations of (p,p') observables
are routine for discrete excitations since several computer
codes' ' ' ' exist which can be used to evaluate the
(p,p') form of (8)'"' given 9"'. In contrast, owing to
the complicated structure of 8 (involving, e.g., the NK t
matrix and distorted waves), direct evaluation of the con-
tinuum response at an equivalent level of approximation
using Eq. (2.9) has never been done. Only after further
severe approximations has the (p,p') RPA continuum
response been calculated. ' In general, there is no way
around this difficulty. However, in the following section,
we will outline a method of treating giant resonances in
the nonspectral form which properly includes continuum
effects and yet possesses the simplicities associated with
discrete excitations.

III. CONTINUUM RESPONSE
IN THE NONSPKCTRAI. METHOD

The spectral form of GMF [Eqs. (2.2) and (2.3)] makes it
clear that GMF has poles at the real single-particle eigen-
values, e&. This form, however, is strictly applicable only
to bound states. In practice, this difficulty is often cir-
cumvented by "putting the system in a box," in which
case continuum states are discretized and take the form
of standing waves inside the box. As is well known, '

when the correct continuum boundary conditions are re-
tained, the single-particle propagator will have poles at
complex co below the real axis which correspond to reso-
nant single-particle levels. If we express the position of
such a pole as e i I —/2the ,width of the resonance is of
course given by I . This behavior is implicitly present in
the nonspectral form of GMF given in Eq. (2.4). We now
recall that IIM„[Eq. (2.6)] has poles at e —

e& where
e (e&) is the eigenenergy of the particle (hole) single parti-
cle state. If HMF is computed using the spectral form of
GM„, and if o. labels a resonant single-particle state, HMF
will have a pole at a complex frequency,

cu &=a —
e&

—iI /2 .

IV. GIANT RESONANCES
IN NONSPECTRAI. DIRAC RPA

We have now outlined an approach in which reso-
nances in the uncorrelated nuclear continuum can be
thought of as singularities of the unperturbed particle-
hole propagator in the complex co plane. We anticipate
that this will persist when RPA correlations are included
but that the pole positions and residues of HRpA will
differ from those of HMF. More specifically, we expect
that giant resonances will appear as poles in HRpA with
particularly large residues just as RPA correlations con-
centrate transition strength in low-lying discrete collec-
tive levels.

To investigate this question we have evaluated the non-
spectral isoscalar quadrupole QHD-1 MFT RPA
particle-hole propagator for Ca using the calculational
methods outlined in Ref. 4. The "finite Hartree" cou-
pling constants and meson masses presented in Table V
of Ref. 1 were employed. This RPA propagator was eval-
uated using the code DRAMA (Refs. 4 and 26) at a grid of
points in the complex co plane in the region 10~Re
co ~ 35 MeV and 0.1 & —Imago & 7 MeV. In Fig. 1 we show
a three-dimension plot of the quantity

11;1I
RPA; J=2, T =0 (4.1)

Ca DRPA T=O response
—-p. 6

—Q 5

Q

-Q. 1

I /2m.
(3.1)

[co (e —e&)]—+(I /2)

where (8) &=Tr[89' &]. Thus this partial response
looks just like the discrete response of Eq. (2.10) except
that the 5 function has been replaced by a Breit-Wigner
distribution of strength. The discrete case is, of course,
recovered in the limit I —+0.

Again, the residue at the pole will be given by the outer
product of the single-particle transition density P &
=Pyb, where g is the unbound resonant single-particle
"wave function" defined in terms of the residue of GMF
for co —+e i I /2. The response defi—ned using the MFT
analog of Eq. (2.9) will contain a contribution due to the
pole at co & given by

FIG. 1. II&pA [expression (4.1)j for Ca T=O, J =2+ in
complex co plane.
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sition gives an excellent reproduction of the full response.
Furthermore, the response of each peak, as determined
by fitting and tabulated in Table I, coincides very well
with the numerically determined residue of the corre-
sponding singularity in the quantity defined in expression
(4.1) and displayed in Fig. 1. This leads to a working
definition of a giant resonance as a singularity of the
particle-hole propagator with a large residue which is
analogous to an ordinary discrete collective excitation in
every way except that this singularity appears at a com-
plex frequency rather than a real one. Furthermore, the
imaginary part of the pole position corresponds to the es-
cape width of the resonance. While RPA correlations
shift the energy and alter the strength of simple particle-
hole (or MFT) discrete excitations, they may also affect
the width of resonances by shifting their poles vertically
in the complex m plane. Evidence for this is presented in
Fig. 4 where the uncorrelated (or MFT) analog of the
quantity defined in expression (4.1) and shown in Fig. 1 is
displayed. The corresponding response appears in Fig. 5.
The observed structures are quite different from those
shown in Fig. 1. The Inost striking difFerence is the very
strong peak in the RPA calculation at m=22. 3 —i0.83
MeV which gives the dominant contribution to the
response in Fig. 2 and should perhaps be considered the
isoscalar quadrupole giant resonance.

V. COMPARISON %'ITH EXPERIMENT

Ca J=2+ MFT Coulomb Response
1500» r I

~

& I»
~

' t r r

[
& & ' «

~

r

1250—

1000—
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250

0 I~!
10 15 25
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FIG. 5. Ca T=O, J =2+ MFT response versus excitation
energy (Re co, MeV). An artificial spreading of 2 MeV is includ-
ed for display purposes.

Ca MFT response --p 6

--p 5

«R

p ~ 3 sj

p

We have suggested here that a giant resonance be
defined as a "strong" singularity of the particle-hole
propagator at a complex frequency. It is not our main
purpose in this paper to stress comparison with experi-
ment but rather to establish a framework for future com-
parisons when more complete calculations of this kind
become available. Nevertheless, we now make some pre-
liminary comparisons to illuminate further the specifics
of our approach.

Because our numerical ' methods allow extraction of
the residues for poles on or off the real axis, we may ex-
tract transition densities PRP~ for each resonant excita-
tion just as we have done for discrete excitations. Figure
6 (top) shows the transition radial density [actually the
quantity O'I'=z

2 z o(r) as defined in Ref. 4] extracted
from the T=0 calculation for the resonances at
22.3 —i0.83 and 29.8 —i0.35 MeV. These quantities
correctly include the continuum boundary conditions.
The two transition densities have very different radial
shapes which imply different q dependence in the (e, e')
response [see Fig. 6 (bottom)], namely, the lower-energy
resonance peaks at q =150 MeV/c while the upper peaks
at -300 MeV/c. These transition densities may be used
in, e.g., conventional distorted-wave codes' ' ' ' with
the understanding that the corresponding contribution to
the response is given by the appropriate form of Eq. (3.1).
For example, the contribution to the (m, m') response due
to a particular resonance excitation would be

d2 (n)

dQ) dO

I „/2m

(co —co„) +(I „/2)

FIG. 4. IIM„r [expression (4.1)] for Ca T=o, J =2+ in
complex co plane.

where the complex pole position for the resonance is
co„il „/2 and w—here do'"'/dQ is the (m, vr') cross sec-
tion computed using the distorted-wave impulse approxi-
mation (DWIA). In Fig. 7 (top) we show such a calcula-
tion of do'"'/dQ for an isoscalar-quadrupole excitation
in the Ca(~, m') Ca reaction. These cross sections were
obtained from the code DWPI (Ref. 17) using the neutron
and proton transition densities extracted from the DRPA
(Ref. 4) output for the resonance at 21.2 —i 1. 1 MeV and
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"Ca J=2 E„=22.3 vs 29.8 MeV
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FIG. 6. Transition densities for 22.3 and 29.8 Mev quadru-
pole states. These are plotted versus radius (top) and mornen-
turn transfer (bottom).

are compared with those extracted from the 22 MeV
complex (identified as being dominantly isoscalar quadru-
pole in nature) observed in m

—inelastic scattering on Ca
by Ullmann et al. ' Here the pole is shifted slightly from
the value of 22.3 —i0. 83 MeV quoted earlier because we
have included the differences in neutron and proton wave
functions and single-particle propagators due to Coulomb
efFects. These resultant radial-transition densities were
employed in this DWIA calculation with pion distorted
waves generated from ground-state distribution parame-
ters taken from electron scattering while the pi-nucleon
effective interactions were calculated from the phase
shifts of Ref. 20.

As seen in Fig. 7 (top), the agreement between the data
and calculation is excellent in both shape and magnitude
for the m (neutronlike) as well as for m+ (protonlike)
cross sections. Note that no adjustment of the normali-
zation has been made. This calculation of the location
and width of this component of the isoscalar-quadrupole
resonance is also in reasonable agreement with the pion-
scattering results (Table II), particularly in light of the
fact that the two-particle —two-hole elfects (in the follow-
ing) would tend to spread this peak further. A
collective-model (Tassie) fit to these data, with transition
densities proportional to the radial derivative of the
ground-state density as given in Refs. 19 and 21, yields a
B( C2) devalue of 170+25e fm while the B(C2)1 com-
puted from our RPA transition density is 120e fm .
These quantities are compared with results from (e, e')
and (a, a') measurements in Table II. The dominant
Dirac component of our RPA radial-transition density is
compared with the collective density in Fig. 7 (bottom)
where both of these calculations, in spite of the differing
B(C2)1' values, reproduce the observed cross sections.
The computed RPA B(C2)f value exhausts 26%%uo of the
classical isoscalar-charge sum rule while the data of
Ullmann et al. account for 32+5%, if the Tassie model
is assumed. The overall level of agreement between
theory and experiment in Table II is quite good consider-
ing the model dependence and uncertainties inherent in
all quantities. In spite of this reasonable agreement, we
still wish to emphasize mainly the approach we have out-
lined and to indicate the kind of analyses which can be
made in the future using more complete calculations.

0.01

0.00

O O 1 I I E I I I l 1 I I I I I I I I I I

0 2 4 6
r (fm)

FIG. 7. Comparison (top) of Ca(m. , n'1 Ca GQR cross sec-
tions from experiment' (data points) and the prediction of this
work (solid curves). Comparison (bottom} of Ca GQR transi-
tion densities extracted from this work (solid=proton, dot-
dashed=neutron) and the collective density fitted to the data
(dashes).

TABLE II. Comparison of results from the Dirac-RPA pre-
dictions (with neutrons and protons treated separately) and ex-
periment for " Ca isoscalar giant quadrupole.

E
(Mev)

r
(MeV)

8(C2) f
(e fm")

DRPA
(e, e')'
(~,~')
(a,a')'

21.2
—17.5
-22

17.7

2.2 120
148+20
170+25
270+11

'From Ref. 22. Width estimated.
"Taken from a collective fit to the ~ and ~+ data of Ref. 19.
Width estimated.
'From Ref. 23, using a collective model.
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VI. TWO-PARTICLE- TWO-HOLE CORRECTIONS VII. SUMMARY AND CONCLUSIONS

One important shortcoming of the RPA approach
presented here is the omission of two-particle —two-hole
(2p-2h) efFects which, for example, contribute to the
spreading widths of the nuclear response. Treating such
effects directly in a "second RPA" formulation is numeri-
cally very demanding. Recently, Smith and %'ambach
have developed an approximate treatment of 2p-2h effects
which may readily be adapted to the methods outlined
here. Smith and Wambach account for 2p-2h couplings
via a complex, energy-dependent self-energy determined
from empirical single-particle spreading widths. They ar-
gue that the state dependence of these self-energies may
be approximated by a simpler spin-isospin channel depen-
dence. Thus their treatment involves four self-energies,
Xsr(co), where S, T=O or 1. In the language of the
present treatment, 2p-2h effects are incorporated by
modifying the definition of the response [given in Eq.
(2.9)] by

where the self-energy appropriate to the spin-isospin
character of the operator 8 is used. In practice, this
response is simply computed by evaluating H~~~ at the
appropriate point in the complex co plane rather than on
the real axis as in the standard 1p-1h RPA. Similarly,
the contribution due to the nth resonance [see Eq. (5.1)]
becomes

S(n)( ) ~&
(r))(n) ~2

X Im
1

co+X(co)—ro„+i I"„/2

(6.2)

where

is the matrix element of 8 for the nth RPA excitation
which has pole position to„—i I „/2 and transition densi-

ty Pa&~. Clearly, the imaginary part of X(co) combines
with the escape width, I „/2, to increase the overall
width of the response and is identified with the spreading
width. The real part of X(co) simply shifts the centroid of
the peak. (Note that in the specific treatment of Ref. 25
the authors conclude X& z 0=0. Hence the computed
isoscalar quadrupole response is unaffected by 2p-2h con-
tributions in their approximation. )

We have examined the structure of the nonspectral
1p-1h propagator as a function of complex excitation en-
ergy, co. As usual, low-lying discrete excitations appear
as singularities in the propagator at real co. The transi-
tion densities for the associated excitations may straight-
forwardly be extracted from residues at these singulari-
ties. Our nonspectral propagator correctly includes ap-
propriate continuum boundary conditions and, in conse-
quence, "resonant" excitations above particle threshold
appear as singularities at complex co below the real axis.
The distance of the pole from the real axis determines the
escape width of the excitation. Transition densities for
these resonant excitations may again be extracted from
the residues at the singularities. Such transition densities
automatically include correct continuum boundary con-
ditions.

It is well known that correlations such as those includ-
ed in the RPA can be concentrate certain kinds of transi-
tion strength in low-lying, collective, discrete excitations.
These collective excitations correspond to singularities in,
e.g. , the RPA 1p-1h propagator at real co having particu-
larly large residues. In the nonspectral approach, such
RPA correlations also produce singularities with large
residues at complex excitation energies. We identify the
associated excitations as giant resonances. Again, the
distance of the singularity from the real axis yields the es-
cape width of the resonance. Transition densities
rejecting correct continuum boundary conditions may be
readily computed and then used, for example, in conven-
tional reaction codes just as is typically done for discrete
excitations.

To illustrate how our approach may be used in prac-
tice, we have examined the QHD1-MFT (Ref. 4) isoscalar
quadrupole response of Ca. Several distinct "singulari-
ties" were observed in the 1p-1h propagator Hgp~ in the
complex excitation-energy plane. Each of these singulari-
ties was straightforwardly identified with structures in
the computed (e, e') isoscalar quadrupole Coulomb
response. These identifications support the association of
the singularities with resonant excitations, "giant" and
otherwise. Radial transition densities were extracted for
two of the strong resonances. For the lower of the two
(co,i,=22. 3 i 0 83 M—eV.), the transition density was
used to calculate both a value of 8 (C2) 1 and 7r

+—inelastic
cross sections. Agreement with experimental quantities
was found to be reasonable. Finally, we have discussed
how approximate treatment of 2p-2h effects may readily
be included in our approach.
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