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We present a description of the spin-one Kemmer-Dugan-Petiau equations. An effective second-

order equation is obtained for various types of interactions. An argument is given for the use of one

particular form of interaction for deuteron-nucleus scattering. This provides the basis for a general-

ization of the standard Watanabe model in which Dirac scalar and vector nucleon-nucleus poten-

tials are used as input. Parameter-free calculations are performed using both phenomenological and

microscopic nucleon-nucleus potentials, and results are compared with deuteron-nucleus elastic
scattering data at 400 and 700 MeV. Qualitative agreement is generally obtained. A good descrip-

tion of the forward-angle vector analyzing power data is achieved.

I. INTRQDUCTIQN

In recent years, relativistic approaches have proven
quite successful in describing intermediate-energy
proton-nucleus scattering data. ' ' Particularly striking
was the superiority of the Dirac equation using both phe-
nomenological analyses' ' ' and the parameter-free
relativistic impulse approximation, ' " ' in reproduc-
ing the spin observables compared with standard nonrela-
tivistic approaches. Such success encourages the applica-
tion of relativistic wave equations to other probes of nu-
clei. An interesting candidate for such an analysis is the
deuteron. Its loosely bound structure suggests that
deuteron-nucleus scattering can be essentially described
in terms of free nucleon-nucleus scattering. Moreover,
there now exist data from Saclay' ' for deuteron-
nucleus scattering at intermediate energies where spin ob-
servables as well as differential cross sections have been
measured.

The Saclay data have been analyzed by Yahiro,
Kameyama, Iseri, Kamimura, and Kawai' ' in terms of
the nonrelativistic Watanabe model. ' In the Watanabe
model, the deuteron-nucleus optical potential is obtained
by folding the sum of the neutron and proton optical po-
tentials, evaluated at half the incident deuteron energy,
over the internal deuteron density. The Watanabe model,
which is not successful at. low energy due to its neglect of
virtual deuteron breakup, ' ' is expected to be more ac-
curate at intermediate energies where the breakup effect
is less important. ' ' The authors of Ref. 16 assume that
the differences between standard 'Woods-Saxon optical
potentials and the effective central and spin-orbit poten-

tials arising from a Dirac equation approach are
representative of the ambiguity in the nonrelativistic
nucleon-nucleus optical model. These authors use a
Schrodinger equation, with relativistic kinematics, to cal-
culate the deuteron-nucleus elastic scattering observables.
They obtained good agreement with the 400-Me V

d+ Ni data at forward angles, and found that the
Dirac-based optical potentials gave better agreement with
the deuteron-nucleus data than the use of standard
Woods-Saxon nucleon-nucleus optical potentials, al-
though each set gave equally good fits to proton-nucleus
data. Similar results were obtained when comparing cal-
culations with deuteron-nucleus data at 700 MeV. ' ' It
is therefore of interest to independently analyze these
data using a relativistic treatment throughout employing
a relativistic wave equation to describe the scattered
deuteron.

The idea of treating deuteron-nucleus scattering rela-
tivistically is not without precedent. Shepard, Rost, and
Murdock used the Breit equation as a basis for a phe-
nomenological treatment and obtained reasonable agree-
ment with d+ Ni data at 80 MeV. ' Santos and colla-
borators ' have studied the problem employing both
the Proca and Weinberg equations. They argue that such
an approach yields a deuteron spin-orbit potential that is
too small to reproduce the actual spin observables, al-
though they find qualitative agreement with the Saclay
data when parameters in their model are adjusted.
More recently, there have been some investigations con-
cerning the effects of the deuteron internal structure in a
relativistic formalism. Santos and Amorim " studied the
above problem within a Bethe-Salpeter framework, while
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Kameyama and Yahiro have used a (U /c ) expansion.
In the present approach, a one-body wave equation is

used to describe the deuteron-nucleus system, the interac-
tions are determined by the usual Watanabe assumptions,
and, without varying any parameters, a comparison is
made with the deuteron-nucleus data. This parameter-
free approach provides a test for the validity of a one-
body relativistic description and emphasizes the predic-
tive power of our model. Although one might question
the appropriateness of using a one-body equation for a
particle as extended as the deuteron, possible justification
for this procedure has been given by Bleszynski, Bleszyn-
ski, and Jaroszewicz.

We will use the Kemmer-Duffin-Petiau (KDP) formal-
ism as the basis for a relativistic treatment of
deuteron-nucleus scattering. The KDP formalism
yields a first-order, multicomponent relativistic wave

equation for spin-1 particles that is similar in structure to
the Dirac equation. An appealing property of the KDP
formalism is that its structure suggests an underlying
direct product of two spin- —,

' Dirac fields. ' The KDP
formalism also yields a relativistic spin-zero equation
which has been applied with reasonable success to pion-
nucleus and kaon-nucleus scattering at intermediate ener-

gies. In this work a relativistic impulse approximation
was used to obtain the meson-nucleus optical potentials.
The KDP approach gave qualitatively similar results to
those of a standard first-order Kerman, McManus, and
Thaler (KMT) treatment. It should be remembered,
however, that the most dramatic differencess between the
Dirac and Schrodinger analyses of proton-nucleus
scattering occur in the spin observables. It is the proven
ability of relativistic equations to reproduce proton-
nucleus spin observables, together with the underlying
two-body structure inherent in the KDP formalism
which encourages us to use it for describing deuteron-
nucleus scattering.

In this paper we show how the KDP formalism can be
applied to deuteron-nucleus scattering and compare our
results with intermediate-energy deuteron-nucleus data.
Also included is a discussion of the relation between our
work and the nonrelativistic models of Yahiro et al. ' '
and Ray. Sec. II contains a brief description of the
spin-1 KDP formalism and Sec. III shows how interac-
tions can be added to the formalism. Section IV discusses
the second-order KDP equation. Section V shows how
the spin-1 KDP equations can be applied to deuteron-
nucleus scattering. In Sec. VI the predictions of the
KDP approach for the deuteron-nucleus scattering ob-
servables are compared with the Saclay data. The paper
concludes with a summary in Sec. VII.

can be given in terms of 16X16matrices as

/3p = -,'(I i )'z+)'i 12» (2.3)

0 a"
0

(2.4)

where the a" are 4X6 matrices and the b" are 6X4 ma-
trices. Written out explicitly, the a" are

a'=
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

(2.5a)

1 0 0 0 0 0
0 0 0 0 0 0a'=
0 0 0 0 0 —1

OOOO1 O

(2.5b)

0
a 0

0

0
0

a =
0
0

1 0 0 0 0
0 0 0 0 1

0 0 0 0 0
0 0 —1 0 0

0 1 0 0 0
0 0 0 —1 0
0 0 1 0 0
0 0 0 0 0

(2.5c)

(2.5d)

and

b"=gppa„(no summation),

where

where I is the 4 X4 identity matrix, the y" are the Dirac
matrices, and (3) indicates a direct product. The form of
Eq. (2.3) is suggestive of a system of two spin- —,

' particles.
The representation of the PP given in Eq. (2.3) is reducible
and can be decomposed into three irreducible representa-
tions: a trivial one-dimensional representation in which
all of the /3" are equal to zero, a five-dimensional repre-
sentation which yields a set of spin-zero wave equations,
and a ten-dimensional representation which gives a set of
spin-one equations. Hereafter, we shall only be con-
cerned with the ten-dimensional spin-one KDP equa-
tions.

A set of 10X 10 matrices which satisfies the algebra of
Eq. (2.2) can be written in block-diagonal form as

II. THE SPIN-ONE KDP FORMALISM

The free-particle KDP equation is of the form

(i/3pa„—m )q=O,

where the /3" obey the following algebra:

/3P/3vPi. +/3i/3v/3P —
g Pv/3i. +g

i v 3P

(2.1)

(2.2)

g""=diag(1, —1, —1, —1) . (2.6)

(2.7)

If the ten-component wave function of Eq. (2.1) is written
in the form

A representation of the KDP algebra defined by Eq. (2.2) where Ap is a four-vector and Fp" are the six indepen-
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dent components of an antisymmetric second-rank tensor
then, for m %0, it can be shown that each component of
A" satisfies a Klein-Gordon equation

( —m )A"=0, (2.8)

where

(2.9)

It can be shown that the set of Eqs. (2.8) and (2.9) is
equivalent to the more familiar Proca equations, which
are usually written as Eq. (2.8) together with the subsidi-
ary condition, B„A"=0. Thus, for the free-particle case,
the spin-one KDP formalism and the Proca equations are
equivalent.

Alternatively, one can use Eqs. (2.4) —(2.6) and write
the spin-one KDP equation in a form that resembles
Maxwell's equations, in which case one obtains

and

i V.E =me@,

lB,E—i&X8=m A,
iB, A —iV'y=mE,

(2.10a)

(2.10b)

(2.10c)

—iVX A=mB . (2.10d)

The ten-component wave function g is given by

A
E—8

(2.11)

in obvious analogy with classical electrodynamics. We
shall use the form (2.10) in the next section when intro-
ducing interactions into the formalism.

Although we have established the equivalence of the
spin-one KDP and Proca formalisms for a free particle,
such equivalence will not necessarily hold when interac-
tions are included. Thus the results of a calculation may
be dependent on which wave equation is used. Below we
develop the KDP equations for the interacting particle
case. A similar treatment of the Proca equations and the
Weinberg equations has been given previously by Santos
and Van Dam. An investigation of the differences be-
tween various spin-one formalisms and the implication
for deuteron-nucleus scattering is currently underway
and the results will be presented in a subsequent publica-
tion.

U(r)=S(r)+PS (r)+/3 V(r)+/3 PV (r) . (3.3)

It should be noted that although any combination of
the interactions in Eq. (3.3) could be acceptable for the
nuclear interactions, the electromagnetic interactions
must be included as a Lorentz vector of the form /3" 3
to ensure gauge invariance. (This corresponds to the usu-
al "minimal substitution" prescription. ) As is shown in
Appendix B the KDP formalism for a spherically sym-
metric static Coulomb interaction yields the same equa-
tions as those derived by Corben and Schwinger from
the Proca equation. This establishes the equivalence of
the KDP and Proca equations in this case.

For the more general interaction, given by Eq. (3.3),
the time-dependent "Maxwell-like" form of the KDP
equations is

l P 'E —m I cp

cozE lVXB —m, A

cu& A —iVy=mzE,
—iVX A=mzB,

(3.4a)

(3.4b)

(3.4c)

(3.4d)

m, (r) =m+S(r)+S~(r),
m2(r)=m+S(r),

~~(r) =&—V(r) —V~(r),

(3.5a)

(3.5b)

(3.5c)

doscalar and pseudovector terms also exist, but they are
eliminated by the imposition of parity invariance. We are
thus left with only Lorentz scalar and vector interactions
to consider. As in the spin-0 KDP case, there are two
scalar s and two vectors. In addition to the ten-
dimensional identity matrix, it can be shown that the pro-
jection matrix P =diag(1, 1,1,1,0,0,0,0,0,0) transforms as a
Lorentz scalar. The two Lorentz vectors may be written
as P" and P/3" Assuming rotational invariance and pari-
ty conservation, the form for U is taken to be

U(r)=S(r)+PS (r)+/3" V„(r)+/3"PV „(r) . (3.2)

In the case of elastic scattering, as is shown in Appendix
A, the spacelike parts of the vectors can be transformed
away by defining new phase-equivalent wave functions in
exactly the same manner as for the Dirac equation. ' In
this case Eq. (3.2) becomes

III. INTERACTIONS co~(r)=E —V(r) . (3.5d)
In order to describe an actual scattering situation, an

interaction U must be introduced into the KDP formal-
ism. The KDP equation then becomes

(t/3"8„—m —U)/=0 . (3.1)

As is the case with the Dirac equation, the interaction U
can be written as a sum of terms, each of which has a
specific Lorentz character. For example, one can have
Lorentz tensors of second, third, and fourth rank. They
will not be considered here since they may produce non-
causal effects in the KDP formalism. In addition, pseu-

In order to obtain the elastic scattering observables from
Eq. (3.4), it is only necessary to know the behavior of the
wave function in the asymptotic region. Since this is the
free-particle regime where the Proca and KDP formal-
isms are equivalent, the observables are fully determined
by the four-vector A", or more specifically the three in-
dependent components A. Therefore it is sufficient to
calculate A in order to obtain the elastic scattering ob-
servables. Such an equation can be obtained by first elim-
inating Eqs. (3.4a) and (3.4d) from the set (3.4), and then
eliminating E in favor of A giving
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V. A
m ) c02

+V V.
m)

VX
C02

VXA
m2

m )m2 m2
A — VX

072 C02

1 (VX A) =0 .
m2

(3.6)

Equation (3.6) will be used as the starting point for our
investigations. Through the use of various spin and vec-
tor identities, it can be manipulated into the form of a
second-order Schrodinger-like equation, discussed in the
next section. Although one can of course work solely
with the first-order Eq. (3.4), we will consider a second-
order equation since "effective" central, spin-orbit, and
tensor potentials can be defined in analogy with the Dirac
case. This facilitates comparisons with standard
Schrodinger-based analyses. In addition, existing codes
for deuteron-nucleus scattering can be used to perform
numerical calculations.

2E 2E 2E
(4.3)

where

U= U, + U, , (L.S)+ UD(r V)

where the above relationship holds exactly for cases I and
II.

The manipulation of Eq. (4.2) into Schrodinger-like
form is straightforward, but laborious. The details are
given in Appendices C and D. In each case, the follow-
ing effective equation is obtained:

IV. THE SECOND-ORDER KDP EQUATION + U~~(S r) +. i Up~(S. p)(S.r) (4 4)

U=PS(r)+/3 PV(r), (4.1a)

case II:

U=S(r)+P PV(r), (4.1b)

case III:

U =PS(r) +/t'V( r), (4. lc)

case IV:

U=S(r)+P V(r), (4. Id)

where each case is distinguished by whether or not the
projection operator P appears in an interaction. We shall
present an argument in the next section that the case-IV
potential is the appropriate one to use for deuteron-
nucleus scattering.

The second-order equation for each of the four cases is
obtained from Eq. (3.6) by setting the appropriate quanti-
ties equal to zero in Eq. (3.5). Inspection of Eq. (3.6) re-
veals the third term to have the most complicated struc-
ture. However, for cases I and II (P in vector), where
co2=const, this term is identically zero because it is the
gradient of a curl. In cases III and IV, this term is no
longer zero, but will be neglected as it is of order m
and vanishes in the nonrelativistic limit. Therefore Eq.
(3.6) is simplified to

In deriving an effective Schrodinger-like equation from
Eq. (3.6) we will, as was done in Ref. 32, restrict ourselves
to four special cases of the interaction U. The cases we
consider correspond to choosing one scalar and one vec-
tor term each from Eq. (3.3). Thus, we have

case I:

A= — ln(m+S),1

r Br
(4.5)

and k =E —m . As in the Dirac case, the effective
second-order equation contains a central potential
[(1/2E)U, ], a spin-orbit potential [(1/2E)U, ], and a
Darwin term [(1/2E) UD]. In addition, there occur two
of the possible three tensor potentials that can occur for
spin-one scattering. ' lt was noted by Satchler ' that the
inclusion of a potential proportional to (S.p)(S.r), as ap-
pears in Eq. (4.4), leads to an S matrix which is asym-
metric. This formal property, however, should not cause
any practical diSculties.

We also note that the effective potential in Eq. (4.4) is
in a slightly different form than given in Ref. 30. In par-
ticular, the tensor potentials in Ref. 30 were given in
Satchler invariant form, ' whereas in the above equation
they are not. If Eq. (4.3) with Eq. (4.4) were to be solved
exactly, such a distinction would be immaterial. Howev-
er, since the tensor potentials will be neglected in our ac-
tual calculations, the different ways of writing the tensor
term constitute, in effect, different approximations owing
to the presence of (L S) terms in them. The form used
above maximizes the contributions of both the scalar and
vector potentials to the (L S) term for the case of
deuteron-nucleus scattering and yields slightly better
agreement with the data. Whether it represents a better
approximation to the exact KDP first-order equation
(3.1) is not yet known. Obviously, the way to resolve
such a question and also include the effects of all tensor
potentials would be to solve the first-order Eq. (3.1) rath-
er than Eq. (4.3). The appropriate codes for doing so are
now being written.

In giving the specific forms of the effective potentials
that occur in Eq. (4.4) for each case, it will be convenient
to define the following quantities:

m2VX
I VXA co V

m 2
2

'v
mi C02

A X=— In(E —V, ),r Br
(4.6)

+(m, mz —co,co&) A=O, (4» and
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0=— ln(E —V, —V) .1

r Br
(4.7)

U""'=2A —2n .PR (4.11e)

+SX+r +r XA —r X
()X
Br

U~("=2m —A,
T(I) 1 BA 1 BX

rgr rar
U""=A—2X .PR

Case II:

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

U,'"'=2mS+S +2EV, —V, +(E—V, ) V 5A —r—2 2 aA

Using the above definitions, and the results in Appen-
dices C and D the eft'ective potentials for each case may
be obtained. For the sake of generality, each of the ex-
pressions below explicitly contains a Coulomb potential,
in addition to the potentials of Eq. (4.1). They are the fol-
lowing. Case I:

U,' =mS+2EV, —V, +(E—V, ) V —3A r—2 aA

The flexibility of the KDP formalism is illustrated by
Eqs. (4.8)—(4. 11). As can be seen, radically different
efF'ective equations result depending on the initial choices
of vector and scalar interaction. For example, some of
the central potentials contain terms quadratic in the in-
teraction. In some cases, the nuclear vector interaction
gives a contribution to the spin-orbit potential, while in
others it does not. This variety occurs even though we
have restricted our study to four special cases, whereas
one has the freedom to choose any combination of the in-
teractions that appear in Eq. (3.3).

The appropriate choice for U presumably depends on
the particular system that is being studied. In the spin-
zero case, for example, it was found that pion-nucleus
data could best be described by one particular choice of
the interaction, while kaon-nucleus data could be reason-
ably described with several difterent types of interac-
tions. For reasons discussed in the following section,
we will use the case-IV interaction (I' in neither) for
deuteron-nucleus scattering. In the remainder of the pa-
per we will only use the e6'ective interaction given in Eq.
(4.11), and omit the superscript IV.

+5X+r +r XA —r X
ax
Br

U~")=2K —A,
U'r(Ig) 1 BA 1 BX +A++2

r ar r ar

U ' '=2A —2X .PR

Case III:

U,""'=mS+2E( V, + V) —( V, + V) 3A —r—
+5Q+r +r QA —r 0BQ

Qr

U'"" =n —AS.o.

U'""=2n —A,
z.( Igy) 1 BA 1 BQ

r Br r Br

U ""'=A—2Q .PR

Case IV:

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.9e)

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)

V. DEUTERON-NUCI, KUS SCATTERING

As noted earlier, the deuteron is a weakly bound
neutron-proton system. This fact suggests that the neu-
tron and proton interact almost independently with the
target, therefore it is reasonable to describe the process in
terms of nucleon-nucleus scattering. Such a picture is
borne out in nonrelativistic analyses and indeed, has
been used extensively for deuteron-nucleus scatter-
ing. ' ' ' We shall show below that the structure of the
KDP equation is particularly amenable to the above pic-
ture of deuteron-nucleus scattering, and that the physics
dictates a particular choice for the interaction. In order
to have a consistent relativistic approach the input
nucleon-nucleus potentials are taken to be the usual
Lorentz scalar and vector combination familiar from
Dirac analyses.

In discussing the deuteron-nucleus optical model inves-
tigated in this work, it is useful to recall the 16-
dimensional reducible representation for P" given in Eq.
(2.2). This structure is suggestive of a system of two
noninteracting spin- —,

' particles. We can construct a 16-
dimensional KDP equation using Eq. (2.2) and an in-
teraction V of the form

V= U) g I2+I)(3 U2,

+5Q + + 2QA 2@2
r

U" )=n —2AS.O. 7

U'"'=2n —A

Uz.(rv) 1 ~A 1 ~ &A+2RR

(4.11a)

(4.11b)

(4.1 lc)

(4.11d)

U," '=2mS+S +2E( V, + V) —
( V, + V) —5A r—A

Br

U, (E)=I;S (E/2)+y;"V„(E/2), (5.2)

which describes two Dirac particles interacting with the
external fields U& and U2. The U; are taken to be the
Dirac nucleon-nucleus optical potentials evaluated at half
the incident deuteron energy and integrated over the
finite coordinate space matter distribution of the deute-
ron, in analogy with the nonrelativistic models. Using
the standard scalar-vector Dirac optical model we thus
get
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where the X superscript denotes a nucleon-nucleus poten-
tial and S ( V ) is the scalar (vector) part of that poten-
tia1. If it is assumed that U& = U2, then the 16-
dimensional KDP equation is

P(I, @2+y", I2 )[p„—2 V„(E/2) ]

(I,—I2)[m+2S (E/2)]I/=0 . (5.3)

In the above equation twice the nucleon vector potential
is substracted from the derivative term and twice the nu-
cleon scalar potential appears as a "correction" to the
mass. This indicates that the case-IV potential (I' in nei-
ther), given by Eq. (4. ld), is an appropriate choice. With
this in mind, the deuteron-nucleus optical potential we
use is

U„„,(E)=2U„„,(E/2) (s.sa)

UD. (E)=-,'U,".(E/2) . (5.5b)

sor term U~z arising from the KDP treatment is a
feature of this approach which has not been previously
considered.

We now compare our results with those that would be
obtained from a Schrodinger-based Watanabe model.
The Watanabe model, ' described in the Introduction,
gives an approximate relationship between the deuteron-
nucleus and nucleon-nucleus optical potentials and is ex-
pected to be reasonable at intermediate energies. ' '
Within such a model it can be shown that

U (E)=2S (E/2)+2V (E/2)/3 (5.4a)

where

S (E/2, r)= Jd'r'p (r')U~ E/2, r+— (5.4b)

r is the relative deuteron-nucleus coordinate, r' is the rel-
ative neutron-proton coordinate in the deuteron, and

p (r')= [u(r') +to(r') ] .1

4mr
' (5.4c)

The latter quantity defined in Eq. (5.4c) is the deuteron
matter density where u(r') and m(r') are the l=0 and 2
radial wave functions of the deuteron, respectively. In
Eq. (5.4b) Uz(E/2, r) is the scalar part of the actual
proton-nucleus optical potential. An analogous expres-
sion is used to obtain V (E/2).

We will present a comparison between the effective
central and spin-orbit potentials in our model and those
that arise from a nonrelativistic Watanabe approach.
First, however, we discuss the effective potentials that
arise from the model.

As with the Dirac equation, the centra1 potential given
in Eq. (4.1la) contains a cross term between the nuclear
and Coulomb potential as well as terms quadratic in the
scalar and vector potentials. These latter terms are re-
sponsible for the "wine-bottle" shape which appears to be
necessary to describe proton-nucleus scattering around
200 MeV. ' There is considerable evidence' ' ' that
the intermediate-energy deuteron-nucleus data also prefer
a wine-bottle shape rather than a Woods-Saxon form.
The effective central potential obtained from the case-IV
interaction displays the most pronounced wine-bottle
shape in comparison with those of the other three cases.

The spin-orbit potential is surface peaked, with the sca-
lar contribution multiplied by a factor of 2. This is an
important feature of this model. The nonlocal Darwin
term is roughly the same magnitude as in the proton-
nucleus case. The term proportional to (S r) is about
the same size as the corresponding term from the
Watanabe model. It should be noted that a nonzero
tensor term always occurs in the present model. The ten-

The above equations are exact in the Watanabe model if a
"point" deuteron, one in which the density is replaced by
a delta function, is considered.

When the assumption in Eq. (5.4) is made for the KDP
deuteron-nucleus potential it is easily seen that the
effective central potential is roughly twice the effective
central nucleon-nucleus potential obtained from the
Dirac equation at half the incident deuteron energy, in
agreement with Eq. (5.5a). It is much harder, however,
to analytically compare the effective spin-orbit potentials.
The approximation E=m and S = —V that are made
in Refs. 22 and 23 are inappropriate at the energies we
are considering and yield misleading results. Actual cal-
culations show that the KDP effective spin-orbit poten-
tial is roughly 50—60% the magnitude of the appropriate
nucleon-nucleus potential for E=400-700 MeV, in ap-
proximate agreement with Eq. (5.5b). (The deuteron
spin-orbit pote.—,-.:ial used in Ref. 30 is about 35—40% of
the appropriate nucleon potential at medium energy. )

Thus it appears that the use of a Watanabe model in a
relativistic-wave equation does not yield a spin-orbit term
that is too small. This fact, in turn, yields good agree-
ment with the data, as will be seen in the following sec-
tion.

VI. RESULTS

In this section we present calculations of deuteron-
nucleus scattering observables based on the KDP equa-
tion and compare the results with experiment. ' These
calculations are "parameter-free" in the sense that no pa-
rameters are varied to fit the deuteron-nucleus data. The
input nucleon-nucleus potentials used are based on both
phenomenological and theoretical relativistic models.

The nuclear parts of the neutron and proton potentials
are assumed to be identical and a Coulomb potential is
added to the nuclear proton potential. The Darwin term
in Eq. (4.11c), which makes only a small contribution to
proton-nucleus scattering, is neglected. The tensor terms
are also not included in these ca1culations as it has been
shown ' that tensor terms affect the observables o., A

and 3 only minimally for d+ Ni at 80 MeV. Of
course this may not be true at the higher energies and we
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intend to consider the effect of including these terms in a
later paper.

We first consider the case of deuterons elastically
scattering from Ni at 400 MeV. One difticulty with the
analysis concerns the lack of proton elastic scattering
data from Ni at 200 MeV. However, there exists
p+ Ca data at this energy. As in Ref. 16, we assume
the input p+ Ni potentials can be obtained from phe-
nomenological p+ Ca potentials by "rescaling". the ra-
dius parameters in these potentials by the factor A '

We use the pararnetrization given in Ref. '16. The result-
ing deuteron-nucleus scalar and vector potentials, shown
in Fig. 1, are large and of opposite sign. Just as in the
case of the Dirac equation, they "cancel" and produce an
effective central potential of reasonable size.

The effective KDP central and spin-orbit potentials are
shown in Fig. 2 along with those of Yahiro et al. ' The
effective central potential has the Coulomb potential Vc
subtracted before plotting. In general the shapes of each
component of the KDP effective potential and that of
Ref. 16 are similar, however the absolute magnitudes are
different. In particular, the KDP approach produces a
wine-bottle shape for the real central potential, wliich, as
noted above, is an important ingredient to the success of
the model in Ref. 16. The absolute magnitude obtained
here is somewhat larger than that in Ref. 16. The absorp-
tive central potential has a characteristic volume-type
geometry and is smaller in magnitude than that in Ref.
16. The spin-orbit potentials are surface peaked and are
slightly smaller in absolute magnitude than the potentials
in Ref. 16.

The results of the calculation and a comparison with
experimental data' are shown in Fig. 3. The overall
magnitude and general rate of decrease with increasing
scattering angle for the differential cross-section data are
reproduced. The angular position of the first and each
subsequent minimum is, however, predicted at too small
an angle. Virtual deuteron breakup effects for this case
were shown by Yahiro et al. ' ' to be most significant in
the differential cross section at angles greater than 20
c.m. Such effects might improve the KDP prediction by
increasing the differential cross section beyond 20 c.m.

I I I
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I I 4 I
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1 ~ I 4
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Imag
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10

The damping of the diffractive, oscillatory pattern in the
data between 12 and 20' c.m. is similar to that observed
in proton-nucleus elastic scattering data at similar in-
cident energy per nucleon and similar momentum
transfer. ' This damping phenomenon in nucleori-
nucleus scattering results from a complicated interplay
between the separate energy dependences of the real and
imaginary parts of both the spin-independent and spin-
orbital optical potentials. It is interesting that these
200 MeV per nucleon deuteron-nucleus scattering data
display a similar structure, suggesting a dynamical origin
analogous to that for nucleon-nucleus scattering. Both
the KDP calculations and the nonrelativistic Watanabe
predictions of Yahiro et al. ' display similar damping at
intermediate angles although both fail to reproduce the
d+ Ni data in detail. The predicted damping is clearly
a consequence of the proton-nucleus input potentials
which produce this behavior in p+ Ca elastic scattering
at 200 MeV. More detailed analysis must await the
availability of 200-MeV p+ Ni elastic scattering data
whereby the A' scaling of the p+ Ca optical poten-
tials can be avoided. Alternatively, one could use a glo-
bal optical potential; such potentials are being
developed.

The agreement with the A data is good over the for-

500

r

I

i r & r

0.0

—0.2

—0.6 Real

8 10 R(f rn)
6 8 10

R(rm)

FIG. 1. The KDP sca4:r and vector potentials for d+' Ni
elastic scattering at 400 MeV.

FIG. 2. Eftective central and spin-orbit potentials for
d+' Ni elastic scattering at 400 MeV. The solid lines represent
the KDP model predictions and the dashed curves the model
prediction of Ref. 16.
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ward angular range of the data. The calculated structure
of the tensor polarization A agrees qualitatively with
the data, however, the predicted overall magnitude is too
small. It is possible that the inclusion of tensor potentials
may affect this observable. It should be noted that Gre-
ben found it impossible to fit this observable within a
relativistic Watanabe model for d+' 0 scattering, al-
though he did not consider effective Schrodinger poten-
tials deduced from a Dirac approach, as was done by
Yahiro er ai."

We now turn to an examination of the d + Ca data at
700 MeV. For this analysis, nucleon-nucleus optical po-
tentials at 350 MeV are needed. Since p+ . Ca data exist
at 362 MeV, ' phenomenological potentials are available
at nearly the correct energy with no "rescaling" neces-
sary as was the case for the Ni target. In addition, the
Murdock-Horowitz parameter-free relativistic nucleon-
nucleus optical potential'. can be employed. This model
is similar to the relativistic impulse approximation '

(RIA) model except that pseudovector coupling is substi-
tuted for pseudoscalar coupling, exchange terms are ex-
p1icitly treated, and the effects of the nuclear medium are
included. In the following, both types of input proton-
nucleus optical potentials will be used in the relativistic
KDP model. The results will be compared with those ob-
tained from a nonrelativistic Watanabe model based on
the Schrodinger equation.

As in the previous case, the deuteron-nucleus scalar
and vector potentials are large and have opposite signs.
The effective potentials, however, are again of reasonable
magnitude. A comparison of the KDP-based effective
potentials, calculated as in Fig. 2, and those obtained
from a Schrodinger-based Watanabe model with input
Dirac effective potentials is shown in Fig. 4. The
nucleon-nucleus potential parameters of Ref. 51 have
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FIG. 3. Elastic scattering observables for d+ "Ni at 400
MeV. The experimental data are from Ref. 14 and the solid
curves are the predictions of the KDP model.

FICi. 4. EfFective central and spin-orbit potentials for
d+ Ca elastic scattering at 700 MeV. The solid lines represent
the KDP model predictions and the dashed curves the nonrela-
tivistic model predictions of Ref. 34.
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ing data, comparison of these two sets of predicted ob-
servables provides a measure of the differences between
the KDP and the traditional Schrodinger equation ap-
proaches. The differences are significant with both mod-
els displaying advantages and disadvantages, but neither
of these first-order calculations provides a quantitative fit
to the data.

VII. SUMMARY

In this paper we have developed the spin-one KDP for-
malism and applied it to intermediate-energy deuteron-
nucleus elastic scattering. The formalism, which is
equivalent to the more familiar Proca equation in the
free-particle case gives, in general, different results when
interactions are considered. The KDP equation is partic-
ularly flexible in regard to interactions, as two distinct
Lorentz scalars and vectors exist. We have performed an
approximate reduction of the first-order KDP equation
to an effective second-order form for various choices of
the interaction. A heuristic argument was given as to
why the "two-body" nature of the deuteron implies a
specific form of the interaction to be used for deuteron-
nucleus scattering.

A relativistic generalization of the Watanabe model
was used to determine the KDP deuteron-nucleus scalar
and vector potentials in terms of the nucleon-nucleus sca-
lar and vector potentials obtained from a Dirac equation
approach. No further parameters were varied in an at-
tempt to optimize the fit to the deuteron-nucleus data.
This was done in order to test the consistency of a relativ-
istic approach to nuclear scattering and also to investi-
gate the predictive power of the model. Various effects
were omitted from our treatment; these include the ten-
sor potentials that occur in the effective second-order
KDP equation, and virtual deuteron breakup. The tensor
potentials were neglected in order to make it possible to
perform calculations with existing computer codes. A
straightforward way of including them would be to solve
the first-order equation (3.1). The breakup eff'ect involves
the complexities of the relativistic few-body problem and
is more difficult to deal with.

We have seen that a generalization of the Watanabe
model based on a one-body spin-1 relativistic wave equa-
tion provides a reasonable starting point for describing
intermediate-energy deuteron-nucleus scattering. This
conclusion is based on a. direct comparison of the predict-
ed scattering observables with experimental data. It
would be interesting to see how the above results are
modified if Eq. (3.1) is solved exactly or if one includes a
relativistic structure model. The present treatment is a
"first-order" model of relativistic deuteron-nucleus
scattering which possesses predictive power and provides
evidence for the consistency of the relativistic approach.
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FICx. 6. Elastic scattering observables for d+ Ca at 700
MeV. The data are from Ref. 14. The dashed curves are from a
Schrodinger equation Watanabe model calculation using
Schrodinger equivalent, Dirac phenomenological nucleon-
nucleus potentials. The corresponding KDP calculations (solid
curves) are the same as the solid curves in Fig. 5.

APPENDIX A

It is demonstrated that, for a spherically symmetric in-
teraction, the spacelike parts of the vector potentials do
not affect the elastic scattering.

We write Eq. (3.1) in time-independent form
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(P E+iP V —m —U)/=0,
and assume that U in Eq. (3.2) has spherical symmetry
and therefore has the form

When the explicit expression for co is substituted into
Eqs. (83), (85), and (86) they become, assuming spherical
symmetry,

U(r) =S(r)+PS'(r)+P V (r) P—rV"(r)

+p PVp(r) prP—Vp(r) .

We define the new wave function y by

(A2)

dVc r . cjyV- A+icoy=- (E—Vc )—A i-
m2 dr ' r gr

, dVc
(V +co —m ) A= — ryr dr

(87)

/=exp i —f "[V"(r')+PV„"(r'))dr' (A3)

It is clear that for short-ranged interactions y approaches
g as r ~~. Thus g will yield the same scattering observ-
ables as g. An equation for y can be derived by substitut-
ing (A3) into (Al). The result is

IP [E—V(r) PVp(r—)]+iP.V
—[m+S(r)+PS (r)]Iy=O, (A4)

dVc r
V (E—Vc )—A

m2 dr r

.dVc r
(V +co —m ) A=i —A

dr r

(8&)

where the 0 superscripts have been dropped from the
timelike vector potentials.

The "phase-equivalent" wave function y obeys an
equation which is identical to that obeyed by g except
that the spacelike parts of the vector potentials do not ap-
pear. Hence, one need only consider the simpler interac-
tion given in Eq. (3.3) for the case of elastic scattering.

APPENDIX 8

We show that for a spherically symmetric static
Coulomb potential, the KDP and Proca equations yield
identical results.

We work with Eqs. (3.4) and (3.5) with m, =m2=m
and ~, =~2—=~ where ~=E—V~ with V~ being the stat-
ic Coulomb potential. Eliminating E and 8 from Eq.
(3.4) gives

. co dVc+i (E —Vc )—A i—C

(89)

which are identical to the equations derived by Corben
and Schwinger starting from the Proca formalism. (In
order to make contact with the conventions of Ref. 39,
the replacements y~ —i y and Vc~—Vz must be
made. )

APPENDIX C

We derive some relations which will be used in Appen-
dix D to determine the structure of Eq. (4.2). In order to
write Eq. (4.2) in terms of spin operators, the following
representation of the spin-one matrices will be used:

and

iV (ioA)+V cp=m y,

e) A —imVcp —V ~V~ A=m A .

(Bl)

(82)

[Sk ]ij — l Eij k

where e; k is the totally antisymmetric Levi-Cevita sym-
bol. One can also represent vector cross products in
termsofe;I, as

V A+itsy= f, (83)

By taking the gradient of Eq. (82) and substituting from
Eq. (Bl}, the following useful auxiliary equation is ob-
tained:

(CXD); =E; kC Dk .

We first wish to rewrite the expression r(r A) in terms
of spin-one matrices. This can be done by expanding the
expression (S r }(Sr) A to obtain

where [(S r)(S r) A]i=eijkej&~rkr Ai, (C3)

f—:
2 [Vco (co A) i Vco Vip] —. .1

m

where Eq. (Cl) has been used. Employing the well-
known identity

We now use the vector identity

VXVX A=V(V A}—V A

in Eq. (82) and substitute the result in Eq. (83) to get

barmn erst ~ms ~nt ~mt ~ns

where 5; is the Kronecker delta, Eq. (C3) becomes

[(S.r)(S r) A];=rkrk A; r; rk Ak . —

(C4)

(C5)
(V +co —m ) A= i(Vco)g+Vf —.

Inserting Eq. (83) into Eq. (Bl) yields the equation
Converting Eq. (C5) back to vector notation and compar-
ing with Eq. (C3) yields the identity

(V +co —m )ip= iVco A icof . — —(86} r(r. A)=r A —(S.r)(S.r) A (C6)
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which will be used in the following appendix.
It will be convenient to rewrite the vector expression

V X (r X A). Expanding into components gives

Combining Eqs. (C12), (C15), and (C16) we obtain

rX(VX A)=2A+(L. S)A —i(S p)(S r)A . (C20)

[VX(rX A)]; =e; kV ski ri A (C7) Finally, we wish to rewrite the vector expression
V(r. A). Using the identity

The above equation can be.expressed in terms of spin-one
matrices with the help of Eq. (C1) where the right-hand
side of Eq. (C7) becomes

V(C D)=(D V)C+(C.V)D

+DX(VXC)+CX(VXD), (C21)
—i[S ];i,P [Si]k~r. i A~ .

Combining Eqs. (C7) and (C8) results in the following
identity:

and again the properties of the r vector, it is found that

V(r A)=3A+(r V)A+(rXV)X A+VX(rX A) .

(C22)
VX(rX A)= —i(S p)(S r)A, (C9)

Substituting from Eqs. (C9) and (C12) yields

(rXV)X A=iLX A . (C10)

The expression on the right-hand side of the above equa-
tion is given in terms of components as

ie; kI. Ak . (Cl 1)

If Eq. (Cl) is substituted into the above expression the
following identity is seen to hold:

(rXV)X A=(L S) A . (C12)

It is also necessary to rewrite r(V A). With the help
of the following vector identity:

which will be used below.
The expression (r X V) X A also appears when manipu-

lating Eq. (4.2) and is easily seen to give a spin-orbit type
of contribution. Using the definition of the angular
momentum vector, we get

V(r A) =3 A+(r V) A+(L S) A —i(S.p)(S r) A .

(C23)

The relevant equations for Appendix D are (C6), (C15),
(C20), and (C23).

APPENDIX D

In this appendix Eqs. (4.3) and (4.4) are derived from
Eq. (4.2) and the eft'ective potentials given in Eqs.
(4.8)—(4. 11)are obtained for the various cases.

The left-hand side of Eq. (4.2) is seen to consist of three
terms. The structure of the third term is trivial and will
not be explicitly worked out here. The first term consists
of two pieces:

m, VX VX A
1

mp

C(V D)=(C V)D+VX(CXD) —(D V)C+C(V D),
(C13)

and using the special properties of the vector r we obtain

(VX A) .=VXVX A+ m, V
1

m2

For convenience, we make the definitions

(D 1)

r(V A)=2A+(r. V) A+VX(rX A) .

On applying Eq. (C9), the above equation becomes

r(V A)=2A+(r V)A —i(S p)(S r)A,

(C14)

(C15)

and

F] —=V XV'X A,

1
F2 = m27

m2
X(VX A) .

(D2)

(D3)

which is a useful result for Appendix D.
We will also need to reexpress r X(VX A) in terms of

spin-one matrices. Written in terms of components it is

While F2 is nonzero only for cases II and IV, the F, term
is present in every case. Using the vector identity Eq.
(84), it is seen that

/Jk J kill I P7 (C16)
Fi =V(V A) —V A .

Using the permutation properties of the Levi-Cevita sym-
bol expression (C16) becomes For a spherically symmetric potential, the F2 term can be

rewritten in the form
~kij ~klm ~j ~1 ~m (C17)

Fz= —A[rX(VX A)], (D5)
If the identity (C4) is used to compare the factor Ek;JEki'
with e,k ekj&, it can be seen that expression (C17) is
equivalent to

with A defined by Eq. (4.5). After substituting from Eq.
(C20), the above equation now reads

(E;„e„i+5,5,, —5; 5 i)r ViA.
or in vector notation,

(r X V) X A+r(V A) —(r V) A .

(C18)

(C19)

F2= —A[2+(L S)—i(S p)(S r)] A .

It is also useful to split the second term from the left-
hand side of Eq. (4.2) into two terms as
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C02V

r

'A =G(+G2, (D7)
Gz=II[r(V A)+V(r A)]

where

and

1
V (mi A)

m&
(D8)

+ — +QA —0 r(r A),1 BQ 2

4 Br
(D 1 1)

where 0 is defined in Eq. (4.7). Using identities (C6) and
(C23) in Eq. (D10) yields

1 1 1
G2 =——co2 V— V.(m, A) —co2V V

602 Vl ) 672

~ A
+ ——[(S r) —r ]A,1 BA

r Br
(D12)

G, = —V(V A) —A[3+(r V)+(I. S)—i(S p)(S r)]A

(D9)

The term G
&

contributes in each of the four cases, while

G2 yields a nonzero contribution from the Coulomb po-
tential for cases I and II and for Coulomb plus the nu-
clear vector potential for cases III and IV. For cases III
and IV, assuming spherical symmetry, we have

while employing identities (C6), (C15), and (C23) in Eq.
(Dl 1) gives

G2=Q[5+2(r.V)+(1. S)—2i(S p)(S r)] A

+ — +RA —II [r —(S.r) ]A .
1 BA 2 2 2

r Br

Gi = —V(V. A) —— r(r A) —AV(r A), (D10)
1 BA
r Br

For cases I and II replace II by X in Eqs. (Dl1) and
(D13).
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