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Two statistical approaches to nuclear disassembly are compared. One is based on a sequential
chain of binary decays, and the other on the microcanonical treatment of fragment configurations in
a fixed freeze-out volume. The two approaches are formulated in a manner to facilitate this com-
parison. A volume related to the sequential approach is defined. This volume is interpreted in
terms of entropy conservation. Effective freeze-out volumes are defined for various yields. From
this it is shown how similar predictions can arise from the approaches which are based on mutually
incompatible assumptions. Differences in Coulomb effects are explored. A detailed comparison of
two sets of predictions is made for a test example, and the reasons behind specific differences are
studied. It is suggested that such differences can serve as experimental signatures to distinguish
which approach is more appropriate.

I. INTRODUCTION

Two different theoretical procedures both based on
phase-space statistical features are currently being used
to calculate the yields of intermediate mass fragments
from highly excited nuclei. These procedures are very
different in their, assumptions, input parameters, and
supposed scenarios for the formation of the fragments.

One of these, exemplified by the calculations of Ref. 1,
treats a decaying source which deexcites by a series of
binary decays wherein a fragment (relatively unexcited)
separates from the larger excited source. This procedure
assumes that the total breakup follows from a chain of
sequential binary processes. In the following discussion
this procedure will be designated as the sequential ap-
proach. The total inclusive yield of the fragments calcu-
lated by this procedure is determined by summing the
contributions from each of the individual decays which
occur during the cooling process. The rates at each stage
are calculated, and branching ratios, obtained from these,
determine the competition among the different channels
for decay at each stage. The relative decay rates are cal-
culated using the assumption of detailed balance pro-
posed by Weisskopf. This leads to rates which are
governed, in part, by the relative phase space for each of
the possible binary processes. The detailed-balance pro-
cedure requires one to calculate the rate for the inverse
reaction, i.e., absorption. It is in combination with this
inverse rate that phase space (density of states) deter-
mines the emission rate.

The other approach, exemplified by the calculations of
Ref. 3, takes a microcanonical approach. It assumes that

. the yield of fragments is determined by the relative
phase-space weights (density of states) for channels
chosen in a given volume (freeze-out volume) at one in-
stant. This approach will be designated hereafter as the
freeze out approach. The phas-e-space considerations in
this procedure involve distributions which have
numerous fragments —not simply the binary pairs in-

volved at each stage of a sequential breakup. It is as-
sumed that all of the particles are in equilibrium with one
another in the freeze-out volume, that each configuration
is equally likely, and that the distribution among the par-
ticles is fixed as the system expands beyond the freeze-out
volume. A crucial element, or parameter, of all calcula-
tions based on this procedure is the specific size of the
freeze-out volume.

In the freeze-out approach the entropy increases up to
the freeze-out condition and remains constant thereafter.
On the other hand in the sequential decay approach the
entropy is determined at the initial decay stage prior to
emission.

Both procedures have been applied to excited systems
which ultimately result in tens of fragments. The as-
sumption, at lower energies, that there exists a single
freeze-out volume or a time at which all the fragments
are in equilibrium, seems highly questionable. On the
other hand, at higher energies where successive steps fol-
low closely on one another, the assumption that the steps
are distinct also becomes questionable. Calculations us-
ing both of these techniques have been carried out over
wide ranges of energy, where one might expect one or the
other of these procedures to be invalid. The surprising
feature of these calculations is that they provide inclusive
particle yields which are qualitatively similar despite the
great qualitative difference in the assumptions underlying
each of the procedures.

The purpose of this work is to explore the relationship
between the two procedures. By so doing we will demon-
strate how both procedures can provide similar values for
inclusive yields even when their assumptions are comple-
mentary. One of the difficulties in comparing the two ap-
proaches is that the sequential approach is framed in
terms of instantaneous rates, which change as the residue
cools, while the full phase-space procedure is framed in
terms of probabilities. In addition, the freeze-out
volume, which is crucial to the results of the full phase-
space approach never enters the sequential picture, while
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the cross section and Aux for the absorption process,
which are important to the latter, play no role in the full
phase-space approach.

In Sec. II we review the formal structure of the two ap-
proaches and establish the notation followed in the
remainder of the paper. We reformulate the sequential
approach in terms of probabilities by using the rates to
obtain branching ratios. Probabilities for given
configurations of fragments can be obtained from these
ratios. We then express the relative probability weights
for a given configuration, in the language of each of the
approaches. This exercise is used to illustrate the formal
(structural) connection between the freeze-out volume, on
the one hand, and the product of factors in the sequential
approach which constitute an ejfectiue volume.

In Sec. III we interpret the effective volume of Sec. II
in terms of entropy conservation. This will also demon-
strate that total entropy is conserved with each emission
ever though the entropy of the residue decreases.

Section IV deals with a formal comparison of the
volume aspects of the two approaches. We obtain
equiuaIent freeze-out volumes, which, when used in the
full phase-space formalism, can reproduce the multiplici-
ties predicted by the sequential approach. We consider a
specific case of' ' Au to examine these equivalent
volumes at different excitation energies. This illustration
provides a means of seeing why the similar numerical
predictions arise from the disparate and mutually incom-
patible approaches.

In Sec. V we discuss those differences between the two
approaches which arise from differences in the way each
deals with the Coulomb effects. In Sec. VI we predict
various features for the disassembly of a given test system
using two formalisms based on the two approaches. We
note the differences and show how these can be under-
stood in terms of the discussions of the previous sections,
The differences which are found suggest signatures for
determining which approach is most appropriate for a
given experimental situation. Section VII contains a brief
summary of conclusions.

II. FORMALISM

into a residue C2, plus an emitted particle labeled b. The
general expression for the rate of this decay is given by

(dNb/«), ;„;o„=(2~/&)IMfl pf (2.1)

(dNb /dt)absorption + b+ Cqdb

=(2'/fi) Mf; pt r (2.2)

where o is the absorption cross section and P is the in-
coming Aux of particles b. The states represented by i
and f are the same as above. If we assume that the mag-
nitude of the two matrix elements are equal, then

(dNbldt), ;„;,„=(crb+c rtrb)(pf/p; ) . (2.3)

Following Weisskopf, we next take the Aux as that associ-
ated with a single particle in an very large box of volume
Q. This provides a Aux, P=U/0, where U is the velocity
of the emitted particle. The level density p;(E, ) is the
density of the microscopic states of the excited system
C&. For p& we use the following expression treating the
continuum states in a semiclassical fashion:

pf = Jpc [E; pbl(2mb—) Sb]gbd pbQ—/(2m%) & (2.4)

where pc is the density of the microscopic states of the
2

residual system C2 following emission of particle b which
has mass mb, separation energy S&, and degeneracy g&.
We assume a simple geometric form for the absorption
cross section,

where i represents a compound nuclear state CI, with en-

ergy E;, and f represents the products of the decay, i.e.,
the residue and emitted particle. The density of final
states is represented by pf. The matrix element lM,f l

can
be estimated under the assumption of detailed balance as
suggested by Weisskopf. For this we consider the in-
verse process, absorption, for which

IN this section we develop formal expressions that are
useful in calculating the relative probability for the
disassembly of an excited nucleus into various groups of
fragments. These will be developed for both the sequen-
tial and the freeze-out procedures. Our purpose is to es-
tablish a notation for later discussions and also to provide
expressions for each of the two approaches which may be
compared most easily.

wb+C2 Nsoo(b& C2 )[1—V '"'(b, C~ )/Eb ]

XO[1—V '"'(b, C2)/Eb], (2.5)

where o „=m'R and V '"' is the Coulomb barrier.
We combine these expressions into Eq. (2.3) and shift

the energy scale for the emitted particles so that the new
momentum p is given by

A. Sequential approach p /(2mb)=p /(2mb) —V '"' . (2.6)

We begin by considering one stage in the sequential de-
cay. Let us consider an excited system Ci, which decays

This leads to the following expression for the emission
rate:
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(dN„/dt)= fmrs„(b, C2)ubpc [E; —p /(2mb) —V '"'—Sb]/pc (E; )gbd p/(2mA)

This integral extends over the entire space of rnomenturn since p goes to zero at the top of the Coulomb barrier. In sub-
sequent expressions we drop the tilde from U and p but the meaning is unchanged.

We now use the expressions for the decay rate to obtain the branching ratios, Rb(C). These give the probability that
the decay, which occurs from condition C, results in the emission of particle b:

R„(C)=I /I =[dN (C)/dt] g(dN, /dt) .
b'

The branching ratio can be written in the following form:

Rb(C)= f gbd p/(2rrfi) B(b,p;C, EC),

where

8(b, p;C„Ei)=[os„(b)C2)ubr(C, )]pc [Ec —pb/(2mb) Sb ——V '"'(b, C2)]/pc (Ec ),

(2.8)

(2.9)

(2.10)

where Cz is the residue of the decay of C, by the emission of particle b and r=irt/I .
Let us now consider the decay of the system C& by a chain of N sequential decays into specific fragments, b;

(i = 1 ~N) and a final residue Cb, +,. The probability weight for the emission of this set of fragments, 8'({b;I ), is
found from a product of probabilities associated with each stage of the decay

Ã N

~({b;I)= g f + &(b, , p, , C, ,E, )(g d'p /(2rriii)' g dC, ,5[C, „(C; b;)], —
permut i =1 l =2

(2.11)

where the symbolic 5 function in the integral over C;+, signifies that the mass, charge, and energy of the residue, be
found from C; by the removal of particle b;, for example,

E =E —p /(2m ) —Sb c —
Vb 'c' (2.12)

The chain of factors pc /pc, which implicitly occurs in Eq. (2.11) in the product of 8 (b;, p;; C„E;), simplifies by pair-i+1 i

wise cancellation so that

N

W({b,I)= g .f Q (g d p /(2rrh) (our);(pc /p. o ) + 5[C;+„(C; b;)]dC;+-,
permut i = I l =2

(2.13)

with sible chains. Finally, it was shown in Ref. 4 that an ap-
proximate value of the multiplicity is obtained from

(our); =[os„(b;,C;+i)ub r(C; )] .
m =JR ((C;)), (2.15)

m. = y (R.(C,. )),
stages

(2.14)

where the angular brackets represent an average over all
the conditions C; encountered in the collection of all pos-

The collection of fragments {b; I can be specified by the
number n, of each type of fragment a. We then note
that the sum over the perrnutations of emission order in-
volves N!/Q n ! terms.

Finally we can use the probability information for each
chain of decays to obtain a prediction of the mean multi-
plicity, m, for specific type of fragment. It has been
shown in Ref. 4 that the mean multiplicity can be found
by summing the probability for production at each stage.
This is given by

where the average values of the conditions for each stage
are used.

B. Freeze-out approach

We now turn to the freeze-out procedure for determin-
ing fragment yields. As in the previous subsection, let us
consider the break up of a system C, into X fragments,
b&, b2, . . . , b&, plus a residue CN+&. The collection of
fragments is characterized by n, which gives the number
of fragments of the type o. among the collection.

We next determine the relative probability for the
chosen emission configuration. In the freeze-out picture
this probability is proportional to the density of final
states in the freeze-out volume of chosen size
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f g g, d'p, d'r, j(2~a)'p, (E, )5.E,
i=1

Ec —g pb /(2mb ) —g Sb —V '"' +n ! (2.16)

In the expression above the spacial integral is taken over the freeze-out volume. If this volume is not too small the ex-
cluded volume (avoided overlap) can be ignored and we may approximate each of the integrals over spacial coordinates
by the full freeze-out volume VF and replace the Coulomb potential energy V '"' in the energy conserving 6 function by
its average. Equation (2.16) involves a relative probability. This is unchanged if we multiply by a factor common to all
final configurations, namely, 1/pc (E, ):

1

N

pf N! gn ! (V /N!)f /g d p /(2 I) [p (E )jp (E )]
i=1

X 5 ~ Ec —Ec —g pi, /(2mb ) —g Sb —V '"' (2.17)

pc, (pc, jpc, )(pc, /pc, ). . (1 jpc„) (2.18)

where the C s and Ec 's are chosen consistent with the
t

b s for a given permutation.
Let us represent the average Coulomb energy by a mul-

tiple of the sum of pairwise Coulomb barriers used in the
sequential decay

( Vcoul ) f y Vcoul(b (2.19)

The factor f suggests that the Coulomb energy associated
with the freeze-out configuration dieters from the simple

Next let us consider the permutations of the order of
factors in the product over fragments. We can replace
the factor (N!/ii n !) by a sum over all such permuta-
tions. Finally, for each permutation, let us introduce uni-
ty in the following representation:

sum of Coulomb barriers. In the latter, particles leaving
the residue with zero relative velocity acquire kinetic en-
ergy as they move outward from the barrier tops. This
kinetic energy represents the total Coulomb energy asso-
ciated with the sequential picture. In the freeze-out pic-
ture, on the other hand, the particles once released
remain in equilibrium with the other fragments in the
freeze-out volume. Those particles with zero velocity at
the freeze-out configuration subsequently acquire kinetic
energy in moving from that configuration to infinity. On
average the electrical potential energy of the charged
fragments is lower in the freeze-out configuration than at
the top of the barriers of the residues. For this reason
one would expect the factor f in Eq. (2.19) to be less than
1.

With the Coulomb energy represented by the sum in
Eq. (2.19) we may now write the energy conserving 5
function of Eq. (2.17) as follows:

—Ec gpb /(2mb —) —QSb —V '"' .= f g dC,. +,5IEc —[Ec —
pb j(2mb ) —Sb fV '"'(b;, C, +,—)]].

l =2

(2.20)

Combining the features above, we obtain an expression for the relative weight given the chosen configuration in the
freeze-out picture, which can readily be compared with the corresponding weight given in the sequential picture

W([b; j) p g f g g d p /(2rriri) ( V /N)(p /p ) g 5[C; „(C; 5;)]dC;— (2.21)
permut i =1 I =2

where we have used Stirling's approximation,
N!=(Nje) .

Let us compare Eq. (2.13) in the sequential approach
with Eq. (2.21) in the freeze-out approach. The factors
which are common to the two expressions have the same
meanings with the exception of the relationship between
E& and E&. In the freeze-out picture this involves ai+1
modified Coulomb barrier height. Apart from this
di6'erence, to which we will return in Sec. V, it can clear-
ly be seen that probability weights for a given
configuration calculated in a freeze-out picture and those

I

in a sequential decay picture involve expressions where
the factor (e VF /N) of the former is replaced by (o Ur); of
the latter.

While (eVF/N) is a constant for a given decay, (o Ur);
depends both on the type of emitted fragment through o.

and v and on the stage of emission i through ~. Whereas
in the freeze-out approach, the coordinate volume is mu-
tually occupied by ajl the fragments, in the sequential de-
cay picture a phase-space volume can be assigned to each
of the fragments individually. The coordinate portions of
these volumes are not common to all the fragments. In
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stead, the fragments occupy mutually exclusive zones at
different distances from the center of decay. The phase-
space volume for each decay fragment is determined dur-
ing the stage of its decay and then the magnitude of this
volume remains constant for subsequent times as the
fragment moves away and another is emitted. The topic
of volumes in the sequential decay picture is investigated
and interpreted in the following section.

III. VOLUMES AND ENTROPY CONSIDERATIONS

C, C, +b, (3.1)

S~ (E ) ) Sc (E )
—

pb /(2mb ) —Sb )

e ' = f e '
gbd pb/(2m%') V, (3.2)

where the system C, has energy Ei. Let us assume that
after emission the particle b is confined to a volume V. If
the entropy before and after decay is to be the same then
a specific value of V is required. This will be called the
isentropic volume. This volume is determined by

In this section we examine that factor which is substi-
tuted for the freeze-out volume in the sequential ap-
proach. We shall provide a physical interpretation of this
factor and show that it is related to the conservation of
entropy in the emission process.

Let us first consider a specific binary decay

where S&, gb, and mb are the separation energy, degen-
eracy factor, and the mass of the emitted fragment, and
S(E) represents the respective entropies of the systems
C, and C2. When we associate the density of states with
the exponential of the entropy we obtain the following
condition for the isentropic volume:

1=fpc [Ei pb
—
/(2mb ) —Sb ]/pc (Ei )gbd pb /(2%6') V . (3.3)

Let us now compare this condition with a similar condition which arises in the detailed-balance expression for the de-
cay rate given in the preceding section:

(dNb/dt)=1/~b =f (o u)pc [E, pb/(2m—b) Sb]/pc —(E, )gbd p„/(2M) (3.4)

Upon rearrangement this becomes

1 —f &ourb &pc [Ei pb/(2mb —) —S/, ]/pc (E, )gbd'pt, /(27rA')', (3.5)
i

where & o u~i, & involves the average of pb taken with weight given by (pc /pc ).
2 1

( learly & o ur& & can be associated with the isentropic volume. If we take o =mR then this is the volume that is occu-
pied by the average Qux which comes from the surface of the source during the period of time associated with the emis-
sion of one fragment of type b. As such, it expresses the uncertainty in location of that particle. Thus, it is reasonable
that & o urb & represent the volume portion of the phase space for the emitted particle.

As an illustration, let us apply the aforementioned conditions to the case of a free gas of 3 identical particles in a
spherical volume of size V, from which the particles emerge without requiring separation energy. We can easily calcu-
late the number of states before and after emission, and find the volume V in which the emitted particle must be
confined in order to keep the entropy (number of states) constant.

The initial number of states is given by
A

f V/A! + d p, /(2m. A) 5 E, —g p; /(2m) (3.6)

If the final residue occupies the same volume as the initial system then the final number of states is given by

A —1 A —1

f V" '/(2 —1)! + d p;/(2 iri) 5 E, —g p, /(2m) 5IE —[E,—p„/(2m)]IdE d p„ (2/M) V . (3.7)

The condition which conserves the entropy is

V= V/A . (3.8a)

If the residue were to have the same density (as against
the same volume) as the original system then the condi-
tion for constant entropy is

V= Ve/~ . (3.8b)

The approximation indicated for this result is
(1—1/A)" '=1/e.

By reversing the preceding arguments one can use the
isentropic volume to find the decay rate. For the simple
example of a gas of identical particles in a sphere we ob-
tain

(3.9)

This corresponds to the result obtained by counting the
instantaneous How of particles through the walls of the
sphere.

Let us next consider the competition among various
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binary decay channels of a source. We assume that frag-
ments of type b emerge into isentropic volumes Vb, and
that the number of final states is obtained by summing
over all of the types of emitted fragments. The require-
ment that entropy be conserved then becomes

1=2 Jpc —b/pc gbd pb/(2vrfi) (Vb) . (3.10)

The full decay rate is the sum of the partial decay rates so
that

decay expression into a freeze-out expression with
volume V,ff. The multiplicity for a specific fragment, o;,
is approximated in Eq. (2.15) by

m =JR ((C; &) .

To determine V,ff we require that the multiplicity remain
unchanged by the modification of Eq. (4.1),

(4.3)

where the average is taken over the momentum distribu-
tion.

Comparing Eq. (3.12) and (3.10) we find that the isen-
tropic volume Vb may be associated with ( o b ubr &. This
is the same "volume" expression that arose in the previ-
ous section.

IV. FORMAL COMPARISON OF APPROACHES:
SIMILARITIES

In this section we make a formal comparison of predic-
tions for fragment multiplicity according to the two pro-
cedures. We have previously noted that the freeze-out
volume is a parameter to be chosen in that approach. In
this section we will define an ejfectiue freeze-out volume
which can be associated with each sequential decay calcu-
lation. We will show that the value of such a volume is,
in many cases, not dissimilar from those volumes conven-
tionally chosen in the freeze-out approach. The extent to
which the two are the same suggests that multiplicity
predictions can be similar using the two approaches.

In Sec. II we demonstrated that the structural
difference between the freeze-out and the sequential pre-
dictions for the decay into M fragments is essentially as-
sociated with the replacement of V~e/M in the former by
( crbubr & in the latter. Imagine that for every fragment b
and every stage i that the two factors were identical.
Then we would expect the multiplicities predicted by the
two methods to be the same. In general, the factors are
not the same. We now define the e+ectiue freeze-out
volume for the sequential approach to be that volume
which, used in the freeze-out approach, will provide the
same multiplicity.

To obtain such a volume let us modify each of the
branching ratios that appears in the sequential expres-
sions for configuration probability by the following:

Rb(C, )~Rb(C; )f, b,
where

f; b =—( V,tre/M)/((obubr& ) .

(4.1)

(4.2)

This procedure has the effect of converting the sequential

1 g (r/rb )
b

where ~ is the time for decay of the original system by
any of the available channels. With the detailed-balance
expression for ~b we obtain

1 =+ J (~bubr&Pc~ b/Pc~gbd Pb/(2M), (3.12)

This definition leads to the following value for V,ff ..

V,s =M/e([1/((cr u &r)] &, (4.4)

where the inner average (as above) is over the velocity
distribution of the fragments, and the outer average is
over the stages of decay weighted according to the corre-
sponding branching ratio.

The specific value of V,ff depends on both the fragment
type a and the initial excitation energy. We shall illus-
trate this dependence through an example to follow.

It is useful for comparison to specify V,ff by an
effective radius r,ff where V,ff=4m. /3r, ffA, with A the
mass number of the original system. This permits easy
comparison of the freeze-out density with that of nuclear
matter for which a value of r,ff=1. 1 is appropriate. It
also permits comparison with the range of the nuclear
force.

As a specific example we consider a ' Au nucleus
which is excited to an initial temperature of 6 MeV (exci-
tation of approximately 538 MeV). We have calculated
the decay rates at successive stages using the formalism
described in Ref. 1. We include 65 isotopes with mass
number less than 20, and include bound states of these as
fragments competing for emission. The calculation pre-
dicts a mean multiplicity of 28 fragments, most of which
are neutrons. From these results we have calculated the
decay time at each stage and the branching ratios. For
the average over fragment cross section and velocity we
have taken

(crbu & =mr (Ac '+A' ) [8T /(mm )]'
t

(4 5)

where T, is the temperature at stage i.
In Fig. 1 we display the results of the calculation of r,ff

for a large number of isotopes whose mass is given along
the abscissa. The general trend of the results is to suggest
a value for the effective radius which is about 2 fm. This
is roughly the value used in freeze-out calculations. It is
clear, however, that the efFective volume depends on the
fragment type, and it varies in a systematic way, reducing
with increasing mass. This dependence arises predom-
inately from the fragment mass dependence in the aver-
age velocity. Since, for a given stage, the average kinetic
energy of each fragment type is the same, the average ve-
locity must go inversely as the square root of the mass.
This follows the general trend in Fig. 1. This trend sug-
gests that predictions by the sequential decay approach
will suppress heavier fragments relative to light (or em-
phasize light relative to heavy) when compared to a
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FIG. 1. Calculated effective freeze-out radii for the yield of
various isotopes from ' 'Au excited to 538 MeV.

freeze-out calculation which sets one volume for all types
of particles.

%'e have multiplied each cross section by (mb)' to
effectively remove the mass dependence in the velocity.
The subsequent values of r,z are shown in Fig. 2. Note
that some variation of r,z with the fragment type remain.
These variations result from differences in the profile of
the branching ratio with the decay stage, and also from
the weak dependence of the geometric cross section on
fragment size. The values for both neutrons and a parti-
cles, whose emission continues to the latest stages, are
higher than average. The sequential decay will em-
phasize neutron emission due to both the late decay and
the low mass of this particle.

We find that the effective volume also depends on the
initial excitation energy. To illustrate this dependence we
have calculated, as a function of excitation energy,
effective freeze-out volumes to provide the same multipli-
city of (a) neutrons, (b) charged particle, (c) heavy parti-

cles (mass number greater than 8), and (d) total multip1i-
city. The four corresponding effective radii are plotted
against excitation energy in Fig. 3. The effective volume
tends to decrease with increasing excitation energy due
primarily to decreasing decay times. The difference be-
tween neutrons and heavy fragments is greatest for the
lower energies. The total multiplicity is to a great extent
dominated by the neutron yield especially at the lowest
energies. Let us assume that a freeze-out calculation is
performed with radius of 2 fm. Then at the lowest ener-
gies we would expect close agreement between sequential
decay and freeze-out predictions for heavy fragment
emission. A large difference with respect to the lightest
fragments would be expected, however, with the sequen-
tial approach predicting much higher yields. For ener-
gies of about 1 GeV, the neutron and total multiplicities
would be similar but the charged particle and heavy frag-
ments would be suppressed in the sequential approach
relative to a freeze-out calculation.

The foregoing discussion only compares the numerical
predictions that the two methods are likely to give and
does not address the question of which of the two
methods is more likely to be valid in different energy re-
gimes. Clearly the assumptions of the freeze-out ap-
proach are not likely to be valid at low energies, and
those of the sequential decay are not likely to be valid at
the highest energies. In general the assumptions make
the two approaches complementary. The results
displayed in Fig. 3 suggest, however, that over a very
wide range of energies some or all of the multiplicity pre-
dictions of the two methods may be numerically similar
despite the vast differences in the assumptions of the two
approaches. In Sec. VI we will concentrate on the
differences in the predictions and discuss possible experi-
mental signatures to distinguish which method is most
appropriate.

V. COULOMB POTENTIAL ENERGY

In Sec. II we pointed out that in the freeze-out expres-
sion the total energy of a configuration requires the
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FIG. 2. Calculated effective freeze-out radii for the yield of
various isotopes from ' Au excited to 538 MeV. Each absorp-
tion cross section has been multiplied by the square root of the
fragment mass to remove the mass effect from the velocity.
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FIG. 3. Effective freeze-out radii as a function of initial exci-
tation energy for the yield of neutrons (X), charged fragments
(C), heavy fragments (H), and total multiplicity (T).
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FIG. 4. Mass of Anal residue, from the decay of ' Au excited
to S38 MeV, as a function of the scale factor of the Coulomb
barriers in sequential decay.

FICx. 6. Multiplicity of charged fragments, from the decay of
Au excited to S38 MeV, as a function of the scale factor for

the Coulomb barriers in sequential decay.
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many-body Coulomb potential for the fragmentation. A
similar role is played in the sequential approach by the
sum of binary Coulomb barriers for each of the stages of
decay. This represents a major difFerence between the ap-
proaches. As we have noted, the many-body Coulomb
potential energy in the freeze-out volume would be ex-
pected to be lower than the sum of barriers since the par-
ticles on average are farther apart. This e6'ect can be ex-
amined by exploring sequential decay calculations with
reduced Coulomb barriers at each of the binary decays.
This was suggested in Eq. (2.19) where we introduced the
scale factor f in each of the energy conserving delta func-
tions. %'e will examine how reduced barriers inAuence
several aspects of the multiplicity yields. Some of these
features may permit discrimination between experimental
situations in which either sequential decay or freeze out
occurs.

The mass of the mean residue at the end of the decay is
found to be strongly influenced by the magnitude of the
Coulomb barrier. We have used sequential decay calcula-
tions with Coulomb barriers reduced by scaling factors to

obtain predictions of the mass of Anal residues. The ini-
tial system is ' Au discussed in Sec. IV. In Fig. 4 we
p1ot these predicted masses as a function of the reduction
scale factor. We see a marked change in the mass with
reduced barriers. This may be associated with an in-
crease in the yie1d of heavier fragments, as shown in Fig.
5. Considering these Coulomb e6'ects we might expect
that a freeze-out calculation would predict a lower mass
for the final residue (or largest fragment) compared to the
sequential calculation. The same difFerence in predictions
is expected to occur if the effective freeze-out volume for
the heavy fragments in a sequential calculation is smaller
than the chosen freeze-out volume. This would also re-
sult in a relative suppression of the heavier fragments and
hence a larger mass for the Anal residue.

The relative decrease in the Coulomb barrier in sequen-
tial decay e6'ects not only the mass of the residue but also
the proton-to-neutron ratio in that residue. Normal
sequential decay barriers produce proton rich residues.

A reduced Coulomb barrier resu1ts in an increase in
the mean multiplicity of charged particles as shown in
Fig. 6. Thus, we might expect freeze-out calculations to
predict higher charged-particle multiphcities than
sequential decay calculations.

Finally, the Coulomb eA'ects can inhuence the predict-
ed distribution of isotopes of a given clement. One would
expect an enhancement in the yield of more neutron-rich
isotopes for freeze-out calculations.

It should be noted that the reduced Cou}omb barriers
actually result in a 1arger fraction of the total excitation
energy going into Coulomb-related kinetic energy. This
is due to the increase in the yield of charged particles
which more than compensates for the lower Coulomb en-
ergy for each fragment.
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VI. SPECIFIC COMPWRISOX
BETWEEN PREDICTIONS: DIFFERENCES

FIG. 5. Multiplicity of heavy fragments, from the decay of
Au excited to 538 MeV, as a function of the scale factor for

the Coulomb barriers in sequential decay.
In this section we compare the results of two sets of

predictions for the disassembly of the same system. The
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calculations were made with two programs based on the
two procedures discussed earlier. Our employed the pro-
cedures of Ref. 1, and the other employed the freeze-out
procedures embodied in the formalism of Gross. Each
of these calculations has a myriad of detailed features
which make highly quantitative comparisons dificult.
The qualitative comparisons of the predictions, however,
do illustrate many of the points discussed in earlier sec-
tions.

The system studied was ' Au excited to an energy of
538 MeV. The radius chosen for the freeze-out volume
was ro =2.05 fm. The Fermi energy used in the emission
program was 30 MeV. The two calculations have
different collections of fragment masses. The emission
program includes only systems with mass less than 20.
The freeze-out calculation includes isotopes of masses up
to the starting system. The mean value for the mass of
the second heaviest fragment in the freeze-out calculation
was 9.87, so it is unlikely that this difference will change
the qualitative comparison. There are also some minor
differences between the calculations in the number of the
excited states which are included. In the following para-
graphs we discuss specific predictions made by the two
approaches and attempt to account for the differences in
terms of the features discussed in previous sections.
Among the predictions are (a) total multiplicity, (b) mean
mass of the heaviest fragment (residue), (c) ratio of neu-
tral (neutrons) to charged fragments, (d) the ratio of hy-
drogen isotopes, (e) the multiplicity of helium isotopes,
and (f) the multiplicity of heavy fragments (mass greater
than 8).

First we consider the mean multiplicity, not counting
the final residue. The sequential calculation predicts 28
fragments including neutrons, while the freeze-out calcu-
lation predicts 24.5 fragments including neutrons. This
can be understood in terms of the difference between the
freeze-out volume and the effective volume associated
with total multiplicity. The ratio of the two predictions
is 1.14. When the sequential calculation was performed
with Coulomb barriers scaled by factors of 0.9 and 0.8,
we obtain mean multiplicities of 28 and 27, and corre-
sponding ratios to the freeze-out predictions of 1.14 and
1.10, respectively. The ratios of the effective volume to
the freeze-out volume are 1.707, 1.445, and 1.1086 for
Coulomb barriers scaled by 1.0, 0.9, and 0.8, respectively.
Thus, the ratio of predicted multiplicities can be under-
stood in terms of the different effective volumes in con-
junction with a Coulomb adjustment as discussed in Sec.
V.

For the second comparison we consider the predicted
mass of the final residue. In the freeze-out calculation,
for which there is no "residue, "we take the mean mass of
the heaviest fragment. The calculation of Gross provides
a mass of 140 for this in the test calculation. The predic-
tion of the sequential decay model is for a mass of 156. If
the Coulomb barrier is scaled by factors of 0.9 and 0.8,
however, the predicted residue masses are 150.5 and
143.2, respectively. This would suggest that the mean
mass of the heaviest fragment is sensitive to the mecha-
nism that is involved in the fragmentation process. This
difference is governed by the difference in the Coulomb

effects between the two mechanisms.
As the next comparison let us consider the ratio of

neutral (neutrons) to charged fragments (in addition to
the residue). In these predictions we find large
differences. The freeze-out calculation predicts 0.7713,
while the sequential calculation predicts 3.26. The ratio
of these predictions is 4.23. The effective volumes for the
neutrons and the charged particles are different. For an
normal Coulomb barrier the ratio of these volumes is
2.26. This is insuFicient to account for the difference in
predictions of the two procedures. If, however, we scale
the Coulomb barrier by 0.9 and 0.8 the ratio of the ratios
from sequential decay and freeze out drops from 4.23
(above) to 3.27 and 2.39, respectively. The ratio of neu-
tral and charged effective volumes calculated for the two
scaled Coulomb barriers are 2.38 and 2.40. We thus see
that the differences can again be seen to be consistent
with a combination of Coulomb and "volume" effects.

We next compare predictions for the relative yield of
isotopes as predicted by the two methods of calculation.
We concentrate on the isotopes of hydrogen. The freeze-
out calculation provides d /p ratios of 1.77 and r /p ratios
of 1.89. On the other hand, the sequential decay calcula-
tion provides, d/p ratios of 1.13 and r/p ratios of 0.680.
If the Coulomb barrier is scaled by factors of 0.9 and 0.8,
the ratios are 1.14 and 0.710 for the former and 1.18 and
0.777 for the latter. Clearly the sequential decay predic-
tions are considerably less than the freeze-out predic-
tions. In addition, the Coulomb effects are small, as one
might anticipate.

We see that the ratio of the freeze-out d/p prediction
and the sequential d/p prediction is 1.56. For this case
the effective volumes for p and d differ primarily due to
their mass difference, and the corresponding inhuence on
their velocities. Calculation of the ratio of the effective
volumes provides about 1.5, with small sensitivity to
Coulomb scaling. Thus, the "volume" effects allows us to
understand the difference in the 0/p predictions.

The ratio of the t/p predictions from the freeze-out
and from the sequential points of view gives 2.78. The
calculated ratio of effective volumes for protons and tri-
tons is about 1.9. While this large factor is qualitatively
consistent with the ratio of predictions, it is not large
enough to fully explain the differences. No obvious addi-
tional explanation has been found.

Let us next consider the predicted yield for the sum of
helium isotopes of masses 4 and 5. The freeze-out calcu-
lation provides a multiplicity of 3.49 while the sequential
decay calculation predicts 2.115. This represents a ratio
of 1.65. The ratio of the freeze-out volume to the
effective volume is 1.06. When we compare the predicted
ratios with Coulomb barriers scaled by 0.9 and 0.8 we
find 1.14 and 0.9S instead of 1.65 (full barrier). The cor-
responding ratios for the freeze-out volumes to the
effective volumes are 1.15 and 1.36, respectively.

Finally let us compare the predictions for the multipli-
city of fragments of mass greater than 8. Excluding the
residue, the freeze-out calculation predicts a mean multi-
plicity of 0.44 particles for such particles. The sequential
decay calculation predicts a multiplicity of only 0.15.
Thus, the ratio of the predictions is 2.93. The ratio of the
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effective volume to the freeze-out volume is 2.07 for the
full Coulomb barrier. For Coulomb barriers scaled by
0.9 and 0.8, the multiplicity of the heavier fragments pre-
dicted by the sequential decay procedure is greatly
enhanced reaching 0.30 and 0.65, respectively. Ratios of
the freeze-out predictions to these values give 1.46 and
0.68, respectively. The corresponding ratios of the
effective volume to the freeze-out volume are 2.3 and 2.6.
In the case of the heavier fragments one encounters more
significant effects associated with the excluded volumes in
the detailed calculation of the freeze-out predictions. For
that reason the volume ratios given above are upper lim-
its. The differences between the two calculations are once
again qualitatively provided by the Coulomb and
"volume" considerations.

In the preceding discussion we have compared the de-
tailed predictions for a number of features of the frag-
ment yields. These have utilized two procedures, one
based on the sequential decay picture and the other on
the freeze-out picture. While the predictions are qualita-
tively similar we have noted several instances of
differences on the order of a factor of 2 or 3. On the one
hand, these differences offer possible signatures by which
the two schemes may be differentiated by data. On the
other hand, we have shown in each illustrative example
how the differences can be qualitatively understood on
the basis of two fundamental features: (a) the difference
in the Coulomb effects between the two procedures, and
(b) the difference between the freeze-out volume and the
fragment-dependent effective volume in the sequential de-
cay picture.

tween the methods. It also permitted the introduction of
the concept of an e+ectiue volume which replaces the
freeze-out volume when the sequential decay approach is
used. We have shown that this volume includes, as fac-
tors, the cross section for absorption and fragment veloci-
ty, both of which only appear in the sequential decay ap-
proach. The effective volume is shown to be related to
the conservation of entropy in the sequential decay pic-
ture.

The freeze-out volume represents a common space
volume in which all of the fragments may simultaneously
be found. The effective volume in the sequential decay
picture is a phase-space volume assigned to each particle
when it is emitted. In this case the particles do not exist
in a single spacial volume. None the less, it is found that
the effective volume for the sequential decay process may,
under certain circumstances, be nearly equal in magni-
tude to typical freeze-out volumes. As such, the multipli-
city predictions of the two procedures may be similar.
This similarity arises even though the assumptions of the
two procedures are mutually exclusive.

We have made a detailed comparison of two sets of
predictions applied to the same system and have shown
that the differences can be understood in terms of the
volume differences and the Coulomb differences between
the two points of view. The differences that we have ex-
amined offer an opportunity to differentiate between the
underlying physical processes by examining, for example,
masses and charges of the residue, neutron yields,
charged-particle multiplicities, and the multiplicity of
heavy fragments.
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