Gyromagnetic ratios in 164 Dy and 168 Er

C. E. Doran*

School of Physics, University of Melbourne, Parkville, Victoria, Australia 3052

A. E. Stuchbery

Department of Nuclear Physics, Research School of Physical Sciences, Australian National University, P.O. Box 4, Canberra, Australia 2601

> H. H. Bolotin, A. P. Byrne, † and G. J. Lampard School of Physics, University of Melbourne, Parkville, Victoria, Australia 3052 (Received 17 July 1989)

Gyromagnetic ratios of levels up to 10^+ in the ground-state bands and of the 2^+ states in the γ bands of 164 Dy and 168 Er were measured by the perturbed angular correlation technique utilizing the transient hyperfine field acting at the nuclei of these ions as they swiftly traversed thin polarized Fe foils. The experimental g factors, together with the results of earlier similar studies for 166 Er, are discussed and compared with several theoretical predictions.

I. INTRODUCTION

By virtue of the relatively large intrinsic magnetic moments of individual nucleons compared with the collective nuclear g factor, $g \approx Z/A$, the gyromagnetic ratio of a nuclear level in a rotational nuclide is sensitive to the pairing of nucleons in that state. Hence, variations of level g factors in a given rotational band are expected to reflect mainly rotational alignment mechanisms and, as such, are manifestations of the same phenomena displayed in the "backbending plot" which, as a function of rotational frequency, exhibits either the differential moment of inertia or the aligned angular momentum. $1-4$ Whereas the yrast sequences of the even isotopes $156-164$ Er show strong backbending between spins of 10^+ and $16⁺$, none is observed up to these spins in the even $^{166-170}$ Er nuclides. Of these latter isotopes, 166 Er displays a marked "up-bending." The yrast states in all these even-even Er isotopes can be understood in terms of the interaction and/or crossing of the ground-state band (having no unpaired nucleons) and the S band built on two unpaired $i_{13/2}$ neutron quasiparticles with their spins aligned in the direction of the collective rotational angular momentum. The variety of behavior in the yrast sequences of these even Er isotopes can be attributed to variations in the strength of the coupling between the ground and S bands.^{5,6} Furthermore, the oscillatory nature of the changes in the interaction strength with neutron number can be reproduced by Hartree-Fock-Bogoliubov, (HFB) calculations which show that strength to depend rather sensitively on the Fermi level as it moves through the $i_{13/2}$ subshell.⁵⁻⁷ Relatively recent measurements^{8,9} of the g factors of individual excited states in ¹⁶⁶Er observed the gyromagnetic ratios of the levels in its ground-state band (gsb) to decrease rather strongly and monotonically with increasing level spin (up to $J_i^{\pi} = 10_i^+$). The observed monotonic decrease of the level g factors in 166 Er may therefore be linked to a strong interaction between the ground and $v(i_{13/2})^2$ S bands. Some support for this interpretation is suggested by the excellent agreement between the experimentally measured yrast level g factors in 166 Er (Refs. 8 and 9) and the cranked Hartree-Fock-Bogoliubov (CHFB) calculated predictions of Ansari et al.³

From another perspective, stimulated by the work of Yoshinaga et al., ¹⁰ who showed that "anharmonicities" attributed^{11,12} to the band structure of 168 Er from comparisons of experiment with the sd-boson interacting boson model (IBM) could be largely resolved by inclusion of the g boson, considerable attention has also been given of late to the application of the IBM to the middle rareearth rotational nuclei, with special interest focused on
the role of the havedeenple (a) bosons^{10,13,14} in describ the role of the hexadecapole (g) bosons^{10,13,14} in describing the observed nuclear properties. As a concomitant of g-boson participation, an additional degree of freedom is introduced that offers the possibility of accommodating large variations in the g factors of levels in the gsb through a first-order $M1$ operator. Although, in the SU(3) limit of the sdg IBM, any variation in level gyromagnetic ratios that might otherwise be affected through inclusion of the g boson is effectively "locked out" when the number of bosons, N , becomes large in the rotor limit,¹³ Kuyucak and Morrison¹⁴ have shown that, away from the SU(3) IBM limiting symmetry, level gfactor variations in the gsb become possible even in the large-X rotor limit, and, by appropriate choice of parameters, the variation in gyromagnetic ratios observed experimentally in 166 Er (Refs. 8 and 9) can be reproduced reasonably well in their sdg -boson calculations.¹⁴ However, it remains an open and crucial question as to whether the sdg-boson IBM in this form can describe g-factor variations in the rare-earth rotors in a consistent fashion.

While the nuclear structure bases underlying the separate CHFB (Refs. 3–7) and IBM sdg -boson¹⁴ approaches seem disparate extrinsically, it would be of considerable interest to assess and delineate the extent to

which they actually differ *intrinsically*, particularly as the high-spin g boson may be emulating some of the effects of the higher-spin unique parity orbits.¹⁵

In view of the foregoing interest in the nuclear structure of nuclei near ${}^{166}Er$ from rather diverse theoretical approaches, we have extended our transient field precession studies to the measurement of gyromagnetic ratios of individual levels in the ground-state bands of 168 Er and 164 Dy (a neighboring even-even isotope and isotone of 166 Er, respectively), which we report here. Some aspects of this work have already been reported.¹⁶ Our present results for 168 Er and 164 Dy are compared with the corresponding empirical results for 166 Er (Refs. 8 and 9) and assessed in terms of cranked Hartree-Fock-Bogoliubov calculated predictions, the most recent of which⁴ were prompted directly by the presentation¹⁶ of our experimental findings.

II. EXPERIMENTAL PROCEDURES

As the experimental procedures and techniques utilized in the present transient field (TF) nuclear precession measurements paralleled those described in earlier publi-'cations, $8,17-19$ only those particulars specific to the present investigations are outlined here.

The states of interest in both 164 Dy and 168 Er were populated by multiple Coulomb excitation using 58 Ni projectiles from the Australian National University 14UD Pelletron tandem accelerator. As a result of the patterns of level populations and cascade feeding following heavy-ion multiple Coulomb excitation of good-rotor nuclides, as described in detail in Ref. 8, two separate complementary measurements were required to measure the g factors of interest in each of these rare-earth isotopes. In the case of 164 Dy, TF precessions were measured using 58 Ni projectile energies of 220 and 160 MeV, runs I and II, respectively, while 58 Ni beam energies of 220 and 150 MeV were employed in the 168 Er studies (runs III and IV, respectively).

In each study, an enriched elemental target was rolled to the desired thickness and carefully pressed onto a previously annealed Fe foil, using a thin evaporated Hashing of natural In metal as a convenient, innocuous adhesive. A nonperturbative layer of Pb (sufficient to stop the recoiling target ions) was evaporated on the downstream side of the Fe foil. The entire target assembly was then

pressed onto a 15 μ m Cu backing (using another In flashing) that provided both added mechanical support and improved thermal conduction away from the beam spot.

Separate targets were made for the lower- and higherenergy experimental runs in each of the 164 Dy and 168 Er studies. The thicknesses of all four strata in each compound target were obtained by areal-weight measurements after each stage of target fabrication, and, as well, by Rutherford scattering of 3.0-MeV protons from the University of Melbourne 5U Pelletron accelerator. The results of the two sets of measurements on each of the four targets were in good agreement. Target layer thicknesses, target isotopic enrichments, and other particulars are summarized in Table I. All composite targets were cooled during bombardment; target temperatures were maintained below O'C.

Two pairs of intrinsic Ge γ -ray detectors were placed at $\pm 65^\circ$ and $\pm 115^\circ$ to the beam direction to provide near-optimum sensitivity for the precession measurements of all states of interest, each of which deexcite via $E2$ transitions. In all four experimental runs, the backward pair of detectors $(\pm 115^{\circ})$ were positioned so that both intercepted the same solid angle at the target; similarly, the two Ge detectors of the forward pair were placed so as to have matched solid angles.

Gamma rays registered in each detector were recorded in coincidence with backscattered projectile ions detected in a common annular Si particle counter (angular range $146^\circ - 166^\circ$). This coincidence requirement ensured that all recorded events were associated with forward recoiling target nuclei, with their spins aligned to a high degree in the plane, normal to the beam axis. In the 220-MeV runs, the events recorded pertained to 164 Dy and 168 Er ions moving in a narrow forward cone (half-angle $\sim 8^{\circ}$) with mean velocities $\sim 0.039c$ on entry to the polarized Fe layer. In the lower-energy bombardments, the corresponding target ions recoiled in a similarly narrow forward cone and entered the Fe substrate of the target with mean initial speeds of $\sim 0.031c$. Data were stored in an event-by-event mode.

The ferromagnetic foil was polarized by an external magnetic field of \sim 0.05 T (sufficient to ensure saturation of the Fe layer) applied in a direction normal to the reaction plane. Effective magnetic shielding, provided by a soft iron cone placed between the target and the annular detector, made beam-bending effects negligible.

TABLE I. Measured strata thicknesses of composite targets used in present study.

Target	Target thickness	Projectile beam energy	Thickness $(mg/cm2)$			
nuclide	(mg/cm^2)	(MeV)	1n	Fe	Pb	
	2.6 ± 0.1^a	220	0.21 ± 0.04	4.2 ± 0.1	17.5 ± 0.5	
$^{164}_{164}$ Dy	2.8 ± 0.1^a	160	0.14 ± 0.03	2.4 ± 0.1	$28 + 1$	
168 Er	2.3 ± 0.1^b	220	0.14 ± 0.03	4.1 ± 0.1	$13 + 1$	
168 _{Er}	2.3 ± 0.1^b	150	0.24 ± 0.04	2.4 ± 0.1	17 ± 1	

'Elemental composition (as quoted by supplier): 95.68% ¹⁶⁴Dy; 3.08% ¹⁶³Dy; 0.84% ¹⁶²Dy; 0.37% Elemental composition (as quoted by
¹⁶¹Dy; 0.04% ¹⁶⁰Dy; <0.02% ^{158,156}Dy

⁶ Elemental composition (as quoted by supplier): 0.61% ¹⁷⁰Er; 95.47% ¹⁶⁸Er; 2.44% ¹⁶⁷Er; 1.44% ¹⁶⁶Er; 0.04% ¹⁶⁴Er; < 0.02% ¹⁶²Er.

Unperturbed particle- γ -ray angular correlations of all deexcitation transitions were measured using the same detectors, beams, targets, target-to-detector distances, and coincidence restriction employed in the TF precession measurements, save that one γ -ray detector was positioned, in turn, at five different forward angles, while the other three HP Ge detectors were held fixed and served as monitors. After each run, the relative γ -ray detection efficiencies of the Ge detectors were determined by placing ^{133}Ba , ^{152}Eu , and ^{182}Ta sources at the target position.

In the present experiments, as was the case in our earlier g-factor studies of ¹⁶⁶Er (Ref. 8), \sim 7 d of beam time were required to obtain the present results for each of the nuclides 164 Dy and 168 Er. Of this, \sim 4 d were allocated to the higher-energy precession measurements (runs I and III), \sim 2 d to the lower-energy runs (runs II and IV), and \sim 1 d to measuring the angular correlations at the respective beam energies. This approximate apportionment of beam time proved optimum for measuring the relative g factors of levels in the ground-state bands as precisely as possible in runs of \sim 1 week duration.

III. ANALYSIS

The procedures followed in the analyses of the present TF precession data were those developed earlier^{8,17} for the extraction of the relative g factors of individual excited states in a given nuclide from simultaneously measured transient field asymmetries. The analysis takes proper account of both (i) the TF precessions in the directly populated higher-excitation states which cascade-feed down to the lower-excitation levels, and (ii) the consequences of decays in Aight of the shorter-lived states until the nucleus emerges from the ferromagnetic foil. These two effects are not separable.

Although states in the ground bands as high as the $14₁⁺$ in both nuclides under investigation were populated in the 220-MeV bombardments, direct populations of levels higher than the $10₁⁺$ were not strong enough to allow their gyromagnetic ratios to be obtained with useful precision or accuracy. Similarly, whereas states up to the 8^{+}_{2} were observed in the γ bands, only the 2^+_2 level g factors could be extracted.

While states up to and including the $J_i^{\pi} = 10_i^+$ in the ground-state bands and the $K = 2$ bandheads $(2^{\frac{1}{2}})$ in the two nuclides under study received sufficient direct population to extract meaningful TF precessions for them in the 220-MeV 58 Ni bombardments (runs I and III, respectively) of 164 Dy and 168 Er (although higher excited states were seen to be populated reasonably strongly), excessive feeding to the 4^{+}_{1} states in both nuclides precluded extraction of their g factors in these higher-energy bombardment runs. However, in the two lower-energy bombardments of these nuclides (runs II and IV), indirect population (feeding) of the $4₁⁺$ state in both cases was significantly reduced, while the $6₁⁺$ states were still populated sufficiently strongly to allow precise TF precession data to be obtained for both states.

Meaningful measures of the gyromagnetic ratios of the 2_1^+ states in both ¹⁶⁴Dy and ¹⁶⁸Er could not be deduced

from the present data for the $2₁⁺$ -to- $0₁⁺$ transitions, despite the more moderate proportion of indirect populations of these levels in the lower-energy bombardment studies (runs II and IV, respectively). As was similarly the case in our earlier study of the gyromagnetic ratios of the corresponding excited states in 166 Er (Ref. 8) this could be traced to several effects related directly to the relatively low energy, ≤ 81 keV, of these 2^{+}_{1} -to- 0^{+}_{1} transitions: (i) their high internal-conversion coefficients $(\alpha_T \approx 6.6)$ lead to rather low relative effective γ -ray yields for these first excited 2^+ states, and, thus, to rather poor experimental sensitivity to TF precessions of the nucleus in these states, (ii) the relatively high absorption of these low-energy γ rays in the target layers distorts the angular correlations over the range of oblique acceptance angles intercepted by the γ -ray detectors in the precession measurements, and (iii) the $2₁⁺$ levels are long lived $(\tau > 2 \text{ ns})$ and are most likely to be deoriented by residual electric field gradients in the Pb backings. The combination of these effects rendered virtually nil the sensitivity of the precession data obtained to the g factors of these $2₁⁺$ states.

Unperturbed particle- γ -ray angular correlations were calculated for all transitions of interest for our experimental geometry employing alignment tensors obtained using the Winther-de Boer multiple Coulomb excitation $code²⁰$ As the alignment tensor values calculated for states in even-even nuclei are rather insensitive to the matrix elements selected, the required matrix elements were taken from previously measured (or lifetime-inferred $B(E2)$ values, 2^{1-23} where known, and the remainder from rotor model specifications. However, as calculation of the angular correlation of each transition also involves the relative direct populations of the levels, and, as the relative direct level populations calculated by means of the Winther-de Boer $\overline{\text{code}}^{20}$ are matrix element sensitive, these relative populations were taken from intensities determined from the present measured unperturbed angular correlations (corrected for internal conversion and relative γ -ray detection efficiencies).

IV. EXPERIMENTAL RESULTS

Partial level schemes incorporating all states populated and all transitions observed in the present studies are shown for 164 Dy and 168 Er in Figs. 1 and 2, respectively; the fraction of the overall population of each level that was *direct*, at both the higher and lower bombarding energies in both nuclides, is designated in these figures.

Representative spectra of deexcitation γ rays recorded in coincidence with backscattered ⁵⁸Ni projectiles in each of the four experiments are presented in Figs. 3 and 4. Particularly noticeable in these spectra are the significantly reduced populations of the higher-excited states in the lower-energy bombardments, which allowed the extraction of g factors associated with the lower-lying excited levels with relatively small corrections for feeding effects.

Comparisons of the predicted angular correlations with those measured are shown in Figs. 5 and 6 for 164 Dy and

FIG. 1. Partial level and decay scheme of 164 Dy incorporating all states and transitions of interest. All transitions shown were observed in the present work. Transition branching ratios are given in percent. States are labeled by percent direct Coulomb excitation level population in 220- and 160-MeV 58 Ni bombardments (right-hand and left-hand sides of levels, respectively), see text for details. Known level mean lives are specified; excitation energies of levels are given in keV.

¹⁶⁸Er, respectively. The agreement is quite good in all cases. The only free parameters in the "fits" of these calculated angular correlations to the experimental ones are the overall strength of the transitions and the offset angle of the 0' detector reference axis relative to the actual incident beam direction. In all cases, the offset angle which best fit all simultaneously recorded angular correlation data was less than 2°.

FIG. 2. Same as for Fig. 1, but for ^{168}Er at ^{58}Ni ion bombardments of 220 and 150 MeV.

Tables II and III provide summaries of the particulars of the present set of transient field precession measurements for 168 Er and 164 Dy, while Table IV presents the analyzed results, the present extracted relative g factors of levels, and the adopted absolute g factors (obtained by normalization to the few earlier reported measured gyromagnetic ratios, where available) for both nuclides. As the previously measured gyromagnetic ratios of levels, to which the present results could be normalized to obtain these absolute g factors, have fractional errors assigned that are considerably larger than those associated with our measured precession results for corresponding levels, it is upon the present relative gyromagnetic ratios, simultaneously measured for all levels in each separate nuclide, that most reliance rests.

	⁵⁸ Ni beam							
Target nucleus	energy (MeV)	$T_{\rm \,tgt}^{\rm \, a}$ (ps)	$T_{\rm Fe}^{\;\;\rm b}$ (p _S)	$E_i^{\rm c}$ (MeV)	E_e° (MeV)	$\langle v/v_0 \rangle^c$	Run label	
164 Dy	220	0.12	0.89	116	q	2.8	run I	
164 Dy	160	0.16	0.46	76	19	3.0	run II	
168 _{Er}	220	0.10	0.80	123	12	3.0	run III	
168 _{Er}	150	0.13	0.48	73	18	3.2	run IV	

TABLE II. Experimental details.

'Mean time of recoil nucleus in target layer.

Mean transit time of recoil nucleus through ferromagnetic foil.

^cMean incident energy (E_i) and emergent energy (E_e) of recoil nucleus into and out of ferromagnetic foil, respectively; $\langle v/v_0 \rangle$ is the mean velocity of the recoiling ions whilst in the ferromagnetic host; $v_0 = c/137$, is the Bohr velocity.

FIG. 3. Representative spectra of deexcitation γ rays detected at 65° to the beam direction in coincidence with backscattered projectiles following Coulomb excitation of levels in ^{164}Dy by 220-MeV ⁵⁸Ni ions (upper portion) and 160-MeV ⁵⁸Ni ions (lower portion). Transitions are labeled by $J_1^{\pi} \rightarrow J_f^{\pi}$. Chance coincidences have been subtracted.

Although we have chosen not to rely upon any particular parametrization of the TF to obtain absolute g factors in 164 Dy and 168 Er, a large body of data for rare-earth nuclides traversing polarized Fe hosts was included in the TF parametrization work of the Chalk River group²⁶ and, within its assigned uncertainties, their parametrization would be expected to provide a reliable calibration for Er and Dy ions traversing fully magnetized Fe over the ion velocity ranges which pertained in our measurements. The $g(6^+)$ values for ¹⁶⁴Dy and ¹⁶⁸Er, obtained by calibration using the Chalk River parametrization, are

 0.21 ± 0.02 and 0.345 ± 0.022 , respectively. These values agree within experimental errors with those adopted for the 6^+ states (Table IV). In the case of 164 Dy, however, the 6^{+}_{1} g factor obtained using the Chalk River parame $rization²⁶$ is significantly smaller than the values of $g(2_1^+)$ measured previously.²⁴ It can be seen from Table III that the observed precessions for all states in 164 Dy in both measurements are smaller than the corresponding values in 168 Er and 166 Er (see also Ref. 8). It is very improbable that this could be due to either (i) some kind of discontinuity in the TF strength as a function of atomic

FIG. 4. Representative deexcitation γ -ray spectra recorded for ¹⁶⁸Er in the present work for 220- and 150-MeV ⁵⁸Ni bombardments (Upper and lower portions, respectively); all other particulars as per caption of Fig. 3.

number between Dy and Er (Ref. 26) [similar, for example, to that found in the region around Os and Pt (Ref. 27)], or (ii) an experimental problem, such as loss of foil magnetization in *both* of the ¹⁶⁴Dy experiments, but in *none* of the four $1^{66,168}$ Er measurements which were per $none$ of the four $166,168$ Er measurements which were performed under almost identical experimental conditions. Rather, our overall data set suggests that $g(6_1^+)$ in ¹⁶⁴Dy may be considerably smaller than the previously measured values reported for the 2^+_1 state. Unfortunately, the only available independently measured²⁵ g factor to which we can normalize our results has a large experimental uncertainty and a value which lies between the previous 2^+_1 results and the $g(6^+_1)$ value inferred from our data using the Chalk River parametrization. A more precise absolute calibration of our g-factor values for Dy requires an independent, precise determination of $g(4_1^+)$ or $g(6_1^+)$. As such a measurement is outside the scope of the present work, the discussion of 164 Dy which follows focuses upon the measured relative gyromagnetic ratios in the ground-band state (gbs) of this nuclide.

Finally, shown diagrammatically in Fig. 7 are the present and previous gyromagnetic ratio results for levels in the ground bands of 164 Dy and 168 Er. For completeness and to reveal the striking constrast, this figure also

FIG. 5. Measured (data points) deexcitation γ -ray angular correlations (see text) of designated transitions in ¹⁶⁴Dy in 220and 160-MeV ⁵⁸Ni ion bombardments (upper and lower portions, respectively). The solid curves are not fits to these data, they represent the correlations calculated by means specified in Secs. III and IV of the text. Transitions are labeled by $J_i^{\pi} \rightarrow J_f^{\pi}$. For clarity of presentation, the results for the various transitions have been offset from one another.

presents the earlier reported^{8,9} measured g factors of corresponding states in 166 Er (the results of the two 166 Er studies^{8,9} have been combined and averaged). In the cases of ¹⁶⁴Dy and ¹⁶⁸Er, each of the present measured g factors for the $4⁺₁$ to $10⁺₁$ levels are displayed with two error estimates; the larger error bars include uncertainties in the absolute calibration of the measured gyromagnetic ratios, whereas the uncertainties in the present relative measurements, also shown, are considerably smaller. In Fig. 7, comparisons are made between the experimental results and the predictions of various models to be discussed in Sec. VI. It should be stressed that what is presented in this figure, for both the experimental measurements and the calculations with which they are compared, are the gyromagnetic ratios of levels relative to that of the 2_1^+ state in the *same* nuclide—that is, $g(J)/g(2_1^+)$ vs J, but not $g(J)$ vs level spin J.

FIG. 6. Same as for Fig. 5, but for ¹⁶⁸Er at ⁵⁸Ni ion bombardments of 220 and 150 MeV (upper and lower portions, respectively).

V. COMPARISON OF RESULTS

The rather dramatic contrast between the systematic behavior exhibited by the measured gyromagnetic ratios of corresponding levels in the ground-state band of 166 Er and that of ¹⁶⁸Er is evident in Fig. 7. While the present measured gyromagnetic ratios of all of the low-spin yrast states up to and including $J^{\pi} = 10^+$ in ¹⁶⁸Er appear fully consistent with being the same, the g factors of the corresponding levels in ¹⁶⁶Er display the marked departure from constancy noted earlier.⁸

To compare and classify the g-factor trends in the three nuclides under discussion more objectively, it is helpful to fit the gsb g factors using a parametrization suggested by Chen and Frauendorf²

$$
g(J) = g_0(1 + \alpha J^2) \tag{1}
$$

Ground-band level g factors from 2_1^+ to 10_1^+ were included in the fits for $166, 168$ Er. For 164 Dy, while the present measured relative g factors for the 4_1^+ to 10_1^+ states were

		State	$\epsilon_{14}^{\ \ a}$	$\epsilon_{23}^{\ b}$			$(\Delta \Theta_{14})^d$	$(\Delta \Theta_{23})^d$
Run	Nucleus	(J_i^{π})	$(\times 10^{-3})$	$(\times 10^{-3})$	S_{14}°	S_{23}°	(mrad)	(mrad)
I	164 Dy	6^{+}_{1}	$-18.4(8)$	$+17.6(12)$	$-0.73(3)$	$+0.79(3)$	26.9(38)	18.8(46)
		8^{+}_{1}	$-16.4(13)$	$+19.1(18)$	$-0.69(3)$	$+0.75(3)$	21.2(39)	25.7(49)
		10_1^+	$-19.4(29)$	$+18.8(37)$	$-0.66(4)$	$+0.71(5)$	32.8(89)	26.4(85)
		2^{+}_{2}	$-63(9)$	$+87(12)$	$-2.65(12)$	$+2.90(12)$	25.7(35)	32.6(47)
\mathbf{I}	164 Dy	4^{+}_{1}	$-13.9(7)$	$+14.3(9)$	$-0.97(2)$	$+1.03(2)$	15.0(11)	14.9(16)
		6^{+}_{1}	$-9.7(14)$	$+19.0(17)$	$-0.81(2)$	$+0.85(2)$	12.4(21)	9.7(25)
		8^{+}_{1}	$-6.4(48)$	$+13.8(58)$	$-0.74(3)$	$+0.77(3)$	5.3(77)	22.8(93)
		2^{+}_{2}	$-16(17)$	$+31(22)$	$-2.79(13)$	$+2.91(13)$	6.1(66)	11.3(80)
Ш	168 _{Er}	6^{+}_{1}	$-25.1(7)$	$+26.7(8)$	$-0.77(4)$	$+0.80(4)$	34.3(47)	33.1(50)
		8^{+}_{1}	$-21.8(11)$	$+23.8(14)$	$-0.73(4)$	$+0.75(4)$	32.2(38)	36.5(43)
		10_1^+	$-19.1(25)$	$+24.5(32)$	$-0.69(4)$	$+0.72(4)$	31.1(91)	34.6(78)
		2^{+}_{2}	$-106(12)$	$+98(14)$	$-2.91(12)$	$+3.05(12)$	40.7(45)	35.9(51)
IV	168 Er	4^{+}_{1}	$-20.6(5)$	$+20.5(7)$	$-0.99(2)$	$+1.05(2)$	20.5(7)	19.3(9)
		6^{+}_{1}	$-17.8(13)$	$+17.9(17)$	$-0.81(2)$	$+0.86(2)$	21.6(19)	21.5(22)
		2^{+}_{2}	$-51(22)$	$+43(25)$	$-2.63(13)$	$+2.77(13)$	21.2(90)	16.9(97)

TABLE III. Measured transient field precessions of designated states in ¹⁶⁴Dy and ¹⁶⁸Er.

^aTransient field asymmetry measured using the forward detector pair, $\epsilon = (1-\rho)/(1+\rho)$, where $\rho = \{N\uparrow (+)N\downarrow (-)/\rho\}$ $N\downarrow$ (+) $N\uparrow$ (-)}^{-1/2}, with $N\uparrow$ (\downarrow) the normalized counts observed in the field up (down) direction in the detector pair at +(-)65°. ^bSame as for footnote a of this table, except for backward pair of detectors at $+(-)115^{\circ}$.

"Logarithmic derivative of unperturbed γ -ray angular correlation of observed E2 transition from each level, evaluated at detection angle, for forward detector pair S_{14} and backward detector pair S_{23} . Errors reflect uncertainties in the measured intensities of transitions.

^dPrecessions calculated from ϵ_{ij} and S_{ij} corrected for feeding and decay-in-transit effects (see text).

included, that of $g(2_1^+)$ was excluded because it could not be combined precisely with the present data. The results of these fits were

$$
\alpha^{(164)}\text{Dy}) = (-21 \pm 15) \times 10^{-4} ,\n\alpha^{(166)}\text{Er}) = (-40 \pm 2) \times 10^{-4} ,\n\alpha^{(168)}\text{Er}) = (1.6 \pm 2.8) \times 10^{-4} .
$$

Comparing the cases of 164 Dy and 166,168 Er, although the present Dy g-factor results are not the statistical equal of those obtained for these two Er isotopes (mainly because the Dy TF precessions are smaller), it is nevertheless evident from the fitted α values that some diminution of the 164 Dy gbs level g factors with increasing spin may be suggested, but that the effect is not as dramatic as observed for the corresponding states of 166 Er.

VI. DISCUSSION OF RESULTS

A. g factors in ^{166, 168}Er as a probe of rotational alignment

Following the prescription of Frauendorf,¹ and Chen and Frauendorf² if the backbending is interpreted as the crossing between the ground-state band and an aligned two-quasiparticle band, the change of the level g factor with increasing spin can be related to the aligned angular momentum extracted from the experimental energy spectrum. Usually, the ground band below the backbend is parametrized in terms of the Harris polynomial⁶

$$
I_{xg}(\omega) = \omega I_0 + \omega^3 I_1 \tag{2}
$$

where $I_{xg} = [\overline{I}(\overline{I}+1)]^{1/2}$, $\overline{I} = (J_i + J_f)/2$, and, in an even
nucleus, ω is one-half the energy of the $J_i \rightarrow J_f$ transition. Figure 8 shows the trends in values of I_0 and I_1 for the even Dy and Er isotopes, estimated by fitting the experimental level spectra of the ground-state bands up to their $10₁⁺$ states. While the values of $I₀$ show a smooth variation with neutron number in both Dy and Er, I_1 displays a maximum at $N=98$, which, as discussed by Bengtsson and Frauendorf,⁵ corresponds to a maximum in the interaction between the g and S bands. To estimate g factors, Chen and Frauendorf² ascribe the angular momentum $\omega \delta I_0 + \omega^3 \delta I_1$ corresponding to the deviations δI_0 , δI_1 of I_0 , and I_1 from the "smooth background" \overline{I}_0
and \overline{I}_1 (in Fig. 8) to the $i_{13/2}$ quasiparticles causing the bump at $N=98$, and obtain

FIG. 7. Experimental g-factor ratios $g(J)/g(2₁⁺)$ in the FIG. 7. Experimental g-factor ratios $g(J)/g(2_1^+)$ in the ground-state bands of ¹⁶⁴Dy and ^{166, 168}Er compared with various theoretical calculations. Results for 164 Dy and 168 Er are derived from Table IV, those for ¹⁶⁶Er are combined averaged values from Refs. 8 and 9. Full error bars on the data points include uncertainties in the absolute g factors; the smaller error estimates also shown for the $J=4₁⁺$ to $10₁⁺$ levels in ¹⁶⁴Dy and ¹⁶⁸Er indicate uncertainties in the present relatiue g-factor measurements. Calculations are discussed in Sec. VI. (a) Present semiempirical calculations using the method of Chen and Frauendorf², (b)-(d) CHFB calculations from Refs. 3,4, and 28, respectively.

$$
g(\omega) = \overline{g} + (g_j - \overline{g})[(\delta I_0 + \omega^2 \delta I_1)/(I_0 + \omega^2 I_1)], \quad (3)
$$

where \bar{g} is the average collective g factor and g_i is the g factor of the aligned quasiparticles.

To determine $g(\omega)$ requires reasonable estimates of \bar{g} , g_i , δI_0 , and δI_1 . For the mean collective g factor, \bar{g} , we take the g value of the 2^+_1 state of the nucleus, and for g_j we assume that of the $i_{13/2}$ neutrons quenched by the usual factor of 0.7, so that $g(i_{13/2})=-0.17$. Values of δI_0 and δI_1 may be inferred from Fig. 8. Gyromagnetic ratios given by Eq. (3) are compared with experiment in Fig. 7. Although there is an element of subjectivity in choosing the "background" values of \overline{I}_0 and \overline{I}_1 , the qualitative variation in g factor behavior in 164 Dy, 166 Er, and ive variation in g factor behavior in ¹⁶⁴Dy, ¹⁶⁶Er, and Er from Eq. (3) is clear—namely, the g factors in ¹⁶⁸Er should be near constant, those in 166 Er should show the most pronounced decrease with increasing spin, and in the $N=98$ isotone ¹⁶⁴Dy, there should also be a decrease with increasing spin, but less so than in 166 Er. This compares favorably with the trends implied by the α values [Eq. (1)] extracted from the data in Sec. V.

While this simple model has difhculty making the de-

FIG. 8. Systematics of experimental values of the Harris polynomial parameters I_0 and I_1 for isotopes of Dy and Er, obtained as described in Sec. VI A.

crease of the g factors with increasing spin as marked as observed in 166 Er, the qualitative trends of the data for the three nuclides considered are reproduced reasonably well.

B. Cranked Hartree-Fock-Bogoliubov (CHFB) calculations

Several studies of the behavior of level g factors as a function of spin in rotational nuclei have been performed in the framework of CHFB calculations.^{3,4,28} Comparisons between the calculations of Refs. 3, 4, and 28 for 166,168 Er and 164 Dy and our experimental results are shown in Fig. 7. Note that none of these calculations^{3,4,28} has been simultaneously or consistently applied to all three nuclides. While these three calculational studies differ in detail, such as the residual interactions chosen, and their predictions of the spin variations of the g factors also differ significantly, they are unanimous in attributing the spin variations of the level magnetic moments to rotational alignment effects. As noted in our earlier publication 8 there is a remarkably close concurrence between the measured gyromagnetic ratios in 166 Er and the calculated predictions for this nuclide of Ansari et al ³ Nevertheless, the well-known shortcomings of the CHFB method^{3,29,30} (that the number of nucleons and the total angular momentum are conserved only on average) may conduce to treatment of this agreement between experiment and CHFB calculations with some measure of circumspection. Indeed, Ansari et al^3 did examine the effect of neglecting the projection of good nucleon number by comparing calculations of the pairing gaps as a function of spin in 158 Dy in the cases of variation without

	State	$(\Delta \Theta)^a$		$(\Delta\Theta)^a$				
Nucleus	(J_i^{π})	(mrad)	$\langle \Delta \Theta \rangle$ $\langle \overline{\Delta\Theta} \rangle_{6^{+}_1}$	(mrad)	$\langle \Delta \Theta \rangle$ $\langle \overline{\Delta\Theta} \rangle_{6^+_1}$	g^b $g_{\mathfrak{s}^+_1}$	g_{previous}	g adopted
			Run I	Run II				
164 Dy	2^{+}_{1}						$0.348(9)^c$	0.348(9)
	4^{+}_{1}			14.8(9)	1.31(20)	1.31(20)		0.37(12)
	6^{+}_{1}	23.6(29)	$\mathbf{1}$	11.3(16)	$\mathbf{1}$		$0.28(8)^{d}$	0.28(8)
	8^{+}_{1}	22.9(31)	0.97(18)	12.4(59)	1.10(54)	0.98(17)		0.27(9)
	10_1^+	29.5(61)	1.25(30)			1.25(30)		0.35(13)
	2^{+}_{2}	28.2(28)	1.19(19)	8.2(51)	0.73(46)	1.12(18)		0.31(10)
		Run III		Run IV				
168 _{Er}	$\mathbf{2}^+_1$						$0.321(6)^c$	0.321(6)
	4^{+}_{1}			19.9(6)	0.92(7)	0.92(7)	$0.303(37)^c$	0.303(37)
	6^{+}_{1}	33.7(34)	$\mathbf{1}$	21.6(14)	$\mathbf{1}$	$\mathbf{1}$		0.328(46)
	8^{+}_{1}	34.1(28)	1.01(13)			1.01(13)		0.331(63)
	10_1^+	33.1(59)	0.98(20)			0.98(20)		0.322(80)
	2^{+}_{2}	38.6(34)	1.15(15)	19.2(66)	0.89(31)	1.10(14)		0.361(69)

TABLE IV. Summary of experimental results.

^aWeighted average of nuclear precessions measured in forward and backward detector pairs, from Table III. The 4_1^+ state precessions for both 164 Dy and 168 Er have been corrected for the small additional rotations undergone in the external polarizing field (0.2 and 0.¹ mrad, respectively).

Using $g \propto \langle \Delta \Theta \rangle$.

'Weighted average of values reported in Ref. 24.

"Reference 25.

number projection and of variation after number projection. It was on the basis of these calculations and comparisons that they concluded that projecting good particle number could be neglected without changing their calculated results greatly. However, as they did not perform test calculations to assess the importance of projecting good angular momentum before and after variation, it might be argued that this omission in the cranked Hartree-Fock-Bogoliubov approach could limit severely the reliability of such CHFB calculations of g factors. In rotational nuclei which have a band crossing with a $v(i_{13/2})^2$ rotationally aligned band, the effect of angular momentum averaging on calculated g factors would be to overestimate their reduction at low spins well below the band crossing. In this regard, the CHFB calculations of Ansari et al ³ predicted an even more marked decrease of the g factors of the lower-spin gsb states as a function of increasing level spin (up to and including $J_i^{\pi} = 10_1^+$ in the even-even Sm isotopes which experi-
ments^{19,26} have failed to confirm in the cases of ^{152,154} Sm. In comparison with experiment, Ansari *et al.*³ noted that their calculated g factors were always smaller than experiment and that their calculated energy spectra did not reproduce the backbending; they took these shortcomings as evidence of the need to include a quadrupole pairing term in the residual interaction.

After the results of our experimental studies were presented in summary form, 16 Sugawara-Tanabe and Tanabe⁴ were prompted to calculate the yrast level g factors as a function of spin across the even-even $158-170$ Er isotopes using a CHFB approach in which the strength of the quadrupole pairing term in their Hamiltonian was adjusted to reproduce the backbending. While their calculations, like those of Ansari et $al³$, did not project good angular momentum before variation, their calculated level g factors nevertheless agree very well with the experimental values, where available. However, since the variation of g factors and the energy spectra (backbending) are both intimately related to rotational alignment mechanisms and the residual interactions had been adjusted to "reproduce the backbending" in their calculations⁴ it would seem somewhat premature to conclude that the projection of good angular momentum is not at all important. It would be particularly instructive, as we noted earlier⁸, to also compare other calculated and experimental properties of levels in these nuclides, such as $E2$ transition rates. As the quadrupole properties of the nucleus depend on its shape and are likely to be sensitive to angular momentum admixtures in the CHFB wave functions, 28 the extra computational effort required to project good angular momentum becomes imperative if reliable E2 properties are to be calculated. To our knowledge,

calculations of these relevant $B(E2)$'s have not yet been performed in the CHFB framework.

C. Interacting boson model

The sdg-boson interacting boson model approach¹⁴ has already displayed some promise in tracing both the trend and extent of the experimentally established variation of the g factors of the $J^{\pi} \le 10^+$ yrast levels in $^{166}Er.^{8,9}$ It would be particularly interesting and illuminating if such sdg-boson IBM calculations were also applied specifically to the present cases of 164 Dy and 168 Er; certainly, it should prove a significant test of this IBM approach to reproduce the abrupt isotopic and isotonic change in nuclear structure characteristics reflected in the present and earlier 8,9 yrast level g-factor measurements of these three nuclides.

These calculations may be particularly revealing because the sdg IBM approach ascribes the g-factor variations to "stretching" (i.e., amplitudes of the boson operators in the intrinsic state change with spin), whereas the CHFB models attribute the g-factor variations to the alignment of a pair of high-spin quasiparticles near the Fermi surface. It is known³¹ that the IBM must be extended to include two-quasiparticle excitations in order to describe the high-spin states in deformed and transitional nuclei, i.e., backbending. If the inclusion of twoquasiparticle excitations in the IBM proves essential also for a proper description of the g-factor variations in these neighboring Dy and Er isotopes, it would at least establish some intuitive link between the physical bases of the CHFB and IBM descriptions.

ACKNOWLEDGMENTS

The invaluable hospitality and cooperation extended to us by the staff of the Australian National University 14UD Pelletron Laboratory is appreciated greatly. The technical and related support provided by B. Szymanski, illuminating discussions with Dr. I. Morrison on theoretical aspects, and the aid of A. H. F. Muggleton in target material fabrication proved most helpful. One of us (A.P.B.) acknowledges the support of a National Research Fellowship; while two of us (C.E.D. and G.J.L.) the support of University of Melbourne and Commonwealth Post-Graduate Awards, respectively. This research was supported, in part, by grants from the Australian Research Grants Scheme and Budget Rent-a-Car (Australia).

- *Present address: Research and Development Division, Mt. Isa Mines Ltd. , Mt. Isa, Queensland, Australia 4825.
- fPresent address: Department of Nuclear Physics, Research School of Physical Sciences, Australian National University, P.O. Box 4, Canberra, Australia 2601.
- ¹S. Frauendorf, Phys. Lett. 100B, 219 (1981).
- $2Y.$ S. Chen and S. Frauendorf, Nucl. Phys. A393, 135 (1983).
- ³A. Ansari, E. Wust, and K. Muhlhans, Nucl. Phys. A415, 215 (1984).
- 4K. Sugawara-Tanabe and K. Tanabe, Phys. Lett. B 207, 243 (1988).
- ⁵R. Bengtsson and S. Frauendorf, Nucl. Phys. A314, 27 (1979).
- ⁶R. Bengtsson and S. Frauendorf, Nucl. Phys. A327, 139 (1979).
- R. Bengtsson and J.-Y. Zhang, Phys. Lett. 1358, 358 (1984).
- 8C. E. Doran, H. H. Bolotin, A. E. Stuchbery, and A. P. Byrne, Z. Phys. A 325, 285 (1986).
- ⁹A. Alzner, E. Bodenstedt, J. Gemunden, J. van den Hoff, and H. Rief, Z. Phys. A 322, 467 (1985).
- ¹⁰N. Yoshinaga, Y. Akiyama, and A. Arima, Phys. Rev. Lett. 56, 1116(1986).
- A. Bohr and B.R. Mottelson, Phys. Scr. 25, 28 (1982).
- ¹²T. S. Dumitrescu and I. Hamamoto, Nucl. Phys. A383, 205 (1982).
- ¹³I. Morrison, Phys. Lett. B 175, 1 (1986), and references therein.
- 4S. Kuyucak and I. Morrison, Phys. Rev. Lett. 58, 315 (1987).
- ¹⁵A. Gelberg, P. von Brentano, and I. Morrison, J. Phys. G 15, 801 (1989).
- ¹⁶C. E. Doran, H. H. Bolotin, A. E. Stuchbery, A. P. Byrne, and G. J. Lampard, in Proceedings of the International Conference on Nuclear Structure Through Static and Dynamic Moments, edited by H. H. Bolotin (Melbourne Conference Proceedings Press, Melbourne, 1987), p. 169.
- 17A. E. Stuchbery, C. G. Ryan, H. H. Bolotin, I. Morrison, and

S. H. Sie, Nucl. Phys. A365, 317 (1981).

- 18A. E. Stuchbery, I. Morrison, L. D. Wood, R. A. Bark, H. Yamada, and H. H. Bolotin, Nucl. Phys. A435, 635 (1985); H. H. Bolotin, in Proceedings of the 1984 INS-RIKEN International Symposium on Heavy-Ion Physics, Mt. Fuji, 1985 [J. Phys. Soc. Jpn. Suppl. II 54, 536 (1985)].
- ¹⁹A. P. Byrne, A. E. Stuchbery, H. H. Bolotin, C. E. Doran, and G.J. Lampard, Nucl. Phys. A466, 419 (1987).
- 20 A. Winther and J. de Boer, in Coulomb Excitation, edited by K. Alder and A. Winther (Academic, New York, 1966), p. 303.
- $21E$. N. Shurshikov, Nucl. Data Sheets 47, 433 (1986).
- $22V.$ S. Shirley, Nucl. Data Sheets 53, 223 (1988).
- ²³T. J. Humanic, J. X. Saladin, J. G. Alessi, and A. Hussein, Phys. Rev. C 27, 550 (1983).
- 24 Table of Isotopes, 7th ed., edited by C. M. Lederer and V. S. Shirley (Wiley, London, 1978) Append. VII.
- ²⁵G. Seiler-Clark, D. Pelte, H. Emling, A. Bacanda, H. Grein, E. Grose, R. Kulsea, D. Schwalm, H. J. Wollersheim, M. Hass, G. J. Kumbartzki, and K.-M. Speidel, Nucl. Phys. A415, 215 (1984).
- ²⁶H. Andrews, O. Hausser, D. Ward, P. Taras, R. Nicole, J. Keinonen, P. Skensved, and B. Haas, Nucl. Phys. A383, 509 $(1982).$
- 27A. E. Stuchbery, H. H. Bolotin, A. P. Byrne, C. E. Doran, and G. J. Lampard, Z. Phys. A 330, 131 (1988), and references cited therein.
- 28M. Diebel, A. N. Mantri, and U. Mosel, Nucl. Phys. A345, 72 (1980).
- ²⁹Y. S. Chen, P. B. Semmes, and G. A. Leander, Phys. Rev. C 34, 1935 (1986).
- ${}^{30}G$. A. Leander (private communication).
- ³¹S. Kuyucak, A. Faessler, and M. Wakai, Nucl. Phys. A420, 83 (1984), and references cited therein.