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7+ states in Al observed in the Mg(a, d) and Mg( He, d) reactions
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The 7+ states in Al were studied by the Mg{~,j) Al reaction at E =63.7 MeV and by the
Mg( He, d) Al reaction at Ez =55.2 MeV. Five 7+ states were newly identified, in addition to the

known 8.14-MeV 7 state, from the (o.,d) angular distributions. Comparisons of the (o., d) and

( He, d) cross sections showed that the 11.81-MeV state was excited through the (d5/2g9/2) corn-
ponent and the other 7+ states through the (f7/2) component.

High-spin states are usually considered to be of fairly
pure configuration, and often used as a test ground for
various reaction and structure theories. Unnatural-parity
stretched states like 6 states in sd-shell nuclei are of par-
ticular interest because of the possible roles of the nu-
cleon degrees of freedom in nuclei. Unfortunately, 6
states in some sd-shell nuclei, at least, have been found
not as pure as was considered in a simple-minded way.
They have rather complicated configurations, and the 6
strength is distributed among many states.

Recently the spreading of the (ds/'2f7/p) particle-
hole strength in Al and Mg has been studied through
one-nucleon' and two-nucleon transfer reactions. A
dift'erence was observed between the spreading of the 6
strength in Al observed in the ( He, d) reaction and that
in the (tz, d ) reaction. In the ( He, d) reaction the lowest
T =0 and T = 1 states are most strongly excited, and the
strength decreases with the excitation energy. It has been
found that only about 20~o of the sum-rule limit for the
Of7/2 single-particle strength concentrate in the lowest
6 state and small fractions of the remaining strengths
spread over high-lying 6 levels. Such a strength distri-
bution was well accounted for by a deformed nucleus
model. ' ' In the (a, d) reaction, on the other hand,
the lowest 6 state carries ten times more strength than
the others, the rest of the (a, d ) strength being distribut-
ed among the high-lying states nearly equally.

Another possible source of information on the spread-
ing of the f7/2 strength is 7+ states. So far only one 7+
state is known in Al at 8.14 MeV. This state was seen
excited through the (Of7/2 ) configuration in the

Mg(a, d ) Al reaction. ' This high spin would be a sig-
nature of the f„/2 shell, and the population of the 7+
states would refiect the fragmentation of the f7/2
strength, provided that no (d5/2g9/2 )7+ states were

present to confuse the spectroscopy. However, a
density-dependent Hartree-Fock (DDHF) type variation-
al calculation' shows that the p-n averaged binding ener-
gy for the (d5/2g9/2) configuration is only 5 MeV above
that for the (f7/2) configuration. Therefore the spread-
ing of the 7+ strength may be an indication of these two
configurations lying close in excitation energy. In addi-
tion, several 7+ states with higher seniorities are expect-
ed within the sd-shell model space.

The configuration of the 7+ states may be sorted out
by comparing their (a, d ) and ( He, d) cross sections. The
(d5/2g9/2 )7+ component is expected to be observed in

both the Mg( He, d) Al and the 2~Mg(tz, d )26Al reac-
tions, while the (f7/2) + component can be seen only in

the latter reaction. The 7+ states within the sd-shell can-
not be excited in direct one- and two-nucleon transfer re-
actions.

Our interest in the present work is to search for the 7+
states in Al via the (a, d) and ( He, d) reactions and as-
sign their configurations. First we identify states that
have (a, d ) angular distribution shapes described only by
a calculation with transferred (NLJ)=(067). If a 7+
state thus identified is not observed in the ( He, d) reac-
tion, its configuration must contain (f7/2 ) but not
(d5/2g9/2). If it is observed also in the ( He, d) reaction,
and its angular distribution is that of the Og9/2 transfer,
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FIG. 1. Typical momentum spectrum for the Mg(cz, d ) Al
reaction at E =63.7 MeV and at OI,b=12.5'. The inset is an
expanded partial spectrum at 0&,b

=5'.

then it contains the (d5/pg9/p) configuration. Obtained
7+ strength distribution will then be compared with that
of the 6 states.

The Mg(a, d ) Al and Mg( He, d) Al experiments
were carried out at E =63.7 MeV and Ez =55.2 MeV
using beams from the sector focusing cyclotron at the In-
stitute for Nuclear Study, University of Tokyo, and a
magnetic spectrometer. "' Details of the experimental
procedure are described elsewhere. '

Figure 1 shows a typical momentum spectrum for the
(a, d ) reaction at Hi, b

= 12.5, where the energy resolution
(FWHM) was 40 keV. Among eighty levels observed in
the region of excitation energy from 0 to 14 MeV, only
six have angular distribution shapes characteristic of the
transferred (NLJ) =(067). Here X, L, and J are the prin-
cipal quantum number, the orbital angular momentum
quantum number, and the total angular momentum
quantum number of a pair of transferred nucleons. These
six angular distributions are shown in Fig. 2, where error

bars indicate only relative errors. Errors in the absolute
values are about 10%.

The curves in the figure represent zero-range DWBA
calculations with an assumption of a deuteron cluster
transfer' using the program T%"OSTP. Parameters used
in the DWBA calculations are the same as those in Refs.
1 and 4. The experimental (a, d) cross section is related
to the DWBA calculation through an enhancement fac-
tor c by

2 2
~exp 0 ical '

Here, C =1 is the isospin factor for the Mg(a, d ) Al
reaction, s is the light particle spectroscopic factor and
equal to 3 for the (a, d ) reaction, D 0 is a zero-range nor-
malization constant, whose value is set to 20 X 10
MeV fm according to Ref. 15, and o.„& is the cross sec-
tion calculated by TwOSTP. Details of the DWBA
analysis are given in our previous work. '

Two curves for the 11.806-MeV state, shown in Fig. 2,
demonstrate the difference between the calculated L =5
and 6 cross sections. The experimental angular distribu-
tion for the 11.806-MeV state is well reproduced by the
L =6 curve and clearly different from the L =5 curve.
Typical results calculated with the same L and different J
are shown by three curves for the 7.89-MeV state. For a
transfer of L =6, the calculated J=7 curve has a shape
somewhat different from the J =6 and 5 curves at small
angles.

Angular distributions for the states shown in Fig. 2
have shapes well reproduced only by (XLJ)=(067), indi-
cating the J values of these states are 7+. Excitation en-
ergies of these states are listed in Table I. Since their an-
gular distributions are well fitted by the simple DWBA
calculation, complicated processes such as core excitation
are negligible in the (a, d ) transition to these states. The
8.14-MeV state was previously assigned at 7+ by other
authors ' from the Mg(a, d ) Al reaction. The other
states in Table I are newly proposed in the present work.
The enhancement factors for these states are also listed in
Table I.

Among the six states shown in Fig. 2, only the 11.806-
MeV state was observed in the ( He, d) reaction. The

TABLE I. Spectroscopic strengths for the 7+ states in Al observed via (a,d ) and ( He, d) reactions.
Spectroscopic information on the 6.88-MeV 6 state cited from Ref. 1 is shown for comparison. In-
tegrated (a,d ) cross sections cr

y
are also given. Abbreviated notations for the two-nucleon

configurations are used: For instance, f7f7 means (f7/2) .

(MeV)

6.88
7.89
8.14
8.98

10.61
11.81
12.00

6
7+
7+
7+
7+
7+
7+

Conf.

d5f7
f7f7
f7f7
f7f7
f7f7
d5g9
f7f7

1VLJ

056
067
067
067
067
067
067

0' f
in (a,d)

(mb)

1.67
0.31
1.10
0.12
0.09
0.70
0.11

Enhancement

Factor
in (a, d)

0.33
0.05
0.17
0.02
0.01
0.11
0.03

Spectroscopic

Factor
in ( He, d)

0.13

0.047
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FIG. 2. Angular distributions for the 7+ states observed in
the Mg(a, d ) Al reaction at E =63.7 MeV. The solid,
dashed, dot-dashed, and dotted curves are DWBA calculations
with (NL,J)= (067), (066), (065), and (056), respectively.

the (a, d ) and ( He, d) reactions.
The (f7/2 )7+ strength distribution is somewhat

different from the 6 strength distribution, although
summed (a,d) strength of 0.3 for the states with the
(f7/2)7+ configuration is comparable to the 6 strength
with the (d5/2f 7/2) configuration. The total spreading
width of the (a, d ) strength distribution for the (f7/2 ) +

configuration is 4 MeV, which cannot be ascribed to the
mixing of the (f7/2) and (d5/pg9/p) configurations as the
( He, d) reaction did not sense such mixing. However, the
width is close to the calculated value of 4.6 MeV for the
binding-energy difference between the Of7/2 and lf7/2
protons. On the other hand, the binding-energy
difference of 8.1 MeV is predicted between the Of 7/2 and
1f7/2 neutrons. Therefore, if the spreading of the 7+
strength is due to the 1f7/2 mixture, the lf7/2 proton is
more likely to be mixed in the predominant (Of7/z)
configuration. If this is the case, these states may not be
good eigenstates of isospin. The (Of 1f7/2)
configuration can generate only three 7+ states with
T =0, while five (f7/z ) + states are observed in the
present experiment. Either some of the high-lying states
have isospin mixture, or the observed fragmentation is
due to the coupling with the excited core.

10

( He, d) angular distribution for this state can be de-
scribed by a Og9/2 transfer as shown in Fig. 3. The curves
in Fig. 3 are DWBA results calculated with the program
Dw'UCK4, using a resonance form factor. Therefore,
this state must contain at least some of the (d5/2g9/2)
component. The other 7+ states are considered to be ex-
cited only through the (f7/2) configuration in the (a, d)
reaction.

Microscopic DWBA calculations for the (a, d) reac-
tion were made to further investigate the configuration of
the 11.806-MeV state. Since no reliable and established
method exists to obtain absolute DWBA cross sections
for two-nucleon transfer reactions, we used the strongest
6 state to scale the DWBA cross sections for the (a, d )

reaction. Namely, first we calculated the (a, d ) cross sec-
tion to the 6.88-MeV 6, T=O state taking the pure
( d5/2f 7/2 ) configuration, and then multiplied the result
by 0.13, which is the f7/2 spectroscopic factor obtained
in the ( He, d) study. Then we normalized the absolute
scale of the (a, d ) cross section thus obtained to the data
for the 6.88-MeV state. Using this scaling and the (a, d)
cross section calculated for the 11.806-MeV state with
pure (d5/2g9/7) configuration, we expect that the g9/p
spectroscopic factor of 0.047 for the 11.806-MeV state
(see Table I) should give an (a, d ) cross section of about
1.2 mb/sr at forward angles. This is in excellent agree-
ment with the measured value. Therefore we conclude
that the 11.086-MeV state was excited mostly through
the (d5/7g9/f) component of the wave function both in
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FIG. 3. Angular distribution for the 11.81-MeV 7+ state ob-
served in the Mg('He, d) Al reaction at Ez =55.2 MeV. The
solid and dashed curves are the D%'BA results for the Og9~, and

Of7/2 transfers, respectively, calculated with resonance form
factors.
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Several 7+ states are expected within the sd shell.
They have high seniorities and cannot be excited in direct
one-step transfer reactions. However, they can carry a
small fraction of the (f7/2) or (d5/2g9/2) component
through higher-order configuration mixing. A full sd-
shell shell calculation using the Wildenthal interaction'
predicts the lowest 7+ state at E„=3.746 MeV, close to
the known 7 (5 ) state at 3.922 MeV. The experimental
(a, d ) cross section for this state is of the order of 0.01
mb/sr, and its angular distribution is rather flat. There-
fore this state is not excited in a direct process, and con-
sidered to have pure (sd)' configurations. The calcula-
tion predicts additional 7+ states at E„=6.246, 7.714,
8.857, 9.282, and 9.357 MeV. These energies are remark-
ably close to the energies of the 7+ states identified in the
present work. It is very likely that these states carry frac-
tions of the (f7/2) or (d&/2g9/z) component and are ob-
served in the (a, d) and ( He, d) reactions. No negative-
parity states can be constructed within the (sd)'
configuration to mix with the (d~/@f7/z)6 states.

We have not seen much (d5/2g9/2 ) + strength below 14

MeV. The only state observed with the (d5/2g9/p)7+
strength is the 11.81-MeV state. The enhancement factor
for this state is 0.1. This state carries only a small frac-
tion of the g9&2 single-particle strength, and is located 3.7
MeV above the 8.14-MeV 7+ state, which has the largest
(a, d) strength of the (f7/2) configuration. This energy
di8'erence is consistent with the average separation of 5
MeV between the (f7/2 ) and the (d5/zg9/z)

configuration predicted by the DDHF calculation, con-
sidering that the 11.81-MeV state has only a small frac-
tion of the (d5/2g9/2 ) strength.

In conclusion, five 7+ states in Al have been found in
addition to the known 7+ state at 8.14 MeV. From a
comparison of the Mg(a, d) Al and Mg( He, d) Al
cross sections, we have identified five of them that con-
tain the (f7/2) configuration and one state that contains
the (d 5/2g9/2 ) configuration. There seems to be no
significant mixture of these two configurations. The ener-
gy separation between the 7+ states with these two
configurations is in qualitative agreement with the
DDHF calculation. The (f7/z) + strength distribution is

difFerent from that of the (d~&2f7/z) observed in the

(a, d ) reaction. One of the possible origins of the spread-
ing of the (f7/p ) + states is the coupling between the un-

bound proton in the Of7/2 and lf7/2 shells. However, a
good agreement between the energies of the observed 7+
states and those calculated in the full sd-shell model
space suggests that these 7+ states are basically of the
(sd)' nature mixed with a small fraction of the (f7/z) or
the (d5/'ig9/2) components into which two particles are
transferred.

We are grateful to Professor T. Suzuki for critical read-
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