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Calculating deuteron photodisintegration amplitudes using nonsingular scattering equations

Chr. von Ferber* and W. Sandhas
Physikalisches Institut, Universitat Bonn, D 530-0 Bonn 1, Federal Republic of Germany

H. Haberzettl
Department of Physics, The George Washington University, Washington, D.C. 20052

(Received 12 July 1989)

We derive a momentum-space formulation of the deuteron photodisintegration in terms of non-
singular scattering integral equations. The two-body T matrix describing the nuclear final-state in-
teractions enters only on shell, thus offering the possibility of determining it entirely in terms of ex-
perimental phase shifts. The formalism suggests a lowest-order approximation which goes beyond
the usual plane-wave approximation and which contains the full information of the on-shell final-
state interaction. Test calculations using the Reid soft-core potential are reported. It is found that
the numerical solution of photodisintegration observables is greatly facilitated by the proposed for-
malism. Moreover, the lowest-order approximation is seen to be superior to the usual plane-wave
approximation, providing good results even in those cases where the usual plane-wave approxima-
tion vanishes. Extensions to more complex few-nucleon systems are discussed.

I. INTRODUCTION

The exact calculation of observables for the photodis-
integration of the deuteron traditionally is done in posi-
tion space. ' One usually determines the corresponding
matrix elements by first solving the Schrodinger equation
for the coordinate-space scattering wave function
describing the final-state interaction of the two outgoing
nucleons and by a subsequent integration over the respec-
tive plane-wave approximation [cf. Eq. (1)]. It has been
known for some time that it is also possible to formulate
the problem in terms of an integral equation in momen-
tum space, in much the same way in which nuclear tran-
sition matrix elements are obtained from the
(momentum-space) Lippmann-Schwinger equation for the
T matrix. Although, to our knowledge, this procedure
has never been used in any numerical investigation of the
photodisintegration of the deuteron, it is the standard
method for the exact calculation of photodisintegration
amplitudes within Faddeev-type integral equation ap-
proaches to the three-and four-nucleon problems.

In this paper, we will use the integral equation ap-
proach to calculate observables for the photodisintegra-
tion of the deuteron. In doing so, we wi11 go one step
beyond the above-mentioned well-known formulation in
terms of an analog of the usual Lippmann-Schwinger
equation and rewrite the problem with the use of a non-
singular scattering equation. We will show that this
procedure leads to equations which are easier to solve nu-
merically because the customary singularities of a scatter-
ing problem no longer occur in the integral equation it-
self, but only in simple quadratures to be performed after-
wards. In addition, it will be found that this approach
quite naturally leads to lowest-order approximations of
the photodisintegration amplitudes which, in numerical
applications, prove to provide much better results than

the usually employed plane-wave approximations. (A
more detailed account than given here can be found in
Ref. 10.)

The formulation presented here is based on the 8'-
matrix approach of Ref. 7. (The approach of Ref. 7 is a
generalization of a procedure by Kowalski, based on a
general subtraction scheme by Coester; all of these
momentum-space methods are closely related to a coordi-
nate space formulation of the two-body scattering prob-
lem by Sasakawa. ")

The formal derivation of the set of nonsingular equa-
tions for photodisintegration amplitudes is performed in
Sec. IIA. As already mentioned, as a natural conse-
quence of this approach, we will propose an approxima-
tion of these amplitudes which goes well beyond the usual
plane-wave approximation, with relatively little extra
work, and in which the on-shell nuclear final-state arnpli-
tudes play a prominent role. In Sec. II 8, we then pro-
vide explicit expressions for all resulting equations for the
case of E1 transitions. The results of numerical test cal-
culations employing the Reid soft-core potential' are re-
ported in Sec. III; they show that the formalism
developed here is not only of numerical advantage in gen-
eral, but also that our improved plane-wave approxima-
tion definitely is superior to the usual one. A summary
and our conclusions are given in Sec. IV. Amongst other
things, we will argue that the formalism developed here
in detail for the deuteron may easily be generalized to the
photodisintegration of more complex nuclei, in particular
few-nucleon systems like H, He, or He, and that the
improved plane-wave approximation proposed here may
be a particularly useful tool for such systems. Moreover,
in the Appendix, we list the expressions relating some ob-
servables to the amplitudes defined in Sec. II.
Throughout this paper we use natural units, with the nu-
cleon mass being equal to unity, i.e., 41.47 MeV fm = 1.
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II. FORMALISM

All of the following considerations in subsection A are
to be understood in partial-wave decomposed form.
However, in order to keep the notational overhead at a
minimum, we will omit all partial-wave, angular momen-
tum, and spin indices, etc. , in the following derivation.
Explicit expressions for specific applications can be found
very easily along the lines given below; those used for our
numerical test calculations are given in subsection B.

A. Formal derivation

The definition of the photodisintegration amplitude
reads

m(p)=&p~m)='-'(p~m, ~q &,

where the initial state ~%) represents the deuteron wave
function, %, is the electromagnetic interaction Hamil-
tonian, and ~p)' ' the outgoing final, purely nuclear,
scattering state with energy E =p . Using the identity

'&pl —= &pl[1+T(E+lo)Go(E+lo)],
the nuclear final-state interaction between the outgoing
nucleons is made explicit via the corresponding transition
matrix T(E+io); the operator

60(E +i 0)=(E +i 0 Ho )—
here is the resolvent of the kinetic energy Harniltonian
Ho. With the help of the Lippmann-Schwinger (LS)
equation for the T matrix,

V(p, q) = V(p, k)+ [V(p, q) —V(p, k)], (7)

where the parameter k is chosen as k =E. [We note that
for the present purpose, we need not consider the case of
negative energies; the distinctions made in Ref. 7 as to
how to choose k at negative energies, therefore, play no
role here. Also, Eq. (7) is, strictly speaking, true only for
s waves; for higher partial waves, see Eq. (21) in subsec-
tion 8 (and Ref. 7).] Employing the splitting (7) in Eq.
(3), one finds that the scattering problem can be solved in
terms of the nonsingular integral equation,

W(E)= V+(V —V )6 (E+io)W(E),
where the singular kernel (6) of the LS equation is re-
placed by the subtracted, nonsingular kerne1

and to rewrite the LS equation into an equivalent set of
equations involving only simple quadratures and a non-
singular integral equation. Quite clearly, the scattering
problem then becomes numerically much simpler and
easier to solve. The similarity between the LS equation
(3) and the integral equation (4) now suggests proceeding
in the same manner also for the calculation of photodisin-
tegration amplitudes.

First, let us recapitulate those features of nonsingular
scattering equations which are of relevance for the
present work. The particular variant to be used here is
referred to as the 8'-matrix approach and is explained in
detail in Ref. 7. The basic step leading from the singular
LS equation (3) to a nonsingular scattering equation is a
splitting of the potential according to

T(E +i 0)= V+ VGo(E +i0)T(E +i0), (3) &p~(V —V ')6 (E+ 0)~q)=
E —

q
(9)

one then very easily derives an integral equation for the
(off'-shell) amplitude M, which can be written in abstract
form as

~m) = )a &+ VG, (E+iO) ~m & . (4)

As can be seen, the only difference between this integral
equation and the nuclear LS equation is that the nuclear
potential V in the inhomogeneity of the LS equation (3) is
now replaced by

/a&=a, /q&,

where

(5a)

(5b)
1

is the corresponding plane-wave approximation (PWA) of
the photodisintegration process. By analogy with Eq. (3),
as we shall sometimes refer to Eq. (5) as the Born approx-
irnation of the photodisintegration amp1itude.

Obviously, the kernels, and therefore also the singulari-
ty structures, of the nuclear LS equation (3) and the in-
tegral equation (4) for the (off-shell) photodisintegration
amplitude M are identical. In the nuclear case there ex-
ists a well-known procedure which allows one to remove
the scattering cut for energies E&0 from the kernel of
Eq. (3),

(p(VG, (E+iO)~q &= V(p, q)
E+i0—

q

in which E+ i0 can be replaced by E without any prob-
lems because the denominator singularity at E =q is
canceled now by the corresponding zero of the difference
V(p, q) —V(p, k). Here, and in the following, the super-
script OS denotes the half-on-she11 value of the corre-
sponding matrix element [i.e. , V stands for V(p, k)].
The solution of Eq. (8), referred to as the W matrix, is
real and nonsingular. Given W(E), the fully off-shell T
matrix can be calculated via simple quadratures. For
the present purpose, however, it is sufFicient to consider
the relation between W(E) and the half-on-shell T matrix
T(p, k;k +Eo), viz. ,

where

W(p, k;k )

F(k +io)
(10)

kk'F(k +io)=1—I dq
k +'0 —

q

is a momentum-space representation of the well-known
Jost function. (Again, since in this paper we deal only
with positive energies, the distinction made in Ref. 7 be-
tween the positive and negative energy regimes are of no
relevance here. ) Equatjons (10) and (11) show that the
scattering problem is solved completely in terms of the
(real) solution of the nonsingular W-matrix equation (8)
and that the scattering cut enters the T matrix explicitly
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via the simple quadrature in the Jost function (11).
Taking over this procedure for the calculation of pho-

todisintegration amplitudes and employing now the split-
ting (7) in the integral equation (4), one very easily finds,
with the help of Eqs. (8) and (10) that Eq. (4) can be re-
placed by the following equivalent set of two equations:

ly &
= iB &+( V V"—)G,(E+i 0) Iy &,

~M&=~y&+Tos(E+iO) fG,(E+io)~y&,

(12)

(13)

where T (E +i 0) is a shorthand notation for the half-
on-shell T matrix (10) and

fG,(E+io)iy&=—f dqq' E+i0—
q

(14)

The integral equation (12) represents the analog of the
W-matrix equation (8). In other words, we again find
that the calculation of photodisintegration processes sim-

ply requires replacement of the nuclear potential V in the
inhomogeneity of (8) by the plane-wave approximation B;
the kernels of (8) and (12) are identical. The (ofF-shell)
photodisintegration amplitude now is determined by a
simple quadrature over the solution g of the auxiliary
equation (12) and by the half-on-shell nuclear T matrix.
Note in this context that the main numerical work in cal-
culating the photodisintegration amplitude M according
to (13) is the inversion of the nonsingular kernel

(V —V )G (E+iO),
and that this allows one to simultaneously determine
both y, according to (12), and T, via (8) according to
(10); in other words, the explicit occurrence of the T ma-
trix in (13) does not introduce any additional numerical
complications.

Equations (12) and (13) summarize the main result of
this paper. Obviously, owing to the fact that the kernel
of (12) is nonsingular, the numerical solution of the set of
equations (12) and (13) is much simpler than the original
integral equation (4). Moreover, since the amplitude M is
no longer determined directly via an integral equation
but by a simple quadrature, it is now possible to consider
only the on-shell restriction of Eq. (13), i.e.,

M(k)—:(k~M & =y(k)+t (k)f G,(k'+io) ~y&, (15)

latter, it also contains the on-shell information of the
final-state interaction via t(k) and some integrated ofF-

shell contributions from the P%'A under the integral
sign. Given the usual PWA B and the on-shell amplitude
t(k) approximation (16) is relatively easy to calculate.
Moreover, Eq. (12) allows one to systematically improve
on this lowest-order approximation. [In the latter con-
text, we mention that for uncoupled and for weakly cou-
pled partial waves, Eq. (12) may be solved by iteration;
see Ref. 7.]

In Sec. III, we will report on some test calculations
performed with the Reid soft-core potential' which show
that the results obtained with Eq. (16) indeed provide a
very definite improvement over the usual PWA, leading
to extremely good agreement with the corresponding ex-
act results even in those cases where the normal PWA
vanishes (cf. Figs. 8 and 9). We shall refer to Eq. (16) as
the improved PWA.

Let us add some remarks concerning the practical use-
fulness of Eq. (16). Obviously, since the calculation of
t (k) and of the full amplitude M both require the inver-
sion of the same kernel (9), and despite the fact that Mz
is a much better approximation of M than the PWA B,
the usefulness of (16) would be somewhat limited if one
still had to calculate the nuclear on-shell amplitude t (k),
for then one might as well go all the way and determine
the full amplitude M with very little additional work.
The practical usefulness of Eq. (16), in our opinion, there-
fore, stems from the fact that the required nuclear ampli-
tude in (16) is completely on shel/; in other words, one can
write t(k) entirely in terms of the experimental phase
shifts for the associated nuclear final-state scattering pro-
cess, and thus altogether avoid the numerical solution of
an integral equation. As explained in the summarizing
assessment in Sec. IV, this may be particularly important
for few-nucleon systems more complex than the deute-
ron, and it is in this respect that we consider the im-
proved PWA a relatively simple —and possibly very
useful —tool for the approximate calculation of photodi-
sintegration amplitudes.

B. Some explicit formulas

The explicit form of the integral equation (4) for the
deuteron photodisintegration reads

where

t(k)=—T(k, k;k +iO)

Va (p q)J
MI (p) =B& (p)+ g f dq q Mi. (q);

0 k +iO —
q

(17)

M (k) =B(k)+ t (k) fG,(k'+ i 0)~B & (16)

as the lowest-order approximation of the set of equations
(12) and (13). This evidently constitutes an improvement
over the usual plane-wave approximation, B(k), of pho-
todisintegration amplitudes, because in addition to the

is the nuclear on-shell T matrix. The important point
here is that Eq. (15) ofFers one a very simple way of im-
proving on the usual plane-wave approximation: Instead
of solving Eq. (12), one may restrict oneself to the Born
approximation, i.e., use B as a lowest-order approxima-
tion of g, and consider

B i(p) =~io
~

A(p)+~i2
~

+—42(p)
Bp p p

(18)

here, J denotes the total angular momentum and 1' and I'
are partial-wave indices [for uncoupled partial waves, the
potential simplifies to Vli (p, q)=6&i V& (p, q), of course].
In the following, we take into account meson exchange
currents via Siegert's theorem and we consider only E1
transitions; i.e., we have but J=0,1,2, in (17) (and all po-
tentials belong to isospin T= 1, of course). Only uncou-
pled p waves contribute for J=O, 1; for J=2 the p wave is
coupled to an f wave. The three Born amplitudes be-
longing to I= 1 are given as
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and the f-wave Born term for J=2 reads

B ( )=a32 ——$2(p) .a 2
(19) 0 ~ 10—

The seven nonvanishing coefficients uII are as follows:

a +1/3, a)p=+2/3;s=o:
aI, =&1/2;

ao= —+5/3, a)2=+1/30;
a = —&9/5.

The functions fo and $2 in (18) and (19) are the s- and d-
wave components, respectively, of the deuteron wave
function; they are normalized in the usual way,
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ElFIG. 2. Same as Fig. 1, for Y» .
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The potential splitting (7), which leads to Eqs. (12 and
(13), is given explicitly as0.004.

1'I'I (p»q) = UI'I (p»k)q'+(UI'I (p»q) Ufi (p»k) jq'—(21)0. 003

where the function0.002

(22)
fl

Ul'I (p»q)=~Pi (p q)q
'

/I
up to the factor q

' which compensates for the q-
threshold behavior of VII (p, q) for vanishing q, is i enti-
cal to the potential. (This factor is introduced to make all
entities well defined for all values of the on-shell momen-
tum k; see Ref. 7.) The set of equations equivalent to Eq.
(17) thus becomes

0.001

0 ~ 000

I i & s i I -0.001I i i & i I

50 100.5 10

E„ t:NeV)

U,~. (p, q) —U„.(p, k)
Xi(p»)=&I'(p»)+ & I, dqq' „, , q Xi q

1'

FIG. 1. Real and imaginary parts of the El amplitude Vo& vs

represented by dashed and dash-dotted lines, respectively. (23)
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and

Ui(- (p, q ) —Ui(- (p, k )+y f "dqq'
III

Xq' W, , (q, k;k ), (26)

q'xl(q)
M( (k) =pl(k)+ g r(( (k)k ' f dq q

1'

(24)
For the latter equation, we have written only the on-shell
version because this is all we need. The on-shell two-
body T matrix is given according to Eq. (10) as

t(( (k)= g W((-(k, k;k )[F (k +i0)]II',k, .', (25)
It t

where W&&. (k, k; k ) is determined via the half-on-shell re-
striction of Eq. (8),

Wi( (p, k; k ) = Uii (p, k )
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FIG. 4. Same as Fig. 1, for 'TQ3'.
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and the Jost function (or, rather, Jost matrix for coupled
channels) is given explicitly as

q'W(( (q, k;k )
FIJ (k +iO)=o(J f dq q—

0.001

0.000

The expression for the improved plane-wave approxima-
tion M~&(k) discussed in subsection A follows upon re-
placing in Eq. (24) the full solutions g~ of the integral
equation (23) by their respective Born approximations B~
given in (18) and (19):

5 10
I i i » I

50 100
-0.001

q'Bl (q)
M~t(k) =B( (k)+ g t(( (k)k I dq q

I'

(28)
E„[MBV)

FICx. 3. Same as Fig. 1, for 'T2,'.
Equations (23)—(28) provide a complete summary of the

detailed formulas for the calculation of deuteron photodi-
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sintegration amplitudes within the framework of non-
singular integral equations. All observables can be ex-
pressed with the help of the amplitudes M&, explicit ex-
pressions for some observables are given in the Appendix.

0.0

s s s I I I s s l ) s I I I I I s s I

III. NUMERICAL RESULTS

We have applied the procedure described in the
preceding section using the Reid soft-core potential. '

The objectives of these test calculations were twofold;
firstly, to verify the numerical usefulness of the nonsingu-
lar formulation developed above and secondly, to test the
reliability of the improved PWA according to Eq. (28).
As mentioned already, for simplicity we restrict ourselves
to E1 transitions.

-0.5

&0 s & s s I s s s' s I & s s s I s s

80
200

E„(NeV)
150 200

50

40

C' 30

b
20

FIG. 6. Correlation coef5cient Az/Ao {see the text); crosses
correspond to values calculated from numbers given by Partovi
(Ref. 1) for the Hamada-Johnston potential. Indicators as in
Fig. 1.
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exec t
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ec rn~degl

FICx. 5. Differential cross sections at photon lab energies of
20, 50, and 100 MeV [cf. Eq. (A5)t. Indicators as in Fig. l.

In general, we find that the numerical solution of the
nonsingular scattering equations (23) and (26), and the
subsequent quadratures (24) and (27), present no practical
problems whatsoever. In our opinion, the nonsingular
formulation proposed here is definitely simpler in numeri-
cal applications than the usual approach in terms of
Lippman-Schwinger-type integral equations.

In Figs. 1—4 we plot the real and imaginary parts of the
four El amplitudes V'z&' defined in Eq. (A3). Each figure
contains the usual PWA according to Eqs. (18) and (19),
our improved PWA defined in Eq. (28), and the corre-
sponding exact result. As far as the real parts are con-
cerned, we find that there is little difference between the
usual PWA and the improved PWA. Although our ap-
proximation seems to work somewhat better at higher en-
ergies (in particular, for Re'Tz~' in Fig. 4), both PWA's
reproduce the corresponding exact results fairly well.
The decisive difference between the two approximations
appears in the imaginary parts: Whereas the imaginary
parts are always identically zero for the usual PWA, our
improved PWA is seen to follow the exact calculation to
the same degree of reliability as found already for the real
parts. From these findings it seems obvious, therefore,
that our approximation can be expected to be at least of
the same quality as the usual Born approximation for all
observables in which the vanishing imaginary part plays
no role, and to be quite superior in all other applications.

In assessing the quality of the approximations shown in
Figs. 1—4, it should be noted that the overall normaliza-
tion of the amplitudes T enters directly here; many ob-
servables, however, are calculated in the form of ratios
(cf. the examples given in the appendix). One may hope
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1.0

0.8

0.6

0.4

20.
PMA

that in the latter cases differences between the approxi-
mate and the exact values due to normalizations might
cancel to a certain degree. As a first example of this, we
show in Fig. 5 the differential cross sections at photon en-
ergies of 20, 50, and 100 MeV, and in Fig. 6 the correla-
tion coeKcient A z / A o, where A c and A 2 are defined by
expanding the differential cross section in Legendre poly-
nomials, i.e.,

der/d A=X& AIP&(cose)

[cf. Eq. (AS)]. (This ratio can also be calculated from the
numbers given by Partovi' for the Hamada-Johnston po-
tential; the corresponding results are shown in Fig. 6 for
comparison. ) As can be seen from Fig. S, for the

differential cross sections our approximation is definitely
better as far as the shape of the exact result is concerned,
but it does not quite reproduce the overall normalization,
which is given somewhat better by the usual PWA, at
least at lower energies. However, for the ratio Az/Ao
one sees from Fig. 6 that our improved PWA follows the
exact result quite closely. It is definitely much better
than its customary counterpart, which falls short by
about 30 percent almost over the whole energy range.

Figure 7 provides a further observable obtained by
forming a ratio; it shows the asymmetry for linearly po-
larized photons at lab energies of 20, 50, and 100 MeV.
The corresponding formula is given in Eq. (A6) in the
Appendix. We find here that the improved PWA
definitely is much better than the usual PWA, being al-
most indistinguishable from the exact result at lower en-
ergies and fairly close to it even at an energy of 100 MeV.

In Figs. 8 and 9, we show the results for the proton po-
larization and for the target asymmetry [cf. Eqs. (A7) and
(A8)]. These two examples, perhaps, demonstrate the su-
periority of the improved PWA most clearly: Being pure
real, the usual Born approximation vanishes identically
for these observables and thus cannot be applied at all
here. The improved PWA, in contrast, not only does not
vanish, but again is seen to reproduce the corresponding
exact calculation very well, in the case of the proton po-
larization (Fig. 8) even extremely well.

0.2 exa
IV. SUMMARY AND DISCUSSION

s s I0.0 I I I I I I I I I I I I I I I I
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FICx. 7. Asymmetry for linearly polarized photons at lab en-
ergies of 20, 50, and 100 MeV [cf. Eq. (A6)]. Indicators as in
Fig. 1.

We have presented here a momentum-space formula-
tion of the deuteron photodisintegration within the
framework of nonsingular scattering integral equations.
The decisive features of this approach are, firstly, numeri-
cal utility, secondly, the fact that the associated final-
state amplitude is required only on shell and, thirdly, a
lowest-order approximation which, given the usual PWA,
can be calculated very easily and which provides a
definite improvement over the usual PWA.

As mentioned already, the set of equations (23) and (24)
is numerically much simpler to solve than the customary
integral equation (17). This obviously is due to the fact
that the auxiliary integral equation to be solved, viz. , Eq.
(23), does not contain any of the usual LS kernel-type
singularities and is completely real. The customary
singularities of the scattering problem enter here only
through quadratures which can be dealt with very simply
and efhciently numerically. In addition, we have shown
that the lowest-order approximation suggested by the ap-
proach presented here yields results which are, for all ob-
servables considered, in good —sometimes even
excellent —agreement with the corresponding exact cal-
culations. These results were found to be at least of the
same quality as the usual PWA, and in most cases
definitely better. Particularly striking examples of the
latter kind are all those observables for which the usual
Born approximation vanishes altogether (cf. Figs. 8 and
9). We feel justified, therefore, to refer to this approxima-
tion as the improved PWA.

The formulation developed here allows experimental
(i.e. , on-shell) information about the final-state interac-
tion to have a direct bearing on the final result. Apart
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from the bound-state wave function in the Born term
(which contains a certain amount of off-shell information,
of course), the only place where the off-shell behavior of
the nucleon-nucleon interaction enters is via the non-
singular kernel of the auxiliary integral equation (23).
The overall quality of the improved Born approximation
found here is a good indication, therefore, that this ofF-

shell behavior does not seem to be very important and
that the on-shell final-state amplitude, together with the
ofF-'shell information contained in the wave function, is
quite sufBcient to provide the main features of the corre-
sponding exact result.

Let us add a few remarks concerning possible other ap-
plic'ations. Although derived for the deuteron, the above
approach can be quite easily taken over to the photodis-
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FIG. 9. Target asymmetry at lab energies of 20, 50, and 100
MeV. Indicators as in Fig. 1.
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FIG. 8. Proton polarization at lab energies of 20, 50, and 100
MeV [cf. Eq. (A7)]. Indicators as in Fig. 1.

integration of more complex nuclei. This is particularly
3 3 4true for relatively small systems like He, He, or He

which involve only a few constituents and which can still
be calculated exactly —at least in principle. Generalizing
the two-body LS equation, the scattering problem for
these three- and four-nucleon systems may be very con-
veniently formulated in terms of Faddeev-type integral
equations. Recasting these in the form of effecri'Ue two-
body equations of an LS-type structure very similar to

14the genuine two-body scattering equations, this then
forms a starting point from which one derives an LS-type
description of the corresponding photodisintegration pro-
cesses exactly analogous to the one given in Eqs. (4) or
(17) for the deuteron (for a treatment of three- and four-
nucleon photodisintegration along these lines, see Refs. 5

and 6, respectively). Owing to the structural similarities
between the deuteron case and these effective two-body
formulations, it is obvious that one may now also take
over the nonsingular approach presented above and ar-
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rive at a description of three- or four-nucleon photodisin-
tegration processes in which the corresponding on-shell
nuclear final-state amplitudes appear explicitly, just as in
Eqs. (24) and (28). This then ofFers the opportunity to
take this on-shell information entirely from the experi
mental phase shifts. If one restricts oneself to the analog
of the improved plane-wave approximation (28), one may
then altogether avoid the solution of an integral equation
and is left only with a relatively simple integration over
the corresponding Born amplitudes. If the quality of the
improved PWA found for the deuteron carries over to
these more complex systems, one then would have a rela-
tively simple tool for the approximate calculation of few-
nucleon photodisintegration amplitudes which would al-
low one to circumvent the nontrivial numerical complexi-
ties of the full scattering problem. It is in this respect
that we consider the above nonsingular formulation-
and, in particular, the improved PWA —a possibly im-
portant step towards a simplified yet reliable calculation
of photodisintegration observables.

In summary, we believe that the formulation presented
here is a viable alternative to the usual ways of calculat-
ing photodisintegration amplitudes and we are convinced
that the modified plane-wave approximation which fol-
lows naturally from our approach constitutes a definite
improvement over the customary PWA.
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asymmetry:

82P2 (cos8)
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APPENDIX

polarization:

C2P2 (cos8)

target asymmetry:

T2P 2 ( cos8)
A (8)= 20+ A2P2(cos8)

(A7)

(Ag)

=1+ 2~»b

Md
(A2)

Md is the deuteron mass. The quantity V'Ji' is deter-
mined with the aid of the amplitudes M& of Eq. (24) as

1/2

2Md 3 2 v2J+1
(A3)

The total cross section for E1 transitions is calculated
according to

o „,(co) =4m g (2J+1)
(Al)

J, I

where c0 is the center-of-mass system (CMS) photon ener-
gy, related to the corresponding laboratory energy co1,b
via

Here, the coeKcient Ao is related to the total cross sec-
tion of Eq. (Al) via 4vrA0=o„, . The definitions of the
other coe%cients A2, 82, and C2 can be found in Ref. 13,
and T2 is given as

where the asterisk denotes complex conjugation and the
eight nonvanishing recoupling coefticients b&&. are'

F02 — h20 —1 h02 h20 1 y(4+6)11 11 l2 & 13 31

= —$2i =1/(4~6)11 11 8 & 13 31

More general formulas, going beyond E1 transitions, can
be found in Ref. 13 and, in particular, for some cases not
considered there, also in Ref. 10.
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