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The deuteron photodisintegration in the b, -resonance region is calculated within a unitary theory
of the NN-Nh-~NN system coupled to the photon. The photoexcitation amplitude of the 5 is de-
duced from the M&+ ( 2 ) pion photoproduction amplitude consistently with its background term and

the mN interaction. The NN-Nh transition amplitude is obtained from the coupled equations for
the NN-N4-mNN system. The one-pion-exchange currents as well as the normal single-nucleon
current are included. The polarization parameters are reproduced quantitatively, but the cross sec-
tion is slightly underestimated. Comparison of our results with those of the NN-NA coupled-
channel model is made. Effects of relativistic corrections and gauge-invariance constraints are dis-
cussed.

I. INTRODUCTION

The b, (1232) resonance has now become familiar parti-
cle in nuclear physics. Nonetheless, it is a yet harder task
to construct a unified model for the NN and Nh interac-
tions since the 6 is an unstable particle which ultimately
decays into a pion and a nucleon. As a result, the two-
body NN and NA channels couple strongly with the
three-body ~NN channel above the pion-production
threshold. This is evidenced by the experimental fact
that, in the 6 resonance region, about one-half of the NN
total cross section comes from inelastic scattering. Any
realistic model for the NN and NA interactions is, there-
fore, imperatively needed to satisfy the requirement of
the three-body unitarity.

During the last decade great efforts have been exerted
to build up a unified description of the NN-Nh-mNN sys-
tem based on Faddeev's three-body theory. Many au-
thors' " have used this approach, the unitary three-
body model, as it is often called, to calculate md~md,
~d~a.NN, m.d —+NN, NN~NN, and NN —+mNN reac-
tions. The first two processes are quite well reproduced
(except for the backward md elastic scattering) principally
because the quasifree term dominates these reactions. A
more intriguing feature of this model is that it can predict
pion annihilation and production in qualitatively satisfac-
tory agreement with experiment. The success of the uni-
tary three-body model in describing the NN-NA transi-
tion makes it natural to extend the model to electromag-
netic processes, yd ~pn, m. d, and mNN.

The deuteron photodisintigration thus far has been
studied most intensively in the energy region below the
pion-production threshold. The first models for the pho-
todisintegration in the 6-resonance region appeared in
the 1950's, ' but they did not not advance to another
stage because of a lack of detailed experimental data to
compare with. About ten years ago Laget' resorted to a

diagrammatical approach and carried out systematic
studies of the yd reactions. Several calculations'
have appeared after Laget. In these calculations, howev-
er, the final-state interaction was treated only approxi-
mately or disregarded entirely. Recently Leidemann and
Arenhovel' applied the NN-NA coupled-channel model
to the deuteron photodisintegration. The coupled-
channel model, as we shall call it in this paper, incorpo-
rates the coupling of the NN-NA system to the mNN
channel only through the width of the b. Wilhelm,
Leidemann, and Arenhovel' succeeded in explaining the
data qualitatively, especially when they added the relativ-
istic spin-orbit current into their calculation. Prelimi-
nary results of an independent attempt based on the
coupled-channel model have also appeared in Ref 19.

The coupled-channel model, however, has a conceptual
shortcoming; it does not satisfy the three-body unitarity.
The purpose of this paper is to extend the unitary three-
body model to a description of the deuteron photodisin-
tegration, and to study the validity of the model in its
different aspect. We confine ourselves to the photodisin-
tegration, but it is straightforward to apply our model to
the pion photoproduction. Among all other things, the
essential difference that makes the unitary three-body
model distinct from the coupled-channel model is that all
the interactions (including off'-shell behaviors) are deter-
mined by the analyses of the two-body scattering data.
This makes the unitary three-body model more consistent
dynamically and less Aexible practically. In the three-
body model the mNN and DNA vertex interactions are
fixed from mN scattering, while in the model of
Leidemann and Arenhovel they could vary these parame-
ters so as to reproduce the NN scattering phase shifts.
These observations should be recalled when one com-
pares our results with those of the coupled-channel mod-
el.

Another purpose of this paper is to describe the
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II. THE FORMALISM

We describe the system of two nucleons and a pion in
terms of the interaction Hamiltonian

V= Vd+ V (2.1)

yN —+~N reaction and the deuteron photodisintegration
in a unified way. A formalism which incorporates the
electromagnetic interaction into the three-body model
has recently been developed by Araki and Afnan. As
they have pointed out, the M&+ ( —,

'
) pion-photoproduction

amplitude, when embedded in the two-nucleon system,
induces two different processes, the 6-isobar excitation
process and the pion-exchange current process. We have
to decompose these processes in such a way as to preserve
the unitarity constraint. The decomposition of the
M, +( —,') amplitude into the resonant and background
parts of necessity leads to a modification of the resonant
amplitude. ' In this paper the DNA coupling constant
determined consistently with the background amplitude
and the elastic mN amplitude are used to calculate the 6-
isobar current. Furthermore, a dynamical treatment of
the pion in the three-body model inevitably produces
nonstatic effects on the 6-isobar current and the pion-
exchange currents, which, in the conventional models,
have been evaluated in the static limit. Effects of relativ-
istic corrections and gauge-invariance constraints are also
investigated.

The outline of this article is as follows. In Sec. II we
present our model for the deuteron photodisintegration
and describe the connection between the M, +(—,') pho-
toproduction amplitude and the 6-isobar current. In Sec.
III we summarize the necessary formulas for calculating
the one-body and two-body current matrix elements. The
results and the discussion are given in Sec. IV. Finally, in
Sec. V, we present a summary of this work.

fG."~xf' fG."xxf~

fr G."xxf' f~G."x~f~ (2.3)

where the operators f and f& are the AN ~N and
~N —+6 vertex interactions and 6'&& is the free ~NN
propagator. The index d, on the other hand, stands for
the vrd channel [the rr(NN) channel with the NN compos-
ite in the S, D, partial w-ave], and the nd~NN an. d
m.d ~NA driving forces are given by

Bwx~ fG."xxf~— (2.4)

Bx~~ =fr G ~m A(0) (2.5)

where fz is the d~NN vertex with one pion being
present as a spectator. Its precise de6nition will be given
below. The sum over d in Eq. (2.2) produces the md-

channel coupling. Note that the pion-absorption opera-
tor is given by

one-particle exchange Born amplitude B. The index d
refers to channels of the NN subsystem and a spectator
pion. Equation (2.2) forms a satisfactory basis for the
study of pion absorption as developed in Refs. 2 —4 and
11.

The P(( and P33 ~N interactions and the S&- D, NN
interaction are crucially important because each of these
amplitudes contains a pole or a resonance. In previous pa-
pers, ' '" we have calculated the NN~NN and md ~NN
reactions including all the S- and P-wave m.N interactions
and the S-, P-, and D&-wave NN interactions, but small
partials waves did not affect the results of our calcuations
very much. We shall neglect these partial waves for the
sake of simplicity. Consequently, the T matrix elements
among NN and Nb, [the N(vrN) channels with AN com-
posites in the P» and P33 partial waves, respectively],
and the driving force has the form

where Vd is the NN interaction in the presence of a spec-
tator pion and V is the mN interaction in the presence of
a spectator nucleon. Assuming separable two-body in-
teractions for Vd and V, the three-body Faddeev equa-
tion is reduced to the Faddeev-Lovelace equation, as is
represented schematically in Fig. 1,

( —)4 ( —)f
+NNd +X BXXd ++5 BXhd

1+~xxxx6xx ~

( —) t—

( —)f—

(2.6)

(2.7)

(2.&)

T p g B r+ gB qG~Bqr (5rp+GrTrp)
y . d

(2.2)

The indices a, P, y run over two-baryon states, the two
baryons being a mN composite and a spectator nucleon,
and 6 is the propagator of the two-body subsystem in the
presence of a spectator. The T matrix is driven by the &.x«) =fr'G~ «)f~

where

(2.9)

are the distortion operators originating from the final-
state interactions. In these equations, 6&z and 6&& are
the NN and NA propagators, respectively. We define
6z& in the following way: The ~N P33 scattering ampli-
tude is given by

N

Gq(E) = [E—mq —Xq(E)]

is the 6 propagator and

&~«)=f~G."~f~

(2.10)

(2.11)

FICx. 1. Faddeev-Lovelace equation for the md% system.

is the 6 self-energy. Here m~ is the bare mass of the 4,
6' ~ is the free mN propagator, and E is the bary-centric
energy of the mN system. The G&& is equated to Gz(E)
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T r(E)=V ~+fqGq(E)Vr (2.13)

with E replaced by the c.m. energy of the m.N subsystem.
We now add the electromagnetic interaction V, to

the nonradiative interaction Hamiltonian (2.1). We as-
sume that the photon incident on the single nucleon gives
rise to three distinct reactions; absorption, 6 excitation,
and pion production not mediated by the first two pro-
cesses, as indicated in Fig. 2. Namely, we assume that
V, is given by

V = VN+ V'+ V', (2.12)

where V is the direct photoabsorption interaction, V is
the 5-photoexcitation interaction, and V is the back-
ground for the pion photoproduction. From this elec-
tromagnetic interaction, the single-nucleon M, + ( —', ) pho-
toproduction amplitude, as depicted in Fig. 3, is given
b 23, 24

(b)

Tpy = Vpy+ VP~G~NN V~y + Tpp Gp Vpy

+ TppGP VP~G~~N V„y .

Within the given interaction (2.12), V z= V r. We fur-
ther decompose P into P, (NN) and P2(Nb ) and solve for
Tp yp

(2.18)

FIG. 3. (a) The m.X P33 scattering amplitude and (b) the
M&+ I',

2 ) pion-photoproduction amplitude.

in which the first term is the background and the second
is the b-resonant amplitude modified by the final mN in-
teraction. Namely,

(2.14)

+Vp

+ p p Gp p y+ p, p, GP, Vp ~ ~NNV~y

+ Tp (2.19)

T=Q~ 'tVr +Qi~ ' V +QIv ' fG ~~V r

+Q~ ' f~ G iv~ V~r . (2.15)

When the electromagnetic interaction (2.12) is applied
to a two-nucleon system, it makes a transition to NN,
Nb„or ~NN. The photoabsorption operator is calculated
from

Using the notation

TP Pl TNNNN

Tp p

Gp
l

GNN
(2.20)

Here G NN is the mNN propagator

G~NN —G ~NN+ G.NN Td G~NN
(0) (0) (0)

with

Td —Vd+ Vd G~NN Td

(2.16)

(2.17)

In Eq. (2.15), the first two terms are the processes in-
duced by the one-body nucleon current (the normal
current) and the one-body N +b. transition curr—ent (the
b.-isobar current). The nonradiative T matrices obtained
from Eq. (2.2) are used to describe the final-state interac-
tions. Equation (2.15) is derived as follows: We decom-
pose the Hilbert space into yNN, NN, NA, and mNN.
The projection operators onto yNN and m.NN are denot-
ed as y and ~, respectively, and the projection operator
onto NNSNA is denoted as P. Using the projection
operator method, we solve the T matrix for the process
y ~P to order of the electric charge e with the result

Tb. s. =(Q'iv f+Qa ' fq)G'~~V~i

and the correction brought about by Td,

T b (QIv f+Q6 fh)G xivTdG xxV y

(2.21)

(2.22)

The T matrix (2.21) contains one-body and two-body pro-
cesses depending on whether the pion emitted by one nu-
cleon gets reabsorbed by the same nucleon or the other
nucleon. The one-body processes can be included into
the normal and the 6-isobar current contributions,

(2.23)

and Vz &=Vz, Vp z=Vz, we obtain Eq. (2.15). Within

the present model Eq. (2.15) exhausts the photoabsorp-
tion process linear in e, thereby the unitarity being en-
sured to order e. Equation (2.15) is equivalent with Eq.
(4.18) in the work of Araki and Afnan. 2o

Correspondingly to the decomposition (2.16), the V
induced terms in Eq. (2.15) can be split into two parts,
the contribution from the free m.NN propagator,

(2.24)

Vem = The two-body processes, on the other hand, are triggered
by the two-body NN~NN operator

FIG. 2. Electromagnetic interactions for the single nucleon. OPE (0) B
Vi =(fG m, V r)t ob (2.25)
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Td=g(7 ' —&d«)] 'g',
where

(E)g tG(0)g

(2.34)

(2.35)

and Gz& is the free NN propagator. Since the scattering
amplitude possesses a pole at the deuteron mass md, one
sees that

[A,
' —X (E)] '= C l—(E —m ),

where

(2.36)

FIG. 4. Photoabsorption operator for the two-nucleon sys-
tem.

dXd(E)2—
dE E=md

The deuteron wave function is given by

CGNN g

(2.37)

(2.38)

and the two-body XX—+%A operator

DOPE (0) BI'y (fd GUNN
—I'my )two body ' (2.26)

which is normalized to unity at E =md.
We now add a noninteracting pion as a spectator. The

XXamplitude becomes
Consequently Eq. (2.15) becomes the sum, as indicated in
Fig. 4, Td =fd Gdfd (2.39)

T = T~+ T~ + T~ exc+ T~ „,+ T,b, ,

where

(2 27) where Gd is the free trd propagator and

fd =Cg (2.40)

=n(-"v "¹xc X y

=n'-"v'- "
6-exc b, y

(2.28)

(2.29)

The b, -isobar current contribution, Eq. (2.24), can be re-
lated to the M, +(—', ) amplitude as follows: When one
noninteracting nucleon is added, Eq. (2.14) becomes

4d G eNNfd
(0)

A=fdG NN .(0)

Inserting Eq. (2.39) into Eq. (2.22) leads to

(2.41)

(2.42)

is the d~NN vertex function. Furthermore, from Eq.
(2.38), the md wave function becomes

(0) BI'
y
= V, +(fa vrNN I'ny )one body . (2.30) B

Tabs TNNd Gd Pd ~m.y (2.43)

The 6-isobar current contribution turns out to be

(2.31)

where the pion-absorption amplitude, Eq. (2.6), takes the
form

~ y ~y +(fG ~vNN ~ey )one body (2.32)

which leads to the renormalization of the physical quanti-
ties of the nucleon, such as mass and magnetic moment,
but since we use the observed values for the single-
nucleon interaction, inclusion of the dressing of the nor-
mal current would result in double counting.

To understand the meaning of Eq. (2.22), we consider a
separable NN interaction in the deuteron channel,

Note that only the b, -mediated part of the M&+ ( —,
'

) ampli-
tude is responsible for the 6-isobar current and that the
background is subtracted from the full M, +(—,') ampli-
tude. Note also that the 6-isobar current is subject to the
full nonstatic treatment. This makes our calculation dis-
tinct from the tradiational approach based on the di-
agrammatical expansion of the current operators. The
background also aft'ects the normal-current contribution
as

TNNd=(Q'N ~ f+Q'd. fd. )g

Equation (2.43) can be written in the form

( —)fTb, =Ad V y

with

"f+&'d. "fd. )0d Gdgd

(2.44)

(2.45)

(2.46)

T= —O' ' JdxJ„(x)A„(x), (2.47)

Thus, it turned out that (2.22) describes the quasielastic
pion photoproduction followed by the pion absorption.
We shall call this the pion-reabsorption term. Equation
(2.45) holds independently of the particular model for the
NN interaction that we have used.

Each of the five contributions in Eq. (2.27) has the
form of the impulse term distorted by the fina-state in-
teraction,

Vd =gag
The NX scattering amplitude is given by

(2.33) with A„being the electromagnetic potential. The four-
current J„=(J,i p ) consists of the components corre-
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and

QPE ~ Q QPE
P P P P p p 7

n'-"=n'-"+n'-"+n'-" .d

(2.48)

(2.49)

fl
f2 f~= f2 (2.50)

in which the index 1 is for the pole terms we have dis-
cussed in this section while the index 2 is for the nonpole
background terms. The effect of such a complication is
to double the channel quantum numbers. The operator
T~~d becomes a 2X2 matrix. The physica1 amplitude
can be extracted from this by multiplying the renormal-
ization factor Z as is described in our previous paper. '

We conclude this section by devoting a brief discussion
to the gauge invariance. The total Hamiltonian

In this section we have simplified the argument by em-
ploying the 6-isobar dominated model for mX elastic
scattering. In a previous paper, we introduced the elas-
tic background and constructed a dynamically consistent
model for the pion photoproduction. We use this model
to determine the yXb coupling constant under the con-
straint of unitarity and calculate the 6-isobar current.
The mX P» interaction is also described by a two-
potential model. ' Since we take these interactions to
be separable, appropriate modifications of the formulas
are made straightforwardly by introducing matrix nota-
tions

the normal current in Sec. III A. The interaction current
associated with Vd is not involved in the yd reactions.
The gauge-invariance requirement imposed on the mX in-
teraction V produces a yN~nN interacton from f
and a yN~mb, interaction from f~. The yN~m. N in-
teraction is included in V but the yN ~eh interaction
is not present in (2.51) since we do not consider the
three-body state mXA as a coupled channel. The effect of
the yX —+eh interaction will be taken into account as
one of the XX~Xh pion-exchange currents, as de-
scribed in Sec. IIIC. We do not consider the internal
bremsstrahlung of the 6 since it does not contribute to
the yd reactions unless the AA component of the deute-
ron wave function is present.

III. CURRENT MATRIX ELEMENTS

The transition amplitude for the deuteron photodisin-
tegration is written as

(3.1)

where p is the relative momentum of the pn system, k is
the photon momentum, c.„is the polarization vector with
A, being the photon helicity, and co =k is the energy of the
incident photon. We use the c.m. system as a reference
frame. Inserting the intermediate XX, N 6, and n.d
states, we obtain

&plTli ~,y&

a=a, + v„+v.+ v~+ v', + v'., (2.51)

should be invariant under a local gauge transformation.
The free Hamiltonian Ho is the sum of the kinetic-energy
operators of m, N, and A. The single-nucleon electromag-
netic interaction V should emerge consistently with the
nucleon kinetic-energy operator in 00. We shall describe

(3.2)

For the purpose of practical calculations, we expand. the
transition amplitude into partial waves in terms of the re-
duced matrix elements

JLi (lsJ)=(p, lsJlQ' '"Jlk, L/OJ)

=(2m ) g f p' dp'(p, lsJlQ' ' lp', 1's'J) (p', 1's'Jl Jlk, LloJ ),
is

pL(lsJ)=(p, lsJlQ' ' plk, LJ)
=(2m. ) g f p' dp'(p, lsJlQ' ' lp', 1's'J ) (p', 1's'J lplk, LJ),

is

(3.3)

(3.4)

where l and s are the orbital angular momentum and the
total spin of the pn system, respectively, and J is the total
angular momentum. The photon is assigned the orbital
angular momentum lo and the total angular momentum
L,. The sums are over intermediate two-body states XN,
Nh, and hard. The minimal-relativity prescription is ap-
plied to the final-state interactions.

In terms of the reduced matrix elements (3.3) and (3.4),
the electric, magnetic, and Coulomb multipoles are writ-
ten as

I

Mr (lsJ) =v 2L +1JLL (lsJ),

CL(lsJ) =V2L + lpL (lsJ) .

(3.5b)

(3.5c)

The longitudinal multipole is not independent. Thanks
to the gauge invariance, we can use the continuity equa-
tion and write the longitudinal multipole in terms of the
Coulomb multipole,

LL(lsJ) =&LJzL, (lsJ) VL +1JLL+—,(lsJ)

Er (lsJ) =&L +1JLL &(1 J)+s+L JrL +&(lsJ), (3.5a)
=—C (lsJ) . (3.5d)
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It is well known that the electric multipole, which is
strongly inAuenced by meson-exchange currents, can be
reliably calculated by exploiting the continuity-equation
constraint (3.5d). The way to implement the constraint is
not unique, however. We follow Eisenberg and
Greiner, and substitute Eq. (3.5d) into Eq. (3.5a) with
the result

1/2

FIG. 5. . Momentum assignment for the impulse term.

EL(lsJ) = —C (lsJ)
k

2L +1+ —JI.I. +i(lsJ) .
V'L (3.6)

equivalence ambiguity, i.e.,

J„(k)=iu ( p)—(F,y„F2—o „k,)u (
—p —k)

+i (E —E„—co)Sp(k), (3.12)

In the long-wavelength limit the second part and the
meson-exchange eA'ect on the Coulomb multipole vanish.
Consequently, the electric multipole is determined model
independently once the continuity equation is used. This
fact is known as Sigert's theorem. The model indepen-
dence of the electric multipole persists at moderate value
of k, and hence it is a common practice to impose the
continuity-equation constraint even if theoretical models
do not obey rigorously the current-conservation law.

A. Normal current

We define the single-nucleon current matrix element by

( —plJ lk~, n ) =(2~)'6ln+k+p)J„(k) . (3.7)

Since the spectator nucleon carries momentum p, the nu-
cleon interacting with the photon has momenta
n = —p —k and —p, and energies

=[(p+k) +m ]

( 2+ 2)1/2

(3.8a)

(3.8b)

J(k)=g, p+g2k+ig, o X p+ig4o Xk

+ig5o. .pp Xk+ig6o'kp Xk,
p(k) =h, +ih2o" p Xk .

(3.9)

(3.10)

The form factors are functions of p, k, and p k. Two
more vectors

po'p Xk=p. ko. Xp —p o. Xk+o'pp Xk,
ko'pXk=k o. Xp —p ko. Xk+o'kpXk

(3.11a)

(3.11b)

do not define independent form factors.
The direct photoabsorption interaction is derived from

the Dirac Hamiltonian in the electromagnetic external
field. The current matrix element is subject to unitary-

I

respectively, before and after the interaction. The kine-
matics is shown in Fig. 5. The most general form of
J„(k) is

where the first term is the matrix element of the Dirac
electromagnetic current (F, and F2 are the Dirac form
factors,

and

G@=F) —(k„/2m)F2

( —p~S~kk, , n) = —(2m) 5(n+k+p) " S„(k) . (3.13)2'
The generator S is completely arbitrary. Such a
nonuniqueness, sometimes called Barnhill's ambiguity in
the context of the pion-nucleon vertex, can be exploited
to make the electromagnetic interaction explicitly gauge
invariant consistently with the diag onalized nucleon-
energy operator P( —V +m )' rather than with the
original Dirac Hamiltonian ia V+Pm. — The ex-
plicit form for S has been obtained and the form factors
have been given by

2F,
g, =N( iF, coL+F2—k„)—

gz =
—,'g, ,'N[G—co—+F2(2pk+k )],

g3 =NGcu,

gq =
—,'g3+ ,'N[G(E~+E„)+2m—GE],

g5 =2g6 = —2%F2,

h, = 2N[F, (Ep+E„)(E +E„+2m)
—Gk F2c—o(2p k+k )],

h2 =NG,

where

(3.14a)

(3.14b)

(3.14c)

(3.14d)

(3.14e)

(3.14f)

(3.14g)

G~ =Fi +2mF2

are the Sachs form factors, k„=k —cu, and I is the nu-
cleon mass) and S„(k) is the matrix element of the gen-
erator of a time-dependent unitary transformation S,

N= 1

+2E„(E +m )2E„(E„+m )

E —E„ (E +E„+2m ) +4' E„L= —i
E&+E& (E +E„)(E +E„+2m)+2+2E (E +m)2E„(E„+m)

G=F&+F2(E +E„+2m) .

(3.15a)

(3.15b)

(3.15c)
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Because of the identities

g3 cohp 0

p kg, +k g2
—coh& =F, (E~ E—„—co),

the four divergence of the current turns out to be '

k J(k) —cop(k) =F&(E~ E„——ro) .

p(k) =h
& +h2[C&(P ) Xo'])o

(3.16) where the form factors are redefined as

(3.17)

(3.18)

g) ~pg} ~

g2 ~kg2

—&2~(g3 —k'g6»

g4 k(g4+ pg5+—p'kg6)

&10
kp g5 ~

3

h, ~h(,
h~~ —&2kph2 .

The normal current is not conserved by itself. The use of
the continuity equation amounts to including a part of
the meson-exchange currents, thus bringing us a more re-
liable estimate of the electric multipole, at least at low en-
ergies.

It is straightforward to expand the full relativistic form
factors in a power series of m . ' using

(3.22)

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

(3.23f}

(3.23g)

N= +O(m ),1

4m

L =O(m ),
G =2GM —G~+O(m ),

and obtain

(3.19a)

(3.19b)

(3.19c) JL( (IsJ)=(l Js~~J(k)$(Q)~~Ll JO),

pl (lsJ) = (lsJ()p(k)P(Q)[)LJ ) .

(3.24)

(3.25)

The product of the one-body current matrix element and
the deuteron wave function yields the impulse approxi-
mation

GE
g2=

2GM GE

Sm

(3.20a)

(3.20b) Q. =p. Q, =p„Q.=rV. +UE, » (3.26)

The deuteron wave function in momentum space, P(Q)
=(Q~P), is calculated in its rest frame as a function of
the pn relative momentum

2GM GE

4m
CO

GM 2GM GE
g4 = +

2
CO

2m 8m

g5 —=0,
g6 =—0,

2GM GE 2
h$ —GE k

8m

(3.20c)

(3.20d)

(3.20e)

(3.20f}

(3.20g)

where U =k/Ed, @ =Ed/md, and Ed =(k +md )' is the
deuteron energy. In the nonrelativistic limit, Q, =p,
+—,k. The relativistic corrections arise from terms
beyond order m ' in the current and the Lorentz boost
in the pn relative momentum. The Wigner spin rotation
is neglected since its efFect is found to be small. The ex-
plicit expressions for the multipoles are given in Appen-
dix A.

B. 6-isobar current

2GM —GE
h2 =—

4m
(3.20h)

in precise agreement with the result of the successive
Foldy-Wouthuysen transformations to order m
Note that for the real photon GE =+& ~ The gz term is for
the longitudinal current which does not contribute to the
real photon processes. When we use the continuity equa-
tion, we replace a part of the electric multipole with the
Coulomb multipole. This necessitates us to retain the
convection current in g2. The Darwin-Foldy terms can
be dropped from gz and h, . In fact, the gz and h, terms
contribute to the electric multipole in the combination
(co/k)h, —kg2 so that the Darwin-Foldy terms cancel
each other between g2 and h &.

For the partial-wave expansion, we choose the direc-
tion of the photon momentum as the quantization axis
and rewrite Eqs. (3.9) and (3.10) in terms of tensors

The X-6 electromagnetic transition is overwhelmingly
predominated by the magnetic dipole. The 6-isobar
current contribution is calculated as the two-step process,
the 6 excitation followed by the %6~1VÃ transition, as
described in Sec. II. The current matrix element becomes

( —p~J „~kk,, n ) =(2m) 5(n+p+k)J~(k),
where

(3.27)

E~ —E„J (k)=iF~SX k+ pE~

p (k)=iF~ S pXk .
1

E~

(3.28)

(3.29)

Fg =&2/3
2m

(3.30)

In these equations, S is the transition spin operator, Ez is
the energy of the 6, and

J1(k)=gi Ci1(P )+g251o+g3[Ci (p ) X o ]
—g~ko1 —g5A[Cz(p) Xo.]&1, (3.21)

is the yah coupling constant Multiplied by the isospin
Clebsch-Gordan coe%cient for the 6 excitation. The
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four divergence of the transition current becomes

k.J (k) —~p (k)=(Eq —E„—~)p (k) . (3.31)

Equations (3.28} and (3.29) are readily rewritten in terms
of tensors

Jz. (k) =g3 [Ci(P }XS~iz.—g4 ~Sz.

p (k) =h z [C, (P ) XS],0,
where

(3.32}

(3.33) FIG. 6. Momentum assignment for the exchange-current
processes.

g3 = i 2pFg

g~= —kI~,

h, = &2pF—~
k

(3.34a)

(3.34b)

(3.34c)

G~xiv(p p )= —1/coq,

sc—=q .

(3.38a)

(3.38b)

First we evaluate Eq. (3.36) using the static approxima-
tion

The @X' coupling constant is deduced by fitting the
M, + ( —,') photoproduction amplitude (2.13) to the experi-
mental data. The extraction of Fz is complicated by the
presence of the background and the final aX rescattering.
Equation (2.14) defines the effective yXb, vertex function
Fz(E). We approximate the background of the M, +( —,')
amplitude by the sum of the three Born amplitudes; the
contact amplitude, the pionic amplitude, and the one-
nucleon exchange amplitude. The md% and ym.XX ver-
tices in the Born amplitude are multiplied by a common
form factor. Once F& is determined, F&(E) is calculated
as a function of the c.m. energy of the mX subsystem.
With Fz(E) in place of Fz in Eq. (3.28), the b, -isobar
current contribution (2.31) is evaluated.

C. One-pion-exhange currents

The photodisintegration amplitude is given by

z~i, bf ( )
'ql 'qz i ql( + )cr .

CO(

(3.38c)

%'e do not include the one-nucleon exhange Born term
which produces the recoil-current contribution in Fig.
7(b), its leading part being canceled, in the static limit, by
the deuteron wave-function renormalization. %'e find
that the one-pion-exchange current is the sum of the con-
tact current, Fig. 7(a), and the pionic current, Fig. 7(c).
The contact interaction, the first term in (3.38c), and the
contact interaction on nucleon 2 yield the exchange
current

O 2O &.q&J„„„,„(k)=—i(ri Xrz)' f(qi)
QP)

Furthermore, we again approximate the background by
the contact and pionic Born terms. Using the notation
q~

—q k, q2
—q, N~ —co k, and c02 —coq

Js(k)=——E" r, o.zf(qz)

&plJ "lk~, y&= j p, Jo„(k)y(p'+-,'k), (3.35)

with the matrix element of the one-pion-exchange current

+f(qz)
C02

(3.39a)

JopE(k) = if (~)rzcrz ~G+iit(p, p') J~(k), (3.36)
The pionic interaction, the second term in (3.38c), pro-
duces the exchange current

where a is the i' relative momentum, f(a. ) is the ~XX
vertex function, and a is the pion isospin index. The
current matrix element of the background is defined by

(p, qalJ (k)l —p' —k) =(2') 6(q+p+p')Js(k),

J&, „, (k)=i(&i X&z) g(qi, qz)f(qi )f(qz)

X
(qi+qz}~i qi~z q.

CO CO1 2

(3.39b)

(3.37)

with q= —p —p' being the pion momentum. The pion
wave-function normalization (2'„) is included in the
vr%Xpropagator G'iIiv(p, p') [co =(q +p, )' is the pion
energy and p is the pion massj. The backward-going
pion propagator is approximated by the static one and is
added to the riNiii propagator so that Eq. (3.36) has the
correct static limit. The pn relative momentum in the
deuteron is considered in the nonrelativistic limit. The
momenta are defined as in Fig. 6. The diagram with nu-
cleons 1 and 2 interchanged should be added unles it
coincides with Eq. (3.36).

FIG. 7.
current.

Contribution of V ~ to the one-pion-exchange

It is well known that the insertion of form factors into
the meson-nucleon vertices leads to a violation of gauge
invariance. The reason for this is that the extra addition-
al current is unavoidably associated with the inserted ha-
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FIG. 8. 5 one-pion-exchange current from the yS—+m.h con-
tact interaction.

dronic form factor. We follow the prescription
developed in Ref. 36 and supplement the additional
current

J„„„„(k)= —i(r, XT2)'

r S2O. 1 q1
X f(q1)f&(q, )

CO1

1S2'q2
+f(q2)fh( q2)'

C02

and the pioic current, Fig. 7(b),

Jp,,„;,(k) =i(r, XT2)'gz(q„q2)f (q1)f~(q2)

(q1+q2)~1 q1S2 q2
X

CO CO1 2

(3.45a)

(3.45b)

»~(k) = -e" F1~1.q1, , If(q» —f(q1)] .„b b 91+92
(3.40) The contribution from the second term in Eq. (3.44) is in-

cluded in the pionic current. In the inserted factor,

The factor in the pionic current

CO CO1 + 2

f(q, ) f(q, )

f q2 f q1-
q1,q2 = 1

Iz
(3.41)

f (q1)

f~(q2) f6(q 1 ) ~2

q', —q21 fg(q2)
'

f q2 fq1-
S q1 q2

(3.46)

accounts for the current (3.40) (and the one on nucleon
2), and guarantees that the one-pion-exchange current
obeys the gauge-invariance condition

k JopE(k) [ VopE('q2) ( 1++1)]

+ [APE(q1» -,'(1+&2)]

where

(3.42)

Cr i.qa 2.q
~OPE(q) = —r1 r2f (q)'

COq

(3.43)

J2,(k) = —s""T2S2fa(q, )

zab b q1 Q2
T2S2 'q2, , [fz(q2 ) fz(q1 )] . (3.4—4)

Vz

The 5-isobar one-pion-exchange current is again the sum
of the contact current,

is the one-pion-exchange NN potential. The pionic
current corrected by the form-factor effect was obtained
by solving the gauge-invariance. condition (3.42). 2' The
approach of Ref. 36 is to derive it from the minimal-
substitution prescription applied to a nonlocal represen-
tation of the mNN vertex.

In a quite similar way we can derive the formulas to
calculate the one-pion-exchange current for the NN
~Nb, transition. Figure 7(b) is the recoil current which
vanishes identically owing to the isospin conservation. In
addition to the yX~mX contact interaction, Fig. 7(a),
there should exist the yN —+eh contact interaction, Fig.
8. The latter is required because of the presence of the
derivative and form factor at the mNh vertex. We extend
the approach of Ref. 36 and derive the contact current by
a minimal replacement in the DNA vertex with the result

the pionic current, /&=1, is corrected by the form-factor
effect in the mNN and mN 5 vertices.

In Appendix B we present the explicit formula for the
partial-wave decomposition of the contact and pionic
currents obtained in the static approximation. Our next
task is to go beyond the static approximation and evalu-
ate the effects of the retarded pion propagator on the con-
tact and pionic currents. Moreover, in the presence of
the pion retardation, the nulceon recoil current brings
about a nonvanishing correction. In nonstatic calcula-
tions we employ the prescription of Aaron, Amado, and
Young for the mNN propagator and the mN relative
momentum x in Eq. (3.36).

IV. RESULTS

The parameters for the m.N interaction, the bare mass
of 6, the m.Nb coupling constant and the cutoff momen-
turn, are deduced from the mN P33 phase shifts. We use
model A of Ref. 10, the parametrizations of the P» and
P33 scattering amplitudes. The P11 and P33 interactions
are taken to be rank-two separable, and the n.NN and
DNA form factors are designed to have a common cutoff
momentum 1000 MeV/c (dipole). We found that the oft'-

shell behaviors of the mN amplitudes can be represented
by the monopole form factor with the cutoff momentum
of about 600 MeV/c.

The DNA coupling constant is deduced from the exper-
imental I,+ ( —', ) pion-photoproduction amplitude adopt-
ing the mN interaction model in the least-squares fitting.
We found that the fitting is insensititive to the cutoff pa-
rameter of the background amplitude, and hence we
chose 600 MeV/c (monopole). We obtained fr&z
=3.183. We show in Fig. 9 the result of our fitting. The
background amplitude is also plotted. When we calculate
the 5-isobar current, the background amplitude is sub-
tracted from the full photoproduction amplitude [see
Eqs. (2.30) and (2.31)]. The subtraction signiAcantly
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FIG. 9. Fit to the MI+( ~ ) pion-photoproduction amplitude. The solid curve is the full amplitude, the long-dashed curve is the

background, and the short-dashed curve is the full amplitude minus the background. The data are from Ref. 41.

modifies the real part of the amplitude, as is seen in Fig.
9.

Below the pion-production threshold (E~ =147 MeV),
the normal current with the continuity-equation cori-
straint dominates the deuteron photodisintegration.
Arenhovel showed that above the photon energy
E —50 MeV, the magnitude of the amplitude is sensi-
tively inAuenced by the interaction in the final state. If
one neglects the final-state interaction, the total cross sec-
tion decreases substantially. We observed a similar ten-
dency in our three-body calculation. In Fig. 10 we plot
the total cross sections obtained using just the normal
current. We compare two different final-state interaction
models; the three-body model constructed in our previous
paper, ' and the Paris potential. In all these calcula-
tions we use the deuteron wave function of the Paris po-
tential.

In Fig. 10 we see that there occur sizable discrepancies
between the three-body model and the Paris potential.
We investigated the partial-wave amplitudes and found
that the major diff'erence is caused by the E 1( P, ). As is
seen in Fig. 11(a), the three-body model does not describe
the P, phase parameters. This is apparently due to our
neglect of the short-range interaction. We must admit
that our XX elastic amplitude for low partial waves is far
from being satisfactory. We decided to use the Paris po-
tential for the final-state interaction in calculating the
normal one-body current and the normal one-pion-
exchange current. To be consistent with the Paris poten-
tial, we follow Buchmann, Leidemann, and Arenhovel
and employ the cutoff' momentum 1200 MeV/c (mono-
pole) for the vrNN form factor which enters the pion-
exchange current. The 6-isobar current and the 6 one-
pion-exchange current are computed using the three-
body model. In Fig. 11(b), we see that the three-body
model describes satisfactorily the phase parameters of the
dominant partial wave 'D2.

A. Comparison with %'ilhelm, Leidemann, and Arenhovel

0
0 100 Z00 V00

E, (Mev)

~ ~

400 500

FICx. 10. Contribution of the normal current to the total pho-
todisintegration cross section. The solid and dashed curves give
the predictions with the final-state interactions, the three-body
model, and the Paris potential, respectively. The data source is
as follows: solid triangles from Ref. 44, solid circles from Ref.
45.

We are now in the position to present the results of our
fu11 calculations including the normal current, the 5-
isobar current, the one-pion-exchange currents, and the
pion reabsorption correction. First we show our predic-
tions using the static approximation given in Sec. IIIC
for the one-pion-exchange currents. In Fig. 12 we exhib-
it the total cross section. The shape and position of the
resonance are quite well reproduced, but its magnitude is
slightly underestimated. The experimental peak is locat-
ed about 50 MeV below the mass of the free NA system.
An analogous phenomeonon is observed in the ~d —+XX
reaction. In our previous study, " we showed that the
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FIG. 11. Energy dependence of the NN scattering phase shifts for the 'P& and 'D& partial waves. The solid and long-dashed curves
are the predictions using the three-body model and the Paris potential, respectively. The inelasticity parameter p for the Paris poten-
tial is zero. The short-dashed curve is the three-body model prediction with the md channel coupling ignored. The data are from the
analysis of Ref. 46.

final-state interaction shifts the peak of the ~d~NN
cross section to a lower energy. In the photodisintegra-
tion the perturbative calculations' ' which neglect the
final-state interaction bring the maximum of the cross
section to higher energies.

At E&=260 MeV in the vicinity of the maximum of
the total cross section, we appreciably underestimate the
differential cross section around 0, =90 . To study the
origin of this discrepancy, we compare our result with
the coupled-channel calculation of Wilhelm, Leidemann,
and Arenhovel' in Figs. 13(a) and (b). The most
significant difference between these two calculations is
seen in the Ml('Dz) partial wave which gives the largest
contribution in the 6-resonance region. The model of

'l0

6-
Full

0—
0

dg/4Q

30

260 NeV

"Sp+ Pp+ P„

60 90 'l 20
B(d eg)

150 180

10——
(b)

dot'dA 260 NeV

150—
o(pd )pn). —

100—

O~ 0 ~ ~

0-
0 100 200 300

&, (Mev)

400 500

FIG. 12. Energy dependence of the total photodisintegration
cross section. The mass of the free NA system is indicated by
the arrow. The data are the same as in Fig. 10.

0
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1 3 3Sp+ Pp+ P„
I I

60 90
e(deg)

120
I

150 180

FIG. 13. Partial-wave decomposition of the differential cross
section at E~ =260 MeV: {a) the result of the present calcula-
tion and (b) that of the coupled-channel model {RSC, 5, V&) by
Wilhelm et al. , Ref. 18. The data are from Ref. 48.
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TABLE I. Contributions of the normal single-nucleon
current, the 6-isobar current, the normal and b-isobar one-
pion-exchange currents (OPEC), and the pion-reabsorption pro-
cess to the M1('D2) amplitude in units of 10 fm at E~ =260
MeV. In Ref. 18 meson-exchange currents other than OPEC
are included. Normalization is as in Ref. 51. The numbers in
the parentheses are contributions from the extra current in-
duced by the hadronic form factors at mNN and m.NE vertices.

Present Wilhelm et al. (Ref. 18)

Normal current
5-isobar current
OPEC

4-OPEC

Pion reabsorption

Total

—3.49—0.49i
—5.40—7.38i
—1.22 —0.22i

( —0.09—0.02i)
0.00—0.09i
(0.04+0.02i)
0.19—0.23i

—9.92—8.41i

—3.37—0.34i
—7.00—8.67i
—1.93—0.24i

—0.71 —0.71i

—13.01 —9.96i

Wilhelm et al. has freedom in choosing the yNA cou-
pling constant and the NA~NN interaction, both of
which are essentially important to adjust the total cross
section. All of them being considered, their results are
better than ours in reproducing the differential cross sec-
tions and some polarization parameters. This purports
that something is missing in our M 1( D2 ) amplitude.

In Table I we compare the predictions of our model
with those of Wilhelm et al. by decomposing the dom-
inant M 1 ( 'D2 ) partial-wave amplitude. The normal-
current contributions agree very well with each other.
The results are insensitive to the final-state interaction
because the impulse term dominates higher partial waves
of the normal current. The essential difference between
the two modes is in the 6-isobar current. Our matrix ele-
rnent is about 20/o smaller than Wilhelm et al. We also
underestimate both the normal and 6 meson-exchange

currents mainly because we did not include the p-rneson-
exchange current nor the hh component of the deuteron
wave function. We find that both the effects of the pion
reabsorption and the extra additional current induced by
the hadronic form factor are negligibly small.

The 6-isobar current contribution to the M 1('D2) am-
plitude consists of the effective 6-excitation amplitude
and the Nh~NN transition amplitude. Our results for
the NN scattering, Fig. 11(b), and the md ~NN reaction,
Fig. 14, convince us that our model is good enough to
adequately describe the NA~NN transition. Since the
background is subtracted from our M, +(—', ) pion-
photoproduction amplitude, the real part of the
excitation amplitude is considerably smaller than that of
Wilhelm et al. , but the imaginary part is much the same.

We also studied the nonstatic effects in the one-pion-
exchange currents. In Fig. 15 we show the results for the
differential cross sections. The nonstatic propagation in
the one-pion-exchange current slightly enhances the cross
sections at forward and backward angles, but does not fill

in the pronounced dip around 0, =90. The results for
the neutron and proton polarizations P (n), P (p), and
the photon asymmetry X are shown in Figs. 16 and 17.
The neutron and proton polarizations are not sensitive to
the description of the pion-exchange current. The non-
static effect in the pion-exchange current most strongly
influences the photon asymmetry, but it destroys the
good agreement with experiment at low energies.

One more difference between our model and Wilhelm
et al. is the way the coupling with the mNN and md chan-
nels is introduced. In Wilhelm et al. the dominant part
of the mNN channel coupling has been taken into account
through the width of the A. The importance of the md

channel coupling is clearly seen in Fig. 18 in which the
partial cross sections of the photon-induced reactions are
shown. The cross section for the yd~m d reaction is
about two times larger than the photodisintegration cross
section around the mass of the free Nh system.

0.5

I:m('D~ —3+~)

—0.1—

—0.2
300 500 700

0JL

500 700 900

FIG. 14. Prediction for the NN 'D2-m'd I'2 amplitude. The data source is as follows: solid circles from Ref. 49 and solid triangles
from Ref. 50.
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FIG. 15. Angular distributions of the differential cross sec-
tion at various photon energies. The solid and dashed curves
are the results of static and nonstatic calculations of the pion-
exchange currents. The dotted curve is the result of the calcula-
tion using the three-body model for the final NN interaction.
The data source is as follows: solid circles from Ref. 45, solid
triangles from Ref. 48.

FIG. 16. Angular distributions of the neutron and proton po-
larizations. Notation is as in Fig. 15. The data source is as fo1-
lows: solid triangles from Ref. 52, solid squares from Ref. 53.

02
j60MeV

0

It is well known that in the XX inelastic scattering
the %%~md reaction is the most important process
below the nucleon kinetic energy TL =500 MeV. This is
clearly seen in the inelasticity p for the D2 partial wave
[see Fig. 11(b)]. As Leidemann and Arenhovel' neglect
the md channel, they underestimated the inelasticity pa-
rameter near the pion-production threshold. In order to
reproduce the 'Dz inelasticity, they introduced a short-
range N 6 interaction with an adjustable parameter.
However, it is not possible to simulate the efFect of the md
channel coupling by their short-range interaction, be-
cause the efFective Xb interaction arising from the
Xh~m. d~&h transition contains a large imaginary
part. In fact, while their short-range interaction
enhances the cross section in the 6-resonance region, the
coupling of the md channel slightly reduces the cross sec-
tion at E~ =300 MeV, as is shown in Fig. 19.

—0.4
02

—02-

—0.4
02

—0.2-

260MeV

360MeV

B. Relativistic corrections

Cambi, Mosconi, and Ricci pointed out that the
spin-orbit correction to the normal current is very impor-
tant in order to get reasonable results for the forward
di6'erential cross section. Wilhelm, I eidemann, and
Arenhovel' further studied this correction in the 6-

—0.4
0 60 120

(deg)

FIG. 17. Angular distributions of the photon asymmetry at
various photon energies. Notation is as in Fig. 15. The data are
from Ref. 54.
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FIG. 18. Total cross sections for the yd reactions. The data
source is as follows: solid circles from Ref. 45, solid triangles
from Ref. 55, and solid squares from the fits to the data of the
differential cross sections, Refs. 56, 57, and 58.

resonance region. They found that the correction is also
significant at higher energies.

The spin-orbit term appears in the Foldy-Wouthuysen
interaction as a relativistic correction of order I
Since the c.m. nucleon momentum reaches as large as
490 MeV at E =260 MeV, the effect of terms of higher
order in the I ' expansion should be examined in the
6-resonance region. We calculate the deuteron photo-
disintegration using the full relativistic interaction given
in Sec. III A. The numerical results are shown in Fig. 20.
For comparison we also present the nonrelativistic calcu-
lation without the spin-orbit correction. The effects of
the higher-order terms are found to be very small even in
the 6-resonance region.

The recoil of the 6 also gives rise to the spin-orbit
correction to the b, -isobar current [see Eq. (3.28)]. This
does not produce any marked effect below the pion pro-
duction threshold as is judged from Fig. 20. However, in
the 6-resonance region, it suppresses the differential cross
section around 0, =90 .

300Me V

b

60

(deg)

180

Our model contains another relativistic effect, the
Lorentx boost of the pn relative momentum. Figure 20 il-
lustrates the results using the nonrelativistic kinematics:
We use relative momentum Q=p+ —,'k instead of Eq.
(3.26) and ignore the minimal-relativity corrections for
both the deuteron wave function and the final-state wave
function. The difference between the two calculations is
proved to be very small.

C. Generalized Watson's theorem

Below the pion-production threshold Watson's theo-
rem demands that the phase of the photodisintegration
amplitude should be equal to the final-state N2V scattering
phase shift 5&. This constraint is respected in the classic
paper by Partovi ' and in the subsequent papers. Above
the pion-production threshold Watson's theorem does
not hold true any longer. There occurs deviation of the
phase from 5&. We may write the photodisintegra-
tion amplitude as

(4. l)

FIG. 20. Effects of the spin-orbit terms and higher-order rel-
ativistic corrections on the differential cross sections below and
above the pion-production threshold. The solid curve is the cal-
culation to order m, the dashed curve is the nonrelativistic
calculation, the dot-dashed curve is the result evaluated using
the relativistic one-body current, and the dotted curve is the cal-
culation to order m but with nonrelativistic kinematics. The
double-dot-dashed curve is the calculation without the spin-
orbit term in the 6-isobar current. The data source is as fol-
lows: the solid circles from Ref. 45, soild squares from Ref. 61,
open circles from Ref. 62, and solid triangles from Ref. 48.

0-
0 80 120 180

(deg;)

Kukaszuk proved an inequality for Pl,
2

+pepsin Pl ~ (4.2)

FIG. 19. Effect of the ~d channel coupling on the differential
cross section at E~ =300 MeV. The full three-body calculation
(solid curve) is compared with the calculation without the ~d
channel coupling (dashed curve).

where g& is the elasticity parameter and

o&(yd ~md, yd +vrNN). . —
cr ((yd ~NN) (4.3)
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FICs. 21. Ututarity constraint for the phase P& as a function
of the energy. The two curves indicate the upper and lower lim-
its of P, . The dots are our predictions.

It is easily seen that the inequality is reduced to Watson's
theorem (pl =0) below the pion-production threshold.

In order to calculate the rI we need the pion-
production cross section for each partial wave. Unfor-
tunately, at present, no such experimental information is
available. Alternatively, we estimate roughly the pion-
production cross section of the M 1('Dz) partial wave as-
suming that it is a sum of the elementary yp~~N and
yn ~mX cross sections in the M, +(—', ) partial wave. '

This estimate is founded on the fact that the N 6
S2~NN 'Dz is the largest transition amplitude near the

pion-production threshold. The partial waves Eo+( —,')
and Eo+( —,) being non-negligible, their contributions to
the Ml('D2) amplitude are expected to be very small in
the quasifree production.

As shown in Fig. 21, our prediction satisfies Watson s
theorem below the pion-production threshold. This is a
consequence of the fact that although we have used
different final-state interactions for the normal and 6-
isobar currents, both the three-body model and the Paris
potential reproduce the phase shift of the 'D2 partial
wave quite well at low energies [see Fig. 11(b)]. Above
the pion-producton threshold pl is no longer equal to
zero mainly due to the b-isobar current. However, it is
always within the range of the unitarity constraint.

V. SUMMARY

We have developed a unitary theory of the deuteron
photodisintegration. The T matrix consists of the contri-
butions from the normal current, the b-isobar current,
the one-pion-exchange currents, and the pion-
reabsorption correction, all of them being distorted by
the final-state interactions. The nonradiative NA-NN
transition amplitude is obtained from the coupled equa-
tions for the NN-Nb, -~NN system and is used to describe
the final-state interactions of the 6-mediated currents.
On the other hand, the NN-NN amplitude calculated
from the Paris potential is used for the normal single-
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APPENDIX A: PARTIAL-WAVE EXPANSION
OF THE ONE-BODY CURRENTS

The magnetic and Coulomb multipoles are decom-
posed as

ML ( lsJ) g, EWLLls J +g 3—~WLLls J

+g 4 ( +L + 1 WLL", l,J +&L WLL +, l,J )

+g5 ( LL Il,J + WLL'+ IlsJ )

CL(lsJ) =h, EWLLI,J

(Al)

+h2(&L WLL, lsJ &L +1WLL+, lsJ)—, (A2)

where we have used the notation L =&2L +1. The elec-
tric multipole is calculated from Eq. (3.6) using the
Coulomb multipole and

nucleon and one-pion-exchange currents because the
one-pion-exchange force model is unable to describe the
NN short-range interaction. Our model is dynamically
consistent in the sense that all the parameters are fixed by
the m.N scattering and single-nucleon pion-photo-
production data analyses. We explicitly showed that our
photodisintegration amplitude satisfies the unitary con-
straint.

The gauge invariance is respected at every stage of our
calculations. We have used as the single-nucleon current
interaction the Dirac electromagnetic interaction that is
diagonalized in the positive-energy sector in such a way
that the Foldy-Wouthuysen interaction is generalized to
all orders in m . The continuity-equation constraint is
imposed on the normal current and the 6-isobar current
which are not conserved by themselves. In calculating
the one-pion-exchange currents, we have included the
contributions arising from the m.NN and DNA vertices as
a result of the gauge-invariance constraint.

Our predictions agree very well with the experimental
data below the pion-production threshold where the am-
plitude is dominated by the normal current. In the 5-
resonance region we underestimated the differential
cross section around 0, =90'. We confirmed that the
spin-orbit term in the normal current suppresses the
differential cross section at forward and backward angles.
The relativistic corrections of order beyond m did not
affect the results very much. The extra additional ex-
change current that arises from the hadronic form factors
gave a negligible effect.
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101 000LJLL, +,(lsJ)=g, LWII +,I,J g2V'L+1WLLI, J
+8 3L Wi.L + 1 IsJ +g 4 L WI.LIsJ111 011

+gs&L WL, L,isi .

The reduced matrix elements 8'are defined by

Wii i,q= & lsJll[CI (P) Xo'"'],P(Q)llL/OJ &

LdaA L&aA

Ld, a, A

The spin part is given by

(A4)

S " =( —) s2cfdSdjdLlzksA
(2Ld + 1)!

(2a)!(2Ld —2a)!

r Sd s l0 a A

0 0 0

l b Ld —a b A a Ld —a Ld d

'ooo o oo
b 0

c J lo

(A5)

~here Id, Sd, jd are the deuteron quantum numbers, s2 is
the spin of the nucleon (the normal current) or b (the b, -

isobar current),

I

count the weakly x-dependent form factors by including
them into the integrand.

P =J+jd+s+L+A+l +r+1, (A6)
APPENDIX 8: PARTIAI. -%'AVE EXPANSION

OF THE TWO-BODY CURRENTS

1 for s= —,
' and r=0

&sll~'"&ll-, &=, &3 for. =, and. =l .

1 for s= —,
' and r =1

The radial part is given by

(A7)

The contact current is expanded in partial waves

Ld, a, A L„,a, ~, SC

The spin part is given by

(B1)

(82)

A " =v'4~@ k' ,' f d—xPA(x)P'
d

(A8) K 1 l$2=(1)oooo
where the integration is over x =p k, QL (g) is the radial

part of the deuteron wave function in momentum space,
and Q=p+pk, where p= —,

' in the nonrelativistic limit.
A factor of 2&2 is to be multiplied for the normal
current, and 2 for the 6-isobar current. We take into ac- where

Xgd
d

K 1 l
Lda A

1
(B3)

Sd,
" =( —

) s, s2LdSdj&LI, ps'A
(2Ld+ 1)!

(2a )!(2Ld —2a )!

1

&sill~"'ll-,' & &srll~'"ll-,' & s2

s Sd d

l Ld e
e a ~ Ld —a l A a Ld —a Ld

X 0 0 0 0 0 0 l ~ .s Sd d

j jd L
(B4)

si and s2 are the spins of N or 6, and

P =J+j +L +A+i+0+1,
The radial part is given by

Azd„=(4m-) i~p " f q dqq"+'Fz(q, k)G~(q, p),
0

where

(B5)

F~(q, k) = ,' f dxP~(x)——1 C02
(B7)
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Ai, (lp+ql)
GA(q, p) = —,

' f dxPA(x)
Ip+ql ' (B&)

The form factors f &
and f2 are either the mNN . or AND, vertex function. We have made a change of variables such that

q&=q —
—,'k and qz=q+ —,'k. The integration is over x =q k for Fz(q, k. ) and over x =q.p for GA(q, p). A factor 2 is

necessary due to the existence of two identical processes.
In the same way the pionic current becomes

where

k

Ld, aA Ld, a, AK L„,a, ~,Z

I0 1 I. 1 1 d e d
0 0 0 ~ 000 00 0

d)e

SC 1 l e

0 0 0 ~ 'I ~d ~~ 000 0 00
d, e f

K 1 l

1 1

e d I.

(B9)

(B10)

(Bl 1)

1 1 d e 1 K lo d K
~3=~'&"""'0 o o o o o o o o

d,, e L

r

L„aA (B12)

Fz(q, k) should be replaced by

2fi(qi)f2(q2)
Fz(q, k) =

—,
' dxPz(x)g(q, , q2)—1 Q) ~CO~

(B13)

For the d ~%A pionic current, an additional factor 2 is
necessary because the 5 is excited from either of the two
nucleons. For all the d ~NX two-body currents, a factor
&2 is necessary from antisymmetrization. The trivial
isospin matrix element is not written down.

I. R. Afnan and A. W. Thomas, Phys. Rev. C 10, 107 (1974).
28. Blankleider and I. R. Afnan, Phys. Rev. C 24, 1572 (1981).
T. Mizutani, C. Fayard, G. H. Lamot, and R. S. Nahabetian,

Phys. Lett. 1078, 177 (1981).
4A. S. Rinat and Y. Starkand, Nucl. Phys. A397, 381 (1983).
5W. M. Kloet and R. R. Silbar, Nucl. Phys. A338, 281 (1980).
J. Dubach, W. M. Kloet, A. Cass, and R. R. Silbar, Phys. Lett.

1068, 29 (1981).
7A. Matsuyama and K. Yazaki, Nucl. Phys. A364, 477 (1981).
T. Ueda, Phys. Lett. 1418, 157 (1984).
H. Garcilazo, Phys. Rev. C 35, 1820 (1987}.
H. Tanabe and K. Ohta, Phys. Rev. Lett. 56, 2785 (1986);
Nucl. Phys. A484, 493 (1988).
H. Tanabe and K. Ohta, Phys. Rev. C 36, 2495 (1987).
N. Austern, Phys. Rev. 100, 1522 (1955); F. Zachariasen, ibid.
101, 371 (1956);R. R. Wilson, ibid. 104, 218 (1956).
J. M. Laget, Nucl. Phys. A312, 265 (1978); Phys. Rep. 69, 1

(1981).
K. Ogawa, T. Kamae, and K. Nakamura, Nucl. Phys. A340,
451(1980).
M. Anastasio and M. Chemtob, Nucl. Phys. A364, 219 (1981).
W.-Y. Hwang and G. E. Walker, Ann. Phys. (N.Y.) 159, 118
(1985).

W. Leidemann and H. Arenhovel, Nucl. Phys. A465, 573
(1987).

~8P. Wilhelm, W. Leidemann, and H. Arenhovel, Few-Body
Systems 3, 111 (1988).

9P. U. Sauer, Few-Body Systems Suppl. 2, 215 (1987).

M. Araki and I. R. Afnan, Phys. Rev. C 38, 213 (1988).
M. G. Olsson, Nucl. Phys. 878, 55 (1974).
C. Lovelace, Phys. Rev. 135, B1225 (1964).

2 J. H, Koch and E. J. Moniz, Phys. Rev. C 27, 751 (1983);J. H.
Koch, E. J. Moniz, and N. Ohtsuka, Ann. Phys. (N.Y.) 154,
99 (1984).

24H. Tanabe and K. Ohta, Phys. Rev. C 31, 1876 (1985).
~~G. E. Brown, A. D. Jackson, and T. T. S. Kuo, Nucl. Phys.

133, 481 (1969).
J. M. Eisenberg and W. Greiner, Nuclear Theory (North-
Holland, Amsterdam, 1970), Vol. II.

7I. T. Cheon, Suppl. Prog. Theor. Phys. Extra Number, 146
(1968);M. V. Barnhill, Nucl. Phys. A131, 106 (1969).
E. Eriksen and M. Kolsrud, Nuovo Cimento Suppl. 18, 1

(1960).
K. Ohta, J. Phys. A 20, 389 (1987);J. Phys. G 14, 449 (1988).

oK. Ohta and M. Ichimura, Nucl. Phys. A491, 509 (1989).
If one prefers no unitary transformation (S =0),
u( —p) u( —p —k) appears in the right-hand side of Eq.
(3.18). See Ref. 30.
L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
A. Cambi, B. Mosconi, and P. Ricchi, J. Phys. G 10, L11
(1984).

34We use the pseudoscalar ~N interaction so that the contact
amplitude arises from nucleon-antinucleon pair excitation.
This does not necessarily mean that the NN excitation is a
physical process. Considering the compositeness of the nu-

cleon, it is quite likely that the pair creation is suppressed at



1922 HIROYOSHI TANABE AND KOICHI OHTA

the low-energy regime, and yet the use of the pseudoscalar
theory is not completely wrong since the contact interaction
is predominated by the model-independent Kroll-Ruderman
term. See Ref. 30. From the practical point of view, the
contact-term contribution to the M&+(z ) amplitude is very
small.

~~L. Heller, S. Kumano, J. C. Martinez, and E. J. Moniz, Phys.
Rev. C 35, 718 (1987).
K. Ohta, Nucl. Phys. A495, 564 (1989).
M. A. Maize and Y. E. Kim, Nucl. Phys. A420, 365 (1984).
F. Gross and D. O. Riska, Phys. Rev. C 36, 1928 (1987).
J. L. Friar, Ann. Phys. (N.Y.) 104, 380 (1977).

40R. Aaron, R. D. Amado, and J. E. Young, Phys. Rev. 174,
2022 (1968).

~ F. A. Berends and A. Donnachie, Nucl. Phys. 884, 342 (1975);
8136, 317 (1978).

~ H. Arenhovel, Z. Phys. A 302, 25 (1981).
~~M. Lacombe et al. , Phys. Rev. D 21, 861 (1980).
44R. Bernabei et al. , Phys. Rev. Lett. 57, 1452 (1986).
4~E. De Sanotis et al. , Phys. Rev. C 34, 413 (1986).
~ R. A. Amdt, J. S. Hyslop III, and L. D. Roper, Phys. Rev. D

35, 128 (1987).

4~A. Buchmann, W. Leidemann, and H. Arenhovel, Nucl. Phys.
A443, 726 (1985).
J. Arends et al. , Nucl. Phys. A412, 509 (1984).
D. V. Bugg, A. Hasan, and R. L. Shypit, Nucl. Phys. A477,
546 (1988).

~DN. Hiroshige, W. Watari, and M. Yonezawa„Prog. Theor.
Phys. 72, 1146 (1984).

~~F. Partovi, Ann. Phys. (N.Y.) 27, 74 (1964).
~~H. Hugi et al. , Nucl. Phys. A472, 701 (1987).

F. F. Liu et a/. , Phys. Rev. 165, 1478 (1968).
~4V. G. Gorbenko et a/. , Nucl. Phys. A381, 330 (1982).
~~P. Benz et al. , Nucl. Phys. 815, 158 (1973).
~~G. van Holtey et al. , Z. Phys. 259, 51 (1973).
~~B. Bouquet et a/. , Nucl. Phys. 879, 45 (1974).
~~E. Hilger et al. , Nucl. Phys. 893, 7 (1975).

B.J. VerWest and R. A. Amdt, Phys. Rev. C 25, 1979 (1982).
A. Cambi, B. Mosconi, and P. Ricci, Phys. Rev. Lett. 48, 462
(1982).

~ H. O. Meyer et al. , Phys. Rev. C 31, 309 (1985).
J. M. Cameron et al. , Nucl. Phys A458, 637 (1986).
K. M. Watson, Phys. Rev. 95, 228 {1954).
L. Kukaszuk, Phys. Lett. 478, 51 (1973).


