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Gamow-Teller and M1 strength sums for sd shell nuclei by spectral distribution methods
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The spectral distribution method is applied to evaluate the strength sums for Gamow-Teller and
isovector M1 excitations and compared with shell-model predictions for (sd) shell nuclei.

Extensive work on the Gamow-Teller (GT) giant reso-
nances by means of the charge-exchange (p, n) and (n,p)
reactions has renewed interest in the theoretical evalua-
tion of the GT excitation strength and strength sums.
Whereas careful and detailed study of the excitation
strength' can answer questions relating to the origin of
the quenching of strength observed experimentally, reli-
able estimates of the GT strength sum itself is required to
predict the amount of quenching. For blocked proton
shells, the Ikeda sum rule is an exact result for the total
I3 strength. For open neutron and proton shells, the
spectral distribution theory, a statistical theory which
evaluates average strength and sum rules, was recently
used and examples were worked out in the (fp) shell.
For (sd) shell nuclei, though full shell-model predictions
of Wildenthal are available nowadays, it is still
worthwhile to explore simple average forms for the
strength sums for a global understanding of the structural
effects. Assuming the protons and neutrons both to have
zero total spin, separate forms for S and S +, the total
/3 and P+ strengths, were formulated and recently
Hino, Muto, and Oda explored the validity and ways to
improve them for the ground states of doubly open (sd)
shell nuclei.

On the other hand, there is also considerable interest in
the problem of M 1 excitation strength through (p,p') and
(e, e') reactions, and shell-model and other theoretical es-
timates of Ml strength sums for (sd) shell nuclei are
available. In this Brief Report we apply the spectral dis-
tribution theory to evaluate the GT and isovector M1
strength sums for (sd) shell nuclei and compare them
with other estimates, primarily shell-model ones. We
note here that earlier attempts to work out the isovector
M 1 strength sums using the spectral distribution
methods in the (sd) shell were not successful because
there the truncation of the polynomial expansion of the
sum-rule operator was done keeping only the first two
terms. We go beyond that and use spectral distributions
in two distinct approaches and make comparison of their
relative merits. We also observe that this formalism can
evaluate the strength sums for excited states as well and,
as a result, is very useful for astrophysical problems like
supernova triggered by electron capture.

In a shell-model space of dimensionality d(m) and
density of energy eigenvalues p(E), the expectation value
of an operator K is defined as

K (E)= g (Ea lK lEa ) &d (m)p(E) =Sx (E)/p(E),
@ATE (1)

where

Sx(E)=K (E)p(E)= (K5(H E))—
Sx(E) is called the expectation value density of operator
K. To evaluate the non-energy-weighted (NEW) strength
sum at energy E, Mo(E), for GT (isovector M 1 ) excita-
tion one uses the sum-rule operator K =0+0 where

0= g o(i)t (i) for P'*'GT
(+)

0= —,'pog[j(i)+ (g~+g„—1)s(i)j for isovector M 1

transition. It is seen that the asymptotic form of Sz(E)
under the action of central limit theorem (CLT) acquires
a Gaussian form. This follows from a bivariate Gaussian
form for the actual strength density distribution. ' For a
discussion of this point, we refer to Kota and Kar. "
Thus the NEW strength sum takes the form

2o, 1 E —e,
Mo(E) = (0+0 ) exp

0 ~S

E —e,
2

+
2 Oc

(3)

In Eq. (3) (e„o,) and (e„o,) stand for the centroid and
width of p(E) and Stc(E), respectively. For e, and o, we
use

—( 0+pH )my( p+p ) m

and

a2 —(p+0H2)my(0+0)m 2

We note that these arguments can be extended to spaces
with fixed particle and isospin (m T) and for actual appli-
cations we calculate the (mT) traces instead of the traces
in the scalar (m) space.

The other well-studied spectral distribution method for
expectation values K(E) uses the orthonormal polynomi-
als P„(E) [defined with p(E) as the weight function], and
writes the expansion
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Nuclear
Correlation coefficient (q~ & )

Gamow- Teller Isovector M1

20Ne

Mg
"Si
32S

Ar

0.554
0.600
0.592
0.549
0.442

0.342
0.485
0.534
0.556
0.562

K(E)=y(KP„(H) &-P„(E)

K(EI E, ))
E E

(K )m+

TABLE I. Correlation coefficient gH z with E =0+0 where
0 is the excitation operator for both GT and M1 excitations for
five self-conjugate nuclei in (sd) shell.

very small and could be approximated as zero. As a re-
sult the GT strength sum there becomes easy to evalu-
ate. In the sd shell the situation is quite different. Table
I gives the correlation coefficient of the Wildenthal in-
teraction with the sum-rule operator for GT and isovec-
tor M1 excitations. We see that gH z is quite large for
both the operators throughout the shell, and as a conse-
quence the CLT result for the ground-state NEW
strength sum gives very small and for some cases even
negative values. We note here that earlier Halemane and
French, in calculating isovector M1 strength sums, were
confronted with this difficulty and as a result could not
give proper estimates. We realize that in this case the
truncation of the expansion with only the CLT terms is
inadequate and one needs to go beyond. The first term
beyond the CLT limit in Eq. (4) is given by

K2(E)= (KP~(H) ) P2(E) .

+ g (KP„(H)) P (E) . (4) Using

P2(x ) =(x —y&x —1)I(y2+2 —y&)'

Equation (4) uses Po(E)=1 and PI(E)=(E —e, )lo,
Assuming that the density p(E) does not change its shape
when H~H+aK (for small a) it is shown that terms
beyond the first two in Eq. (4) are inhibited and this is
called the CLT result. This is clearly the case when the
eigenvalue densities of H and H +aE are both Gaussian.
Otherwise one should take into account the higher terms,
and convergence properties of the expansion need to be
probed. The CLT form for K(E) is simple to understand
in terms of the geometry of the operator space. Defining
the correlation coefficient

x =((K —(K ) )(H —(H ) )loHox. )

with (K) and crx being the centroid and width of the
operator K in the relevant space, one sees that the CLT
result for the strength sum is small, large, or just (K )
for q~ z taking values large positive, large negative, or
zero, respectively. gH z, of course, is bounded by

x ~ l. In the (fp) shell riH z was found to be

where x is the standardized variable x =(x e)/o „—with
e and o.„being the centroid and width of x in the m-
particle space and (y„yz) being the skewness and excess
of the density p(E). Thus including this term, for
y& =y2=0 one gets, for the sum-rule expansion,

K(E)=KCLT(E)+K2(E)

=(K) +(KA) E+ '(K(H —1)& —(E —1)

Extension of this expression for nonzero (y„y2) is
straightforward.

In Table II we give the strength sums for GT and iso-
vector M 1 excitations for five self-conjugate nuclei in (sd )

shell evaluated using (mT) traces. The polynomial ex-
pansion form (called R strength) is given including con-
tribution from Kz(E) as in Eq. (5) along with (K ) for
the purpose of comparison. We also use the S-strength

TABLE II. The NEW strength sum by the R and S strength for GT and isovector M1 excitation by spectral distribution method

compared with the shell-model values for five self-conjugate nuclei in (sd) shell. We note that for these N =Z nuclei S =S + and
P 13

so the table gives both of them.

Excitation

operator Nucleus (K &mT with (yl, y2) =0

Mo(E) by R strength
2

g (KP (H)) P„(E)
v=o

with (y „y2)%0

Mo(E) by

S strength

Mo(Z) by

shell model

GT

Ne
Mg

28S

32S

Ar

S.03
8.05
9.06
8.05
5.03

2.63
4.29
5.74
5.16
3.50

2.36
3.94
4.96
3.88
2.63

2.04
2.68
3.00
2.82
2.50

0.55
2.33
3.89
4.00
2.10

Isovector
M1

20N

Mg
28S1

32S

Ar

14.31
22.90
2S.77
22.90
14.31

5.72
10.43
13.38
14.57
9.55

5.86
10.00
13.28
10.79
6.12

6.54
8.66
9.15
7.65
5.41

2.56
6.58
9.76
9.70
5.20
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form of Eq. (3) and give the shell-model strength ' too.
The Hamiltonian used in our calculation as well as in the
shell model is the Wildenthal's Universal-sd interaction.
The strength sums with (yi, y2)WO use the values of y,
and yz evaluated in m spaces' due to nonavailability of
the (mT) space values.

We see that in most cases the predictions using the S
strength agree better with the shell model than that of the
R strength. The S-strength form through its very con-
struction is always positive definite, whereas truncated R
strength in some extreme cases does not have this very
desirable feature.

We have calculated the GT and M1 strength sums in
configuration isospin (mT) spaces for terms up to CLT
but report here only the (mT) values to be consistent
with the terms beyond CLT. Also, it is important to note
here that Hino, Muto, and Oda in their "occupation
number approximation" get much larger values for the
strength sums compared to the full shell-model values,
and these values are nothing but the first term of our ex-

pansion of Eq. (4) evaluated and averaged over the
configurations.

To probe the convergence of the R-strength expansion,
we also estimate the term beyond the first three of Eq. (4)
given by

(KP3(H) ) P3(E) .

Because of present limitations in the evaluation of traces
of the product of four two-body operators in (mT)
spaces, we evaluate this term using traces in n spaces.
Assuming that this does not change matter much, we see
that the addition of this term in the strength sum for GT
changes the values 2.63, 4.29, 5.74, 5.16, and 3.50 for

Ne, "Mg, Sr, S, and Ar to the values 0.41, 3.83,
6.80, 4.07, and 1.68, respectively. We see that except for

Ne/ Ar (the 4-particle/hole cases) this fourth term of
the expansion is less than about 25 percent of the third.
The density of energy eigenvalues for four particles or
holes in (sd) shell deviate somewhat from the Gaussian,
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FIG. 1. Strength sum as a function of excitation energy of the nuclei for both GT and M1 excitations with the T =0 states of 24Mg

and Si. Curve a is by the R-strength and b is by the S-strength method.
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and this may be the reason for larger values for terms
beyond CI.T in the strength sum for these two cases.
Similar features are seen for M1 strength sums also and
this indicates a convergence but not a very rapid one.

This method gives the strength sum as a function of
the energy of the nucleus and can be used to evaluate it
for any excited state. In Fig. 1 we show the strength
sum for GT as well as M1 excitation as a function of the
excitation energy of the initial state for the 8- and 12-
particle cases by the S as well as the R strength. The
significant departure of one from the other in the low-
energy region can be ascribed to using two distinct ex-
pansions having very different convergence properties.
But this difference and in fact the contributions from a11

the higher polynomials go down as one moves up in the
excitation energy from the ground-state region. This

evaluation for excited states can be very useful in the as-
trophysical problem of evolution of stars in the mass
range of 8 —12 Mo, where electron-capture rates of excit-
ed nuclei like Ne, Mg, etc., are needed at the presu-
pernova range.

In conclusion, we remark that in this work we, for the
first time, apply the formalism of the expectation value
density of the sum-rule operator for GT and M1 strength
sums in the (sd) shell, and also show that the polynomial
expansion of the strength sum in spectral distributions
gives meaningful results when taken beyond the CLT 1im-
it for these excitations in the (sd) shell.

We thank Prof. V. K. B. Kota for many helpful discus-
sions.
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