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A general self-consistent approximation for statistical operators is introduced. The scheme
reduces to a statistical mean-field description when applied to the case of single-particle observables.
The present, quite general context allows, however, the examination of the approach from a
diFerent perspective, and enables the straightforward construction of higher order self-consistent
approximations.

I. INTRODUCTION

The mean-field approximation constitutes one of the
most important tools for dealing with complex many-
body systems, and it certainly offers a quite favorable
starting point for more accurate (and usually rather in-
volved) treatments. In this paper we wish to carefully ex-
amine some interesting details connected with the statis-
tic mean-field approach (i.e., thermal Hartree-Fock' and,
in general, thermal Hartree-Fock-Bogoliubov ) that al-
low for a natural extension to more elaborate frame-
works. 4

The basic idea is to base the description of a system on
a particular set of operators, chosen by the observer, in
order to deal with a tractable density operator. In this
way, observables considered relevant for the phenomenon
being studied are expressed in terms of a given subset of
variables, simplifying the description. The approach pro-
posed in this work constitutes the extension of thermal
mean-field treatments to general off equilibrium situa-
tions, and to arbitrary density operators.

The most general mean-field approach is obtained in
that case in which the chosen set of observables is formed
by one-body operators. In particular, we shall be able to
build mean-field descriptions from the sole knowledge of
an arbitrary set of appropriate expectation values, and to
find the corresponding effective temperatures and
Lagrange multipliers.

The paper is organized as follows: In Sec. II we review
the general statistical description of a quantum system,
based on information theory. In Sec. III we derive, as
the leit-motiv of this effort, a general self-consistent ap-
proach for statistical operators. The formalism is applied
in Sec. IV to single-particle fermion operators, as a spe-
cial example, and is illustrated in Sec. V with reference to
a nontrivial, exactly solvable many fermion model. Final-
ly, some conclusions are drawn in Sec. VI.

II. STATISTICAL DESCRIPTION
OF A QUANTUM SYSTEM

Let us consider a quantum system about which the ob-
server possesses as sole information the expectation
values 0; of m arbitrary observables 0,. (linearly indepen-
dent). The appropriate density or statistical operator p is

obtained by maximizing the information entropy (we
assume k&=1)

S= —Tr(p ln(p) ),
subject to the I constraints

(0;)=Tr(pO, . )=0;, i =1, . . . , m .

(2.1)

(2.2)

S'=S+ g A,;0;, (2.3)

where A,; are Lagrange multipliers which must be ap-
propriately determined in order to comply with (2.2).
The well-known result is

m

p=exp Ao+ gA, ;0;
i=1

where ko is a normalization constant,

m

A,o= —ln Tr exp g A,;0;

(2.4)

(2.5)

Using (2.4), S and S' acquire the expressions

S= —
Ao

—g A,;0;, (2.6a)

S'= —
Ao . (2.6b)

The following important properties can be shown to be
satisfied:

BS
ao,

(2.7a)

(2.7b)

where S' is considered a function of the m parameters A,;,
while S of the m expectation values 0;.

Equations (2.7a) or (2.7b) can be employed in order to
connect Lagrange multipliers with expectation values.
Equation (2.7a) can be utilized to verify the stationary
character of the density operator (2.4). Expanding ln(p)
in a complete basis of observables,

The result can be attained by maximizing the magni-
tude
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Therefore,
(2.8)p=exp A,o+ gA, ;0;

m Q.
A, =gP,

i=1
(3.6)

where I 0;, i =m + 1, . . . , n ] denote a complementary set
of operators needed to span the complete space, the max-
imization of S subject to the constraints (2.2) can be ac-
complished by taking as variational parameters the un-
known mean values 0, , i )m. By virtue of (2.7a), we at-
tain A,; =0, for i )m.

If the expectation values 0;, i =1,. . . , m, are linearly
independent and physically meaningful (i.e., feasible
values in quantum mechanics), the solution (2.4) can be
proved to be unique. Pure states correspond to p =p,
and can be accommodated as the limit when the parame-
ters X, tend to +~. We should remark that the observ-
ables 0, are completely arbitrary in this formalism, so
that the operator (2.4} is not necessarily stationary. For
more detailed discussions and interesting elaborations
concerning the above outlined approach, the reader is re-
ferred to the comprehensive monograph of Ref. 6, and
also to Refs. 7—11.

and

m

p, =exp A,o+ gP;o;
i=1

(3.7)

where we have defined the "e6'ective" operators

(3.8)

which are linear combinations of operators of the chosen
set, but with coefticients which depend upon the mean
values I' . o; can be interpreted as the projection' ' of
0; onto the subspace spanned by the P 's (see also Refs. 6
and 7).

By means of the property' [A,, is considered a function
of the remaining A, 's through (2.5)]

III. A GENERAL SELF-CONSISTENT APPROACH

We present now the main results of the present eFort.
In general, the exact statistical operator p (2.4) may be in-
tractable. The connection between the A.,

's and the 0 s
is not quite simple, and often requires the diagonalization
of ln(p), which amounts to a very heavy numerical task,
if the number of accessible states over which the traces
are taken is large. Besides, inferred mean values of arbi-
trary operators are not easily dealt with, when using (2.4).
Therefore, we will consider, as the essential ingredient to
be dealt with in this work, an approximate solution for p
in which we restrict it to the form

with

~app ~ pe~~PP J
J

where

' =&I;o, &=&o, P, &,

the coefficients in (3.8) can be explicitly written as

ao,
=&FaGi, '

BP.

(3.9)

(3.10)

(3.1 1)

(3.12)
k

p, =exp A,o+ gA, P
j=1

(3.1)
(3.13)

where I P, j =1,. .. , k, k ~ m I, is a chosen set of opera-
tors picked up by the observer, in order to build up a
tractable p. However, let us assume that the avaliable ex-
perimental data still consist of the expectation values
(2.2). Our idea is now to choose, as the best P, „, that
which maximizes the (approximate) entropy

k

S,pp= —Tr[p, ln(p, )]=—A,o
—g A, P

j=1
(3.2)

kS'= —
A,o+ g AJ.P +gP;0; . (3.4)

Taking as variational parameters the quantities P~, we
attain, by means of (2.7a),

(3.5)

subject to the constraints

Tr(p,p„o;)=0;, i =l, . . . , m . (3.3)

Our problem revolves now about the stationary charac-
ter of the quantity

The expression (3.7) is a formal solution for p, . We
are thus led to a nonlinear system, since p,pp depends on
the mean values P~ that it determines (self-consistency),
1.e.,

Tr(p, p P~)=p~ , j =l, . .. , k . . (3.14)

The exception occurs if all operators 0; are linearly re-
lated to the P~'s in which case (3.8) implies

gA, P =gP;0;, (3.15}

and the approximation becomes exact, so that we regain
the familiar (information-theoretical) ground.

Since system (3.14) is of a nonlinear character, more
than one solution may exist for fixed parameters P s, and
not all of them will correspond to maxima of S'. Certain-
ly, minima and saddle points will occur, as opposed to
what happens in the case of the exact solution.

On the other hand, for fixed mean values 0;, the P s
must be determined from (3.3), and will not, in general,
coincide with the exact parameters A. s entering (2.4). In
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this case, the p s should be interpreted as eff'ective

Lagrange multipliers, i.e., the parameters for which the
self-consistent solution yields the same predictions for the
0 s as the exact density operator. A general solution
will not always exist in this case, since the range of mean
values 0, spanned by (3.1) may be smaller than the exact
one. At the same time, the nonlinearity may give rise to
various simultaneous solutions for the P s, the best of
which is in principle that which yields the highest entro-
py (see Sec. V).

The standard way to solve system (3.14), other than a
direct maximization of S or S, is the iterative procedure

(4.3)

where c; (c; ) creates (annihilates) a fermion in the state
labeled by the quantum number i. The Hermiticity of p
implies A, ,"=A,*; and we can set y; = —

yJ;. . Defining an
Hermitic matrix M of multipliers

A —IM= r -~* ~ (4.2)

such that A;J=A, ;J, I;1=y;~, the operator (4.1) can be
rewntten as

p=exp[A, O+ —,'(Z MZ)],
where

P'+'=Tr(p, P ), j =1, . . . , k, (3.16)
and

Ao= Ao+ —,
' tr(A),

as
ao l

as' 0
BP;

(3.17a)

(3.17b)

due to the stationary condition (3.5), although A,o ceases
to be, in general, identical with —S',

S = —X,—yP, &o, —0, ) . (3.18)

starting with an initial set of mean values PJ, with which

p,~ is constructed via (3.8). The iteration is continued
until self-consistency is reached, i.e., convergence in the
mean values P .. The procedure obviously converges if
the self-consistent solution is a stable attractor, and if the
initial chosen values lie in itg basin of attraction.

It is worthwhile to notice that the important relation-
ships (27a) and (27b) still hold within this approximation,
i.e.,

M+ —(Z =(c;,..., cL,c), ... , cL )

Z being its adjoint. L denotes the total number of acces-
sible s.p. states. The fermion anticommuting relation-
ships may be condensed in the tensorial productZzt+ [(Zt)"Z"J"=I,where I is the identity of 2L X 2L.
The full s.p. density matrix can be defined as'

=I—(zz'), (4.4)

(4.5)

where A;J = (cjc; ) is the s.p. density matrix, while
B;~ = (cjc; ) is usually referred to as the s.p. pairing ten-
sor'.

p can be written in diagonal form by means of a Bogo-
liubov transformation' Z'=8'Z, such that the matrixM'= 8'MR' is diagonal, in which case,

p =exp A,o'++A, ;c c
l

Moreover, the quantity BS/BP, is not identical with
the sum of ffuctuations —g.pj((OJO;) —0~0;), con-
trary to what happens in the exact picture.

The present general self-consistent approach yields a
lower bound to S and S' for fixed values of the 0,-'s and
P s, respectively, if traces are taken over the same space
used in the exact description, since we are restricting the
maximization procedure to a particular set of density
operators. It provides us with an instantaneous approxi-
mate description of the system in terms of the operators
P.

IV. GENERALIZED STATISTICAL
MEAN-FIELD APPROACH

%'e shall examine in this section the important situa-
tion in which the chosen set of Eq. (3.1) consists of
single-particle (s.p. ) fermion operators, in order to reob-
tain some well-known results that arise as a special case
of our more general treatment. The approximation be-
comes thus equivalent to a mean-field approach, embed-
ded within a completely general statistical context. The
most general density operator constructed with s.p.
operators will be of the form (see also Refs. 7 and 11)

D = [I+exp( —M)] (4.6)

The mean value of any one-body observable
0 =

—,'Z QZ can be cast as

(0 ) =
—,'tr(QD), (4.7)

where tr denotes the trace in the extended 2L dimension-
al s.p. space. In particular, we attain the following ex-
pression for the entropy:

S= —10—
—,
' tr( MD ), (4.8)

which in a grand canonical ensemble is identical with the
well-known formula

where A,o =A,o+ —,'tr(A —A'). Hence,

(c,'c,') =0, &c,'tc,'. ) =f,5,, , .

and (c c )*=c c f, [cf. (3.10)]. Th—e m. atrices F and G
[(3.12) and (3.13)] can thus be interpreted as correlations.
In particular, in a grand canonical (GC) ensemble, 6 be-
comes diagonal in the primed basis, and we obtain for f;
the well-known expression f; =[1+exp( —

A,;)]
Therefore, in a general basis,

p=exp Ao+g[A, ; c,tcj+ —,'(y;.c;c +y,'"c c,t)]
l~J

(4.1)
S= —g[f;1n(f; )+(1 f, )ln(1 f;)]——

tr(D lnD) . — (4.9)
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We would like to remark here that in the case of in-
complete s.p. information (i.e., a partially known density
matrix D), (4.6) yields a system of equations, namely,

0=M, = —[ln(D ' —I)]; (4.10)

p, =exp[AO+ —,'Z M(D)Z], (4.11)

which determines the inferred values of the remaining
unknown elements, via the maximum entropy principle.

Let us assume now that the available information deals
with the mean values j 0;,i =1,. . . , m ], of general n-body
fermion operators 0;. The corresponding exact statisti-
cal operator becomes very dificult to deal with, so that it
makes sense to work with s.p. statistical operators as a
zeroth-order approximate description. In this case, sta-
tistical inference of mean values of operators 0; are easily
computed, within the grand canonical ensemble, by
recourse to the statistical version of Wick's theorem.

The approximate density operator (3.7) reads

However, the present context is completely general,
operators 0; being completely arbitrary. The generalized
statistical mean-field approach provides an instantaneous
approximate description of an arbitrary quantum system,
based on s.p. observables. Besides, restricted mean-field
approaches can be obtained by reducing the number of
s.p. observables to be included in the exponent of p. For
instance, if the mean values & c;e & are not relevant in the
evaluation of the 0 s, they can be discarded, thus reduc-
ing the equations to half their size (SHF).

V. APPLICATION

A. The model

Let us illustrate our ideas with references to a nontrivi-
al SU(2) X S(U2) model, ' ' consisting of s.p. states
~p, v&, p =1,. .. ,20, v=+1. We define the following col-
lective operators:

where

R' —6'*
M(D) =gP; ~, „—=gP;Q;,

with

(4.12)

J+ QCp +Cp J y Jz p QVCp~Cp~
p P, V

Q+ =gc~+ci, =Q
p

Q, =
—,'gc„t c —0=—,

'8' —0,
P, V

(5.1)

(5.2)

ao,
Ri' =

a&c,'c, &

'

ao,
B&c,c, &

(4.13a)

(4.13b)

D= [I+exp[ —M(D)]] (4.15)

which represents the generalized statistical Hartree-
Fock-Bogoliubov (SHFB) equations in the grand canoni-
cal ensemble. The iterative procedure leads to
D'= [1+exp[ M(D' ')]] '. The —iteration must be
continued until convergence is reached in all the elements
of D. Of course, many solutions may be encountered,
starting with different initial density matrices D, and not
in every situation is convergence guaranteed. A direct
maximization of S or S' may provide one with a more
convenient route in some cases (see Sec. V).

The usual static statistical HFB equations ' are
recovered when all observables 0; commute among them-
selves and with the Hamiltonian 8 of the system. In par-
ticular, the finite temperature HFB approach ' is ob-
tained when the operators 0; are restricted to the Hamil-
tonian and the number of particles, 8;

The expectation value of an n-body operator with
respect to (5.1) becomes a polynomial of degree n in the
elements of D. The operators o; (3.8) are s.p. effective
mean-field operators

o;= —,'ZtQ, Z . (4.14)

By means of Wick's theorem, it can be easily shown
that & o; &

= n & 0; &, if 0; is an n-body operator.
The statistical operator (4.12) poses, for fixed parame-

ters p;, the nonlinear (matrix) equation [cf. (4.6)]

with the Bloch angles determined by

A. =A.'cos(8), r= —
—,'A, 'sin(8)e

An analogous formula obviously holds for Q operators,
with Bloch angles say, y, P. The connection (4.6) be-
tween the relevant one-body expectation values and the
corresponding Lagrange multipliers can be explicitly
found in this case:

&J, &=2QjA/A, ', &J &=4nj '/X',
& Q, & =2Qqp/p', & Q+ & =4Qqg*/p',

where

(5.6)

which satisfy an SU(2) X SU(2) algebra. We shall assume
that the available information deals with expectation
values of functions of the operators (5.1) and (5.2). The
corresponding statistical operator in the mean-field ap-
proximation will thus be

p=e px(A +ok', + Jr++rJ +pQ, +gQ++g Q ) .

(5.3)

The operator (5.3) can be written in diagonal form by
means of rotations in the respective SU(2) spaces,
equivalent to a Bogoliubov transformation of the fermion
operators cp, cp, i.e.,

p =exp(Ao+ A, 'J,'+p'Q, ' ), (5.4)

where A,
' =A, +4(r(, p' =p, +4(g(, and

J,'=J,cos(8) —
—,'[J+sin(8)e '&'+ J sin(8)e +'~ ]

(5.5)J' =J cos (8/2)+ J,sin(8)e' ~'

—J sin'(8/2)e" ~',
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j=&J,'&I20=(f+ f—)I2,
q = (Q,') l20=(f+ +f —1)/2,

(5.8)

(5.9)

j=[(J ) +(J )(J )]' /20

q=[&Q, &'+&Q &&Q &]'"/20,

P = —20g ( —,
' +vj+v'q )ln( —,

' +vj+v'q ) .
V, V

(5.10)

S increases for decreasing values of j and q. The in-
verse relations

with f the mean quasiparticle occupation number.
Without loss of generality, we can assume j)0, q)0,
and 0 ~ 8 ~ vr, 0 ~ P (2~ (the same for y, f).

Obviously, for g&0, (5.3) should be dealt with in a GC
ensemble. However, if g=0, other ensembles (i.e., canon-
ical ones' ) become feasible. In a GC ensemble,
f = [ I+exp[ —

—,'(p'+vA, ')]] ' and the entropy (4.9) can
be written as

together with (5.6)—(5.9), enable one to construct p from
the knowledge of all the collective one-body mean values.
Statistical inference becomes trivial in this case. A given
expectation value will vanish if the corresponding multi-
plier vanishes [cf. (5.6)—(5.7)].

B. Self-consistent approach and effective multipliers

Let us first suppose that the available information con-
sists of the set t (J, ), ( Q, ), ( Q+ Q ) ]. The approxi-
mate description, based on (5.3), will now be constructed.
By applying Wick's theorem, we find

p —= (Q Q &I(20)'=[&Q && Q &+(&P'&/4 &J,'& ——
& J & & J &)/20]/(20)'

=q sin (y)+[n /4 —j ]/20, (5.11)

where n =(8')/20=2qcos(y)+1. In what follows we
shall concern ourselves with the case N =20 ((Q, ) =0),
so that y =sr/2 (@=0) if qAO. Hence,

q
—[ (

1 2)/20]l/2 (5.12)

P, —= — = [A,'+ p, 'j l(20q )]j,Ij,BS
a&i, )

=p'/(40q ),BS
~ Q+Q—

P3—:— = p'n l(40q ), —BS

a&Q, &

where [cf. (5.4)]

(5.13)

(5.14)

(5.15)

=in[ [—,'+j) —q']/[( —,
' —j)'—q'] j, (5.16)

BJ

=»[[(-,'+q)' —j']/[(-,' —q)' —J'1] .

Notice that both Pz and P3 vanish in the thermodynam-
ic limit 2A~ ~.

Let us consider now a less detailed description, based
on the sole knowledge of ( Q, ) and E = (8 ), with
8=J,++ Q . 8 can be interpreted as a Hamiltoni-
an, with G the quasispin pairing' coupling con&tant. In
the mean-field picture,

E /2Q =j,+gp, (5.18)

where g =20G. The particular values of j =
~ j, ~

and q

Maximum entropy implies ~cos(8~ =1(r=0), so that
j =~j, ~, where j,=(J, )/20. On the other hand,
(phase of (Q+ ) ) remains completely arbitrary, corre-
sponding to the violation of particle number conservation
[by (5»l.

The corresponding effective multipliers (3.17a) are

are determined by maximizing (5.10) with the constraint
(5.18). We are thus led to the "gap"-like equation

2qA, '+p'[ —j, l(jg)+j /0]=0, (5.19)

P= — =p'/(2gq)
BS
BE

=A, '/(j, /j —gj/0),
(5.21a)

(5.21b)

and T= —1/P can be interpreted as the mean-field
effective temperature.

In the normal solution, j can be directly determined
from (5.18). We obtain in this case the same expression
(5.21b) for P. Due to the smoothness of the transition,
the two different P's coincide at the critical point.

Numerical results for S, P„Pz and P are depicted in
Figs. 1 and 2. The exact results have been computed in

the full canonical ensemble' [dimension (& )], for
N =30, using as "exact" multipliers P',"= e/T, —
Pz~= —GIT, with e= 1, G = —2. 5/N. The situation is
thus similar to a system described by a quasispin pairing

which determines the optimized j, q. The sign of j, is
equal to that of E. For suKciently large 6, there will be a
critical value of E, determined by the equation

—2ln[( —,'+j)I(—,
' —j)]=(—,

' —j') '[ j,l(jg)+j —I0],
(5.20)

beyond which a solution with qAO will exist (see also
Ref. 17). At the same time, a solution of (5.19) with q =0
is always feasible, with a vanishing value of the gap.
However, the superconducting solution (that with qAO)
yields a higher entropy than the normal solution (q =0)
when it exists. Thus, at the critical point given by (5.20),
a phase transition (which can be proved to be of second
order for sufficiently large G) arises in the self-consistent
approach, as a result of the incomplete description. The
corresponding effective multiplier is
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FIG. 1. Intensive entropies according to exact (a) and gen-
eralized mean-field (b, c,d) treatments, for the quasispin pairing
system (Sec. V 8},in terms of the exact temperature (in units of
the energy difference e between the unperturbed s.p. levels). (b)

corresponds to the smooth, detailed description, (c) to the nor-
mal solution of (5.19) [unstable below T, (dashed line)], and (d)

to the superconducting solution (T & T,). The dotted line indi-
cates the beginning of the detailed description.

Hamiltonian at a temperature T, with e the energy
difference between unperturbed s.p. levels. In what fol-
lows, all temperatures and coupling constants will thus be
given in units of e. Mean-field results have been obtained
utilizing exact averages (instead of exact multipliers).
This allows us to examine the approach from a viewpoint
different from the conventional one. '

, In the more detailed description, the mean-field solu-
tion exists only for T )T,]-0.34, starting with a non-
vanishing value of the entropy (see Fig. 1). For T & T„,
j +q )0.5 [see (5.8) and (5.9)], so that the exact averages
cannot be reproduced by recourse to an operator of the
form (5.3). fhe slope of S at the threshold temperature is
infinite, since A.

' and p' diverge as ln(T —T„) [see (5.16)
and (5.17)]. For the same reason, the effective tempera-
tures Ti = —e/P„T2 = —6/P2 (see Fig. 2), which coin-
cide with T in the exact treatment, vanish as
1/ln( T —T„). Notice however that for T )T„, the
mean-field description is smooth in this case, with no
phase transitions.

On the other hand, in the less detailed description, the
superconducting self-consistent solution exists for
T)T,z-0.22, starting with a vanishing value of S (since

j =0, initially). The normal solution becomes feasible for
T & T,3-0.37, and remains the only solution for
T) T, -0.68 (critical temperature). Only when the in-

formation is restricted to (A ) (and (Q, ) ) is a phase
transition encountered. The entropy is obviously higher
in this case, due to the smaller amount of informational
input. The initial slopes of the entropies and the initial
values of the effective temperatures behave as in the pre-

FIG. 2. Effective temperatures in the quasispin pairing sys-
tem. {a) and {bl depict, respectively, T, = —e/P, (5.13) and
T2 = —G/P2 {5.14) in the detailed description, whereas (c) and
(d) depict T = —1/P {5.21) according to the normal and super-
conducting solutions. The straight dotted line represents the ex-
act temperature.

vious situation.
The behavior of the effective multipliers depend strong-

ly on the nature of the corresponding observable. In gen-
eral, we can see that mean-field descriptions are "cooler"
than exact pictures, although crossing points may in prin-
ciple occur. In the detailed description, as T~ ~, both j
and q vanish, so that A, '-8j, p' —8q. Therefore, )33, van-
ishes, whereas Pz~2/Q. This explains the behavior (at
high temperatures) of the multiplier associated with the
two-body observable (see Fig. 2). The effective coupling
constant Pz/Pi (equal to G in the exact picture) diverges
in the detailed mean-field description as T~~. This
fact actually predicts the phase transition occurring in
the less detailed description, where Pz/Pi is constrained
to a constant value. In this case, the effective multiplier
behaves similar to Pz for T & T„and to P, for T )T„ in-
dicating the strongest contribution to (8).

C. Lower bound for the entropy

The standard mean-field treatment does not provide
one with a lower bound to the exact canonical entropy,
since it works in the GC ensemble. Although it is (in
principle) possible to consider (5.3) in a canonical ensem-
ble, just by replacing the expression for f with an ap-
propriate numerical value, the approach would be con-
strained in this case to that situation for which q=0.
Hence, it would be unable to cope with information about
Q+ Q . We shall examine, within the context of the gen-
eralized self-consistent treatment of Sec. III, the possibili-
ty of enlarging the set of relevant observables to be in-
cluded in the exponent of p, by adding particular two-
body observables, while preserving, at the same time, its
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"tractability. " Thus, we propose the new trial density
operator

p=exp(A, 0+Ad, +oJ, +gJ +~Q ), (5.22)

where we have omitted terms depending on Q, since we
shall work in a canonical ensemble. Operator (5.22) con-
serves the number of particles, and besides, is diagonal in
a standard SU(2) X SU(2) basis. '

When the generalized self-consistent approach, based
on (5.22), is applied to the situations described in the pre-
vious subsection, it yields exact results, since
Q+ Q =Q —Q, +Q„and therefore, observables about
which information is available, are spanned by the chosen
operators [see (3.15)]. In this situation, o. =/=0, while A,

and a. coincide with exact multipliers P;" and Pz", respec-
tively.

As a more challenging example, we shall examine the
case where information is also

driven about
0=—,'(J++J ), in addition to (J, ), (Q+Q ), and
( Q, ). The exact treatment requires, in this case, a diago-
nalization of ln(p). The standard mean-field treatment
yields in this context,

( 0 ) = (2A —1)/40( (J+ ) + (J ) )

=20(2Q —1)j sin (8)cos(2$), (5.23)

and (J, ) =2' cos(8). Maximum entropy implies
~cos(2$) =1 (in order to obtain a minimum value of j),
and therefore, j=(j, + ~o

~

)', tg (8)=j, /~o ~, where
o=(0)/[20(2Q —1)]. The s.p. self-consistent operator
(5.3) can thus be found, except for the sign of r (i.e., the
sign of (J )), which remains undetermined (degenerate
solution). This fact corresponds to the violation of the
parity P=exp(in J, ) ([P,O]=0) by the operator (5.3).
The expression for the new effective multiplier is

P~= — = [A,'+p'j/(2Qq )]sg(o)/[2j(2Q —1)],as
a&o)

(5.24)

Numerical results are shown in Figs. 3 and 4. The ap-
proximate treatments have been obtained again utilizing
"exact" averages. We have used as exact multipliers
P)"= —e/T, Pp"= —G/T, Pg"= —V/T, with e = 1,
G = —2.5/N, V = —2.5/(N —1), and again, N=30.
The situation is now similar to a system described by a
quasispin pairing plus monopole Hamiltonian, ' ' at a
temperature T. For these values of the coupling con-
stants, we attain a deformed ground state.

The mean-field behavior is the same as in the previous
situation. In both cases, the s.p. entropy lies above the
exact entropy for high enough T, and moreover, the
difference increases with T. On the other hand, the lower
bound given by (5.22) is extremely accurate (except,
perhaps, in the transition zone) and the difference with
the exact values decreases as T increases. Besides, the
new approximate solution exists for a larger range of T
values. The nonvanishing value of the exact entropy at
very low temperatures is due to the quasidegeneracy of
the "deformed" ground state.

The predictions for the effective temperatures T2 and
T&= —V/P4 are very similar in the s.p. description, and
differ from the fairly accurate values obtained for T&. On
the other hand, the new approach provides a quite accu-
rate prediction of T2, a small improvement in T4 (which
now increases as T~ ~ ) and a small loss of accuracy in
T„which is now "mixed" with T& through (5.26),.

Finally, we would like to remark that predictions of
the intensive entropy S/N made by both the s.p. mean-
field approach and the new self-consistent approach
based on (5.22) improve as N increases, becoming exact in
the thermodynamic limit N~ oo (see, for instance, Ref.
17).

S/N

1,2-

whereas fdi, P2, and P3 remain as given by (5.13)—(5.15).
On the other hand, within the new self-consistent ap-

proach based on (5.22), one obtains, using (5.5),

(0 ) =-,'sin'(8)cos(2y)(3& i,' ) —(i') ),
and obviously (J, ) = (J,' )cos(8). Therefore, according
to (3.6), o. = —3g. For fixed 8,$, the parameters A, , g, and
sc must be determined numerically. In addition, the
Bloch angles can be chosen so as to maximize the entro-
py. Again, ~cos(2$)~=1 (the degeneracy in the sign of
(J ) still remains), while 8 must be determined from

BO
~A, (J, )sin (8)+4/(O)cos (8)=0 . (5.26)

The effective multipliers are, using (3.17) and (5.26),

0.8—

0.4

0-0
r

0.5 1.0 1.5
I

2.0

P, =A, /cos(8),

P4= —2g/sin (8),
while Pz= i~.

(5.27)

(5.28)

FIG. 3. Intensive entropies in the quasispin pairing plus
monopole system (Sec. V C). (a) corresponds to exact results, (b)
to the detailed mean-field description, and (c) to the higher-
order self-consistent description (S.22). Dotted lines indicate
threshold points.



GENERALIZED STATISTICAL SELF-CONSISTENT APPROACH 1805

2.0-

1.0-

0.5-

0.0
f

0.5
I

1.0
I

2.0

VI. CONCLUSIONS

We have presented a quite general self-consistent ap-
proximation for statistical operators. The basic idea is to
replace the exponent of p [i.e., to approximate ln(p)] by a
linear combination of a "chosen" set of observables, in
order to attain a tractable density operator.

In the particular case where this set consists of s.p.

FIG. 4. Effective temperatures for the system of Fig. 3. (a),
(b), and (c) correspond to T, = elP—&, T, = —6 IP2, and
T4 = —V/P4 (5.24) in the detailed mean-field description,
whereas (a'), (b'), and (c') depict the same quantities in the
higher-order approach.

operators, the formalism here presented allows for a very
general and simple derivation of the statistical Hartree-
Fock-Bogoliubov approximation, which extends standard
thermal mean-field treatments within a completely gen-
eral statistical context.

However, it should be stressed that within the present
context, it is possible to improve upon the generalized
mean-field description, obtaining self-consistent approxi-
mations of a higher order. A straightforward yet tract-
able extension can be attained, for instance, by choosing a
set of commuting operators, diagonal in an appropriate
known basis, which includes two-body (or higher) observ-
ables in addition to s.p. ones. In this case, no diagonali-
zation is required for computing traces, and the matrices
F and 6 [(3.12) and (3.13)j can be easily evaluated as
correlations.

The formalism has been illustrated in a solvable nu-
clear model, utilizing information about observables
which mock up short- and long-range interactions. '

Both mean-Geld and higher-order self-consistent treat-
ments have been examined, and constructed directly from
the knowledge of a given set of mean values.

The present work may perhaps enlarge the scope of the
possible applications of mean-field theories and self-
consistent treatments, and clarify some aspects of their
interpretation. In particular, the richness of the nuclear
many-body problem manifests itself in fashions that en-
tail going beyond conventional mean-field theories. It is
to be hoped that the present e6'ort may constitute a step
in this direction.
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