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Boltzmann-Uehling-Uhlenbeck and relaxation time methods: A comparison
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The Boltzmann-Uehling-Uhlenbeck and relaxation time methods are compared numerically for
collisions between two ' 0 nuclei. Phase-space trajectories and double differential cross sections for
nucleon emission are compared. Results are practically identical although the relaxation time
method exhibits a slightly higher degree of stopping power.

I. INTRODUCTION

Several theoretical models have been developed for cal-
culating large amplitude nuclear dynamics. The first suc-
cessful model was the time-dependent Hartree-Fock
(TDHF) approximation. It has been applied quite exten-
sively to the study of low-energy heavy-ion collisions. ' In
its standard form this is a microscopic theory for nu-
cleons without nucleonic internal degrees of freedom.
Here two-body excitations due to nucleon-nucleon col-
lisions are neglected. The nucleons are assumed to in-
teract with some effective interaction which could be the
Brueckner reaction matrix but in most applications some
simple version of "Skyrme-type" force is used to generate
the mean field. The TDHF approximation is analogous
to neglecting the absorptive (imaginary) part of the opti-
cal model potential for nucleon-nucleus (or nucleus-
nucleus) scattering while retaining only the real part.
The imaginary part is essentially zero at very low energy
but increases with bombarding energy. This is a conse-
quence of the Fermi statistics for the nucleons. Absorp-
tion increases with energy as available phase space opens
up, allowing for two-body excitations and the imaginary
part of the optical potential can no longer be neglected.
TDHF has to be improved in a similar fashion as the en-
ergy of the system, i.e., bombarding energy, increases.

The classical correspondence to TDHF is the Vlasov
equation. This equation is, on the other hand, derived
from the original Boltzmann equation by neglecting two-
body excitations. The corresponding improvement of
TDHF is therefore implemented by a quantum (Q) ver-
sion of the Boltzmann equation, such as derived by Ka-
danoff and Baym (see also Danielewicz"). This contains
in addition to the mean field (defined as in TDHF), a
quantum collision operator. The Q collision operator
reduces in the classical limit to the Boltzmann collision
term. For Fermions this should be replaced by the so-
called Uehling-Uhlenbeck (Nordheim) collision term,
that we refer to as UU. In the time-dependent Hartree-
Fock relaxation-time (TDHFRX) model introduced by
one of us, this collision term is approximated by the
relaxation-time (RX) method. This approximation has
been tested numerically against both the UU and the Q
collision operator for infinite nuclear matter. ' The

agreement with the latter is actually somewhat better.
The difference between the UU and Q calculations is that
the Q (and RX) model puts nucleons up in high momen-
turn states after fewer collisions than do the UU calcula-
tions. This is the result of the conservation of energy in
individual collisions imposed in UU, while Q and RX cal-
culations only impose an averaged energy conservation.
One may argue that the difference should decrease with
total energy as the system then should become more clas-
sical. The Gnal distribution is for an infinite system in all
three cases (Q, RX, and UU) a Fermi distribution defined
by conservation of energy, particle number, and total
momentum. The difference between the three may,
therefore, not be observed in studying nuclear matter, but
one can expect differences to be found in finite systems
where different degrees of equilibration may be obtained.

By taking the semiclassical limit of both the mean-field
operator and of the collision term, one obtains the
Boltzmann- (or Vlasov-) Uehling-Uhlenbeck (BUU or
VUU) model. Several computational methods have been
designed for solving these equations. We shall apply here
the method for BUU which was developed by one of us,
and which was shown to correctly reproduce the experi-
mental particle emission cross sections for intermediate-
energy heavy-ion reactions.

The BUU and TDHFRX models, although rather
different in appearance, are nevertheless very similar in
physical content. Both include a mean-Geld and a two-
body collision term, although in different approximations
as discussed above.

It is of interest to make a direct numerical comparison
between the two models. Of course, to make such a com-
parison meaningfu1 one has to use the same interaction
for deriving the mean field, and the two-body collisions
would also have to be the same. Although in principle
this can be achieved, the comparison would still be some-
what obscured by the very different methods of solution.

In this paper we shall limit ourselves to a comparison
between the collision terms. We accomplish this by re-
placing the collision term in BUU by the RX collision
term. We shall find that the original BUU results are
well reproduced after this replacement. A comparison
will show that, in practice, these two methods lead to
quite similar results.
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II. VLASOV KITH RELAXATION TERM

The replacement of the UU collision term with a RX
collision term, although in principle straightforward, is in
practice not quite obvious. The reason is the large
difterence between the two computer programs solving
the BUU and TDHFRX equations. Therefore, before
showing how the replacement is accomplished, we briefly
highlight the important steps in these two programs.

The TDHFRX program . time develops a density-
matrix p(R, x, t). At time t =0 this is calculated from the
Hartree-Pock solutions for the two colliding nuclei

p(R, x, 0)= g n;%,*(R+—,'x)'Il;(R —
—,'x) .

I =1

After boosting, propagation under the inAuence of the
mean field is obtained by time developing this density ma-
trix by the TDHF equation

dih p(R, x, t)+ V~ V p(R, x, t)
dt ' '

2m

+[U(R+ —,'x, t) —U(R —
—,'x, t)]p(R, x, t)=0 . (2)

dp(R, x, t)
dt

p(R, x, t) —po(R, x, t)

r(R, t)
(3)

In the relaxation-time method, the redistribution of parti-
cles in momentum space due to the two-body collisions is
calculated from

Here, po is the relaxed Fermi distribution that depends on
R and t through the space- and time-dependent tempera-
tures and chemical potentials. The relaxation time ~ also
depends on R and t through the densities and tempera-
tures [see Eqs. (11)and (12)].

The Fourier transform of p(R, x, t) with respect to x is
the Wigner function W(R, p, t)

W(R, p, t)=(2ir) I exp(ip x)p(R, x, t)dx . (4)

The classical correspondence of this function is the distri-
bution function f (R,p, t). The function f is positive
definite while 8'also can be negative. The magnitude of
the negative values are always very small, however, giv-
ing credence to the suggestion that the collisions are
governed essentially by classical mechanics. The small
values at time t =0 are a confirmation of the validity of
the Thomas-Fermi method for ground-state nuclei.

In BUU a distribution function is obtained through
averaging over an ensemble of systems which are time
developed in parallel. At time t =0 the ensemble is
prepared by labeling all "test particles" (equal to the
number of "real" particles times the number of systems
in the ensemble) and randomly placing them inside a
predetermined volume in phase space. Each test particle
is assigned a coordinate and a momentum. When time
stepping through the mean field, these coordinates and
momenta are changed by Newtonian mechanics.

The two-body collisions are included in BUU by allow-
ing particles to collide with an N-N crossection and with
the outgoing particles obeying the Pauli principle

df(R, p, t)
dt

3 3 3 2 2 2 2 3 dO.
3 2

d qld q2d q26 (p +q2 ql q2) 5(p+q2 ql q2)dn2' fll 2'
X [f(r,q, t)f(r, q2. , t)[1—f(r, p, t)][1—f(r, q2, t)]

—f(r, p, t)f(r, qz, t)[1—f(r, q, t)][1 f(r, q2. , t)]—I .

In the relaxation time method, on the other hand, the
redistribution is accomplished by applying Eq. (3), i.e., by
the substitution of the distribution obtained from mean-
field propagation f(R,p, t) at each time step by

f,&„(R,p, t) =fo(R, p, t)

+[f(R,p, t) —fo(R, p, t)] exp

Here At is the time step and

[p —p(R, t)] /2M —p(R, t)

is the local Fermi distribution boosted with the local
average momentum p(R, t). It is simply related to
po(R, x) by the Fourier transformation [Eq. (4)].

The model resulting from combining the Vlasov equa-
tion with the relaxation time method will be referred to

as the VRX model and this model will now be described.
The two-body collision term has the efFect of repopulat-
ing the particles in momentum (but not coordinate)
space. The calculation of this repopulation is, therefore,
done (at each time step) separately within each coordi-
nate bin (of size 1 fm ). To calculate the Fermi distribu-
tion at each point R from Eq. (7) we need the tempera-
ture T(R, t), the chemical potential p(R, t), and the aver-
age momentum p(R, t). The latter is obtained simply
from averaging the momenta of all particles within a
coordinate bin. The temperature and the chemical poten-
tial are obtained from the particle and energy densities
but this requires some discussion. The distribution
f (R,p, t) is not a thermalized distribution (locally or glo-
bally) and a temperature can, therefore, not be assigned
to this distribution. The temperature to be defined is
rather the temperature of this distribution if it were al-
lowed to thermalize locally. This thermalization takes
place by particle, total momentum, and energy-
conserving two-body collisions. The two-body potential
from which the mean field is calculated is in the present
work assumed to be local; i.e., momentum independent.
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(A momentum dependence would lead to formally simple
modifications of what follows. ) The potential energy is
consequently independent of the distribution in momen-
tum space. Therefore only kinetic energies have to be
considered here. It follows that the particle density,
average momentum, and kinetic energy (calculated from
zero, first, and second moments in p) of the Fermi distri-
bution fo(R, p, t) is the same as that of f (R,p, t) at each
coordinate R. These five invariants of the two-body col-
lisions suffice, in fact, to define fo(R, p, t). The tempera-
tures T(R, t) and chemical potentials p(R, t) are obtained
from the moments by interpolation in an initially calcu-
lated table of zero and second moments of fo(p) as func-
tions of the temperature and chemical potential. For low
temperatures (T ~ 5 MeV) and to start the interpolation,
the well-known expansion is used, i.e.,

1 /2

T(R, t)= 6[e(R, t) —e, (R, t)]k~ '

p(R, t)=e~(R, t) — T(R, t) /eF(R, t) .
12

Here e(R, t) is the kinetic-energy density (second mo-
ment) and

bels and total number of all the test particles within a
given momentum bin. The two-body collisions will
change this by a number proportional to f,&„(p)—f(p).
This number may be positive or negative. If the total of
this number is negative within a particular momentum
bin, particles will scatter out of that bin. We refer to this
number as N (i) where i labels the bin. Likewise N+(j)
indicates the number of particles that scatter into bin j.
The repopulation of particles is now made by removing
particles, one at a time, from the bin where N (i) has a
maximum and moving it to the bin where N+(j) is a
maximum. The momentum of the nucleon in the new bin
was chosen at random within the bin to which the nu-
cleon was moved. In most calculations, the size of each
bin was taken to be about (0.5 fm ') with about 20 bins
totally for each coordinate R.

III. COMPARISON

For the comparison between the BUU and VRX
methods defined above we studied collisions between ' 0
nuclei in the center-of-mass (c.m. ) systems with an energy
corresponding to a laboratory energy of 80
MeV/nucleon.

Figure 1 shows the trajectories of the two colliding nu-

3 fi
eo(R, t) = k~(R, t)p(R, t) (10)

is the kinetic-energy density of ground-state nuclear
matter at density p(R, t) while kz(R, t) and ez(R, t) are
the corresponding Fermi momentum and energy, respec-
tively.

The relaxation time is a function of temperature and
density and on the mode of deformation with r, (heat-
conductivity mode) and r„(viscosity mode) given by'

5.0

0.0

l ~ ~

i
I ~ I I

l
I I ~ I

I
~ ~

0 19T'r =1.033T q (1+0.1T/q)+
q (1+160T )

0 127T'"r =2.833T q (1+0.04T/q)+
q (1+160T )

(12)

where q =p(R, t)/po with pa=0. 145 fm being the nor-
mal (saturation) nuclear matter density. T=T(R, t) is
the temperature as determined above in units of MeV.
The distinction between temperatures to be used in the
density-matrix and relaxation time calculations is
neglected here. We find that r„/r —3 for low tempera-
tures. For temperatures below -7 MeV, the relaxation
time is quite large however and two-body collisions can
be ignored. It decreases rapidly with temperature but the
above ratio simultaneously decreases to —1 at 20 MeV,
which is a typical temperature at the bombarding energy
considered here. We therefore neglect the dependence on
mode of deformation and take the average value of the
two relaxation times.

As mentioned, each test particle is initially labeled and
the time evolution tracks the coordinate and momentum
of each test particle. We can therefore easily find the la-
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FIG. 1. Phase-space trajectories (upper part of figure is coor-
dinate and lower is momentum) for a head-on collision between
two ' 0 nuclei -at 80 MeV/nucleon. The full lines are BUU re-
sults while dashed lines show relaxation time results. Displayed
are the longitudinal c.m. coordinates and momenta for target
and projectile.
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clei in coordinate and momentum space for a head-on
collision. The coordinate is the center of mass and the
momentum is the average momentum for each nucleus.
At t =0 the two nuclei are located at +5 and —5 fm, re-
spectively, and with momenta per nucleon of +0.2 and—0.2 GeV/c. The solid lines show the BUU trajectories
while the dashed are the VRX results. The nuclei are ini-
tially not interacting and free space trajectories are seen
before t =20 fm/c. There is in both cases (BUU and
VRX) a slight increase in average momentum as the nu-
clei start touching and experience attraction due to the
attractive component of the mean field of the other nu-
cleus. The VRX momenta are subsequently about 10%%uo

higher than the ones obtained from BUU, and this situa-
tion reverses later in the collision. This is an indication
that VRX exhibits a higher degree of nuclear stopping
power than BUU. Concentrating on the final momenta
at t =65 fm/c, the dissipation of momentum appears to
be somewhat larger in the VRX case.

Figure 2 shows the corresponding trajectories for an
impact parameter of 5 fm. The agreement between the
two models is in this case almost perfect. This is hardly
surprising. For peripheral collisions the inAuence of the
nucleon-nucleon collisions on the overall reaction trajec-
tories should be marginal; and the motion of the nucleons
in the nuclear mean field is in both approaches governed
by the same equations.

In Fig. 3 we show the energy dependence of particle
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FIG. 2. Phase-space trajectories (upper part of figure is coor-

dinate and lower is momentum) for a collision between two ' 0
nuclei at 80 MeV/nucleon and at an impact parameter of 5 fm.
The full lines are BUU results while dashed lines show
relaxation-time results.
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emission. Double differential cross sections are shown as
a function of energy for particles emitted between 30' and
60'. The histogram is the BUU and the full line is the
VRX result. The agreement is obvious. In both cases we
obtain the same answer within the statistical error bars
due to the finite number of test particles used in the cal-
culation. Only in the lowest energy bin do we have some
disagreement. This is probably due to the fact that in the
VRX approach the outgoing projectile and target rem-
nants have less kinetic energy, and thus tend to reabsorb
more nucleons with small kinetic energies. However, the
extracted slope parameters ("temperature") are the same
in both cases.

In Fig. 4 we investigate the angular dependence of the
proton emission cross section as calculated in both mod-
els. Again, the histogram is the result of the BUU calcu-
lation and the full line represents the VRX model. Here
we display the energy integrated angular distributions
which were grouped in bins of width 30 . It is clear that
in this procedure the angular distributions will be dom-
inated by the low-energy protons. However, we have
verified that the double dift'erential angular distributions
have a similar shape to the one obtained in Fig. 4. Due
to the fact that VRX emits slightly less nucleons into the
low-energy bins, we had to scale its results up by a factor
of 1.5 in Fig. 4 for the sake of comparison.

From Fig. 4 we can first observe that, as required, in
both approaches we obtain a forward-backward symme-
try of the angular distribution. The small deviations
which are visible in the VRX method are due to the sta-
tistical Auctuations due to the finite number of test parti-
cles used. The ratio of the cross section at 90' to the
cross section at 0 or 180' is a measure for the anisotropy
in the final state momentum space occupancy. The
values obtained for this ratio are o.~(90 )/

Tp (MeV)
FIG. 3. Double differential cross sections for the emission of

nucleons from the head-on collision of two ' 0 nuclei at 80
MeV/nucleon. The histogram shows the BUU result while the
full line is the relaxation result.
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FIG. 4. Angular dependence of the particle emission cross
sections in the BUU (histograin) and VRX (full line) models.
For purposes of comparison, the VRX results are scaled up by a
factor of 1.5.

A new model for heavy-ion collisions has been tested.
It replaces the UU collision term with a relaxation term
and is coined the VRX model. We find that the two
models VRX and BUU are in very good agreement for
the cases we tested. The agreement implies that the re-
laxation time model well reproduces the UU collisions.
This is not altogether unexpected because both calcula-
tions are based on the same input as far as two-body col-
lisions are concerned. In the BUU model this is done ex-
plicitly. In the VRX model, meanwhile, it is done in-
directly. The UU collision term results in a thermaliza-
tion, i.e., relaxation, of the distribution towards thermal
equilibrium. This relaxation is calculated in nuclear
matter and is fitted with a relaxation time that is a func-
tion of density and, more importantly, of fina tempera-
ture which stems from the effect of Pauli blocking. The
difference between the models is, therefore, more in
method of calculation than in physical content. Never-
theless, it is very satisfying to find the agreement to be so
good, because the methods of calculation are very
difFerent and it gives us increased confidence in these
methods. From a practical point of view the VRX model
has a slight advantage, as the computer program is about
a factor of 2 faster.

cr (0')=0.43 for BUU and cr (90 )/o (0 )=0 39 fo.r
VRX. Both calculations, therefore, show similar degrees
of ther malization. For comparison, a completely
thermalized and therefore isotropic source would have
cr~(90')/o~(0') = 1.
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