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Nuclear thermometers for heavy-ion collisions
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Measurement of the ratio of deuterons to excited deuterons is prescribed as a method for deter-
mining temperatures and breakup criteria in intermediate-energy heavy-ion collisions. The sudden
coalescence model is contrasted with a thermal breakup picture where ratios are determined by
Boltzmann factors.

During heavy-ion collisions where the center of mass
energy is some significant fraction of the nuclear binding
energy and the density is less than that of normal nuclear
matter, the possibility of interesting phenomena such as
phase separation, hydrodynamic instabilities, or even
critical phenomena has been raised. Even if these are
not possible due to the small size of the system, a change
of reaction mechanisms should occur. While at low en-
ergies liquid drops or slowly evaporating hot nuclei make
an appropriate picture, more energetic collisions should
enter a regime where a rapidly expanding gas provides a
more reasonable scenario.

Within the last few years experiments have provided us
with the first opportunities to test the various pictures.
One pivotal measurement has been the inference of a
temperature from the relative populations of excited
states. The ratio of two populations of the same frag-
ment, for instance the number of excited lithium frag-
ments to those in the ground state, should depend only
on the temperature and the energy difference if the emit-
ting source is thermal.
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peratures from these two methods do not agree. Kinetic
temperatures taken from the logarithmic slope of the
energy-dependent cross section seem to reAect the beam
energy, while the excited-state temperature from Eq. (1)
seems to stay constant at around 4—5 MeV. " This occurs
even at high beam energies, where kinetic temperatures
are around 20 MeV.

The following simple explanation for this discrepancy
was given by Barz, Bertsch, and Schulz. The basis of the
argument is, that since there are only one or two collisions
per nucleon at these energies, the cooling is not hydro-
dynamic in nature, but collisionless. A Gaussian-shaped
thermal phase-space distribution will spread after a time t
in the following manner:

2 2f (p, x, t =0)=exp
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Since the energy difference Ej —E2 is known, one can
infer the temperature by measuring the ratio of the two
states. In this paper we will discuss the validity of using
Eq. (1). By studying the example of the ground state and
quasiresonance of the deuteron, we will compare the ratio
in Eq. (1), using two difterent formalisms. The first is
sudden coalescence where two-body correlations are
neglected until the breakup time, at which time the two-
body potential suddenly appears, and the formation of
the deuteron depends on the quantum overlap of the un-
correlated states with that of a free streaming deuteron.
Secondly, a scattering formalism is developed and dis-
cussed where the last interaction of the two-body system
with the remaining particles is considered to be a hard
randomizing collision. This leads to an answer similar to
Eq. (1), while the sudden coalescence model will be shown
to predict a greater population of the excited state than
of the ground state.

The temperature can also be chosen from fitting the
cross sections as a function of kinetic energy. The tem-
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The momentum distributions always look thermal in the
local rest frame of the matter, as F does not depend on
momentum. Furthermore, the local temperature depends
only on the time. One can even show that the entropy is
conserved, as it should be when there are no collisions.
Since the particles do not collide after some initially
dense stage of the collision, the kinetic temperatures must
reAect that initial temperature Tp. The formation of
fragments cannot occur when the local temperature is
high, and in fact, due to the screening, should not occur
until some time late in the collision. The fragment yields
should depend on the temperature corresponding to the
time when nucleons undergo their final arrangement into
various fragments.

Reference 5 uses an approximation of sudden coales-
cence as the method under which the thermally equili-
brated phase space rearranges itself into the bound and
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excited states characteristic of the suddenly apparent
two-body potentials. The quantum overlap of the
thermal wave function and a bound state's wave function
gives the probability of forming that state. For instance,
the probability of forming a deuteron with momentum K
would be the overlap of the wave function of a deuteron
with that of the two-body wave function extracted from
some dynamical code where there are assumed to be no
two-body correlations until the breakup time tb.

P(K, d)= l(K, dl+, (t, )) ~',
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Boltzmann codes, time-dependent Hartree-Fock calcula-
tions, or even hydrodynamic codes can all predict the
phase-space-distribution function f (K, r, t&) and there-
fore can be used in Eq. (3). It is straightforward to ex-
tend this formalism to the n-body case.

The assumptions necessary for the sudden approxima-
tion to be valid are rather tenuous. For the potential to
appear suddenly, the expansion time or the time it takes
the screening to disappear must be less than the traversal
time for a particle in the ground state. Otherwise an adi-
abatic approximation would be reasonable. Secondly, the
expansion time should be less than the collision time. If a
hard collision occurs after the screening has disappeared,
a thermal result is expected. One should therefore look
at the three time scales involved. The period ~b for a par-
ticle to traverse its bound state is related to the size of the
system if it is a harmonic oscillator state. The expansion
time ~,„„and the collision time ~„j& depend on the beam
energy and size of the participants, but in the neighbor-
hood of 1002 (MeV) they are approximately

~, „=50 fm/c,

w, ))=50 fm/c,

~&
=m m ( r ) =50 fm/c for deuterons .

(5)

In the case of deuterons, the assumptions for the sudden
approximation are uncertain because all three times are
similar.

In the sudden approximation bound states are formed
according to their overlap with the uncorrelated basically
thermal states. For temperatures around 5 MeV, the
thermal wavelength is on the order of 10 fm, which is
larger than most bound states, and therefore the more ex-
tended states are populated rather than the least energet-
ic ones. As an extreme example of this we consider the
example of bound state formation in a very large box.
Then the population of a state X& is given by

Any dynamical model that yields the single-body phase-
space distributions f„&(k,r, t&) and f„(K,R, t&) can
yield the needed combinations products of wave func-
tions. This can be seen from the quantum definition of
the Wigner functions.

—k
X& = Jd k P*(k )P(k )exp
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For particles in a very cold large box, the population de-
pends only on the square of the wave function in momen-
tum space taken as the momentum k goes to zero.

X ly&(k=0)l'

rim, , ~P,(k=0) ~'

P(k=O)= Jdrg(r)
=+Lb for a symmetric state

=0 for an antisyrnmetric state .

(7)

The ratio in Eq. (7) is thus linearly proportional to the
spatial extent of the wave function Lb if the two states
are both symmetric. For the case of the p-n system, the
d, which is an isospin triplet, spin singlet in an s state, is
more extended than the ground state. Therefore, at low
temperatures we expect more of the excited state. than the
ground state.

A hard scattering by definition allows the deuteron to
sample all of the states regardless of their spatial shape.
The result is then a more thermal spectra. In fact, even a
hard scattering early in the collision can affect the
thermalization at breakup. For a time T after a hard
scattering, the energy is uncertain by vr/T Even w. hen
the time is 50 fm/c, the uncertainty in the energy is 12
MeV, quite a bit larger than the binding energy of the
deuteron. Thus the high momentum components of the
deuteron can still be sampled, leading to more
Boltzmann-type ratios. Here we develop a formalism
where we show that in an instantaneously disintegrating
system, where the last interaction of the two nucleons
with the other particles was a randomizing collision, the
formation of deuterons and d*'s will depend primarily on
the temperature as in Eq. (1).

The proper normalization for the d*'s will also be ex-
plained to take into account the fact that the d* is not a
complete resonance, and its number must be extracted
from two-particle correlation measurements since it is
particle unbound. We then end up with an effective ratio
of d "s to deuterons which can be measured experirnen-
tally. For an instantaneously dissolving source at a given
temperature, we make theoretical predictions of the ratio
in both the hard scattering or thermal model and the
coalescence model.

For the inelastic scattering of a particle from a poten-
tial, the T matrix element is very broad in momentum if
the scattering was hard. The momentum distribution
would be then determined more by the delta function at
the end of the equation than the momentum dependence
in the matrix element. For the emission of a single parti-
cle with momentum p from a collision where the final
state is written as

~ F,p ), the probability can be written

&(p) = y ~ (+~ V~Fp & ~'o(Eq E E) . — —
b F

The exact eigenstate is represented by ~
+ ) and is of

course not calculable as it is a many-body system. The
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potential V represents the interaction of the particle
represented by p with the remainder of the system. The
beam velocity is Ub. In order to see the momentum and
space dependence in the matrix element we may rewrite

this as

P(p)= g fSF(p, r)dr 5(E& E—F E—),2&

Ub

where

(9)

S~(p, r)= 3 fd5pe' '(Fp+5p/2~ V~%)(4~ V~Fp —5p/2) .(2'�)'

P(p) = fS(p, r)dr p~(E& E) .—
Ub

(10)

The function p~(E& E) is—the density of available
states for the remainder of the system and should behave

( —E /T)with respect to E as e & . Thus if there is no
momentum dependence in S(p, r) the momentum distri-
bution will be according to phase space, and thus be
thermal. We define this as a hard collision. States of the
system I'" are sampled in a way that does not depend on
their energy or the momentum of the outgoing particle.
This is similar to a hammer striking a bell, where all fre-

The function S~(p, r) represents the matrix element for
ejecting a particle with momentum p from the position r
where the remainder of the particles go into a state F.
Summing over the states I', one obtains

quencies are initially excited before the characteristic
ones dominate. If the matrix elements in Eq. (9) are
transformed into coordinate space, the lack of momen-
tum dependence requires that the matrix elements be so
chaotic that there is no phase coherence at different spa-
tial points. This is indeed a very strong and rather ex-
treme assumption, but it allows us to see the effect of a
hard collision in the population of final states.

In order to investigate the formation of a deuteron or
d* we must extend this formalism to the emission of two
particles represented by the total momentum K and the
relative momentum k. If the final state is to be bound,
the label k must be replaced by the discreet label "d".
The potential V must now refer to the interaction of the
two-particle subsystem with the remainder. Going
through the same procedure as before, the result is

P(K, k)= fS(K', k', R, r)dRdrdK'dk'd5Rd5r@'(K, k~R+5R/2, r+5r/2)@(K, k~R —5R/2, r —5r/2)
Ub

—iK :sR ik'' sr —(E E E )e pg
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The upper case letters refer to center of mass coordinates
and the lower case to relative coordinates. The relative
wave function P has all the information about the interac-
tion of the two particles between themselves. The two-
body matrix element S(K,k', R, r) can be factorized as
the product of the single-body matrix elements. Making
the hard scattering approximation of the preceding para-
graph, this result can be made more tenable. Here we
simply ignore the momentum dependence in S. This then
assumes that both particles are scattered simultaneously.
Otherwise the first wave packet would have spread corre-
lating momentum to position.

P(K,k)= fS(R,r)dRdrg*(k~r)P(k~r)
Ub

I

tract the number of pairs produced in that range if there
were no two-body interactions. Somewhat arbitrarily, we
define that range to be from 0 to 18 MeV/c relative mo-
menta. The number of deuterons and d*'s in a system
where the density of states is proportional to a
Boltzmann factor is then

Nu, „(K,d)= fS(R,r)dRdrgd(r)gd(r)
—2.2/T —K /2MTXe e

18 Mev/c
N, „„(K,d*)=f S(R,r)dRdr

o (2~)

xp~(E~ E~ Ek) . — —(12) —k /2pT —K /2MTXe

The square of the wave function can be thought of as the
corrected density of states due to the interaction. In the
case of the deuteron, one replaces the label k with the
discreet index d. In the case of the d* one must use
scattering states and integrate over the range of relative
momenta, which would correspond to the d*, and sub-

The coef5cient X is chosen so that the integrand goes to
zero as k approaches 18 MeV/c. This is our method of
subtracting out the background. The total and reduced
mass of the two-nuclear system are M and p, respectively.
Using the coalescence model described earlier, the popu-
lations can be written
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N„„(K,d)= JF(R, r)dRdre ~ e ~ " dqe'q' 'Pd(r+5r/2)gd(r 5—r/2)e

N„„(K,d*)=I F(R,r)dRdre ~ e ~ ~" dqe'q '[P*(k~r+5r/2)P(k~r —5r/2) —N] .
(2~)'

(14)

The integration over q in Eq. (14) can be performed ex-
plicitly, resulting in a Gaussian weight to the integration
over 5r. This width goes to zero as the temperature ap-
proaches infinity and two formulas, Eqs. (13) and (14), be-
come identical. Experimentally, the two numbers are
easily defined. To count the d*'s one must count all pairs
with relative momentum less than 18 MeV/c, then sub-
tract out the background or uncorrelated pairs normal-
ized such that the number of d*'s at exactly 18 MeV/c
relative momentum is zero.

The ratio of d*'s to deuterons is Boltzmann in the
thermal case as long as the temperature is larger than (18
MeV/c) /940 MeV=0. 3 MeV.

(T)=exp
ther

2. 2 N(d*)
T N(d)

(15)
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FIG. 1. The ratio of excited deuterons to deuterons is nor-
malized so that it approaches unity at high temperatures. The
coalescence formalism yields the peculiar result that the ratio
rises as the temperature falls. The scatter in the points is due to
the Monte Carlo nature of the integration.

The ratio of populations for the coalescence case is quite
different, and in fact does not even rise with increasing
temperature. At T~ ~ the coalescence ratio is the same
as the thermal ratio of Eq. (14), about one tenth, which is
a measure of the fraction of a true resonance to which the
increase in the density of states corresponds. These two
ratios defined below are plotted in Fig. -1 for the thermal
and coalescence case where the infinite temperature ratio
is factored out so that the normalized ratios approach
unity at infinite temperature. This infinite temperature

I

normalization does depend on the size of the source but
not strongly. Thus one must also estimate the source size
which can be done by looking at two-particle correlation
measurements. We use a Gaussian source size of 7 fm
for F(r) when calculating Fig. 1. Wave functions were
calculated by using a Coulomb plane wave modified by
the corrections in the two s-wave channels. The Reid soft
core potential was used for the isospin triplet, spin sing-
let channel, and somewhat modified version of the Reid
potential was devised for the isospin singlet, spin triplet
channel. Modifications were necessary since the mixing
with the d channel was ignored, and we wanted to
preserve the binding energy of 2.2 MeV and the effective
range expansion for the phase shift.

[N,h„(d" ) /N, h„(d)]( T)

(N(d")/N(d)](T~ ~ )

[N„,)(d*)/N„,)(d)]( T)
R„„.,(T)=

[N(d*)/N(d)](T~ ~ )

By looking at Fig. 1, one can see that if local tempera-
tures are 5 MeV, one could distinguish between the
coalescence and the thermal pictures by simply seeing
whether this ratio is greater or less than unity. Another
key ingredient is seeing whether the ratio would rise or
fall with the beam energy, although the experimental
answer might easily be between these two values.

The most important neglect of this analysis is disre-
garding the effects of the Coulomb field which could
affect the existence of the d* near the residual system.
This is discussed in the context of the compound nucleus
by Bernstein. For the case of instantaneous disintegra-
tion of a low density system the Coulomb effects should
not be as large as the compound nucleus example of Ref.
9. The thermal formalism which is meant only as an ex-
treme example should be modified for the case where the
nucleons are emitted not from a single instantaneous ma-
trix element but separately, at different times. By the
time of the emission of the final particle, the first particle
will have become a wave packet, correlating its position
to its momentum, and narrowings its uncertainty in ener-
gy by 1/(t, t2). None—theless, Eq. (13) gives insight into
the coupling of the wave function and the density distri-
bution of a violently disintegrating system.

If the temperatures extracted from a deuteron to d*
experiment would correspond to the 4—5 MeV found
from ratios of other states, the thermal picture would be
strengthened. This ratio is also quite important since the
emission of protons, deuterons, and neutrons does not
have the temperature-window effect of the compound nu-
cleus. ' Heavier ions can only escape at temperatures
high enough to raise the several charges above the
Coulomb barrier, and low enough that the proton and
neutron cooling is not so rapid that the temperature falls
in too short a time to emit a heavier particle. We con-



172 SCOTT PRATT

elude by stating that a good phenomenology of the break-
up mechanism is necessary before a good phenomenology
can be tested for previous stages.
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