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A hot nucleus is unstable if its temperature exceeds a certain limiting value due to the Coulomb
repulsion between its protons. This instability is investigated using a finite-temperature generaliza-
tion of the liquid-drop model. For this purpose an equation of state for asymmteric nuclear matter
derived in a previous work with the use of a Skyrme-type effective interaction is generalized to the
case of a density-dependent effective mass. Standard parametrizations of the Skyrme interaction are
used to study the properties of a hot 2°Pb nucleus immersed in a uniform vapor. Good agreement
is achieved between the present model and the results of finite-temperature Hartree-Fock calcula-
tions only if the Coulomb interaction between the vapor and the drop is properly taken into ac-
count. The results are seen to yield valuable information on the temperature dependence of the sur-

face tension of hot nuclei.

I. INTRODUCTION

In an earlier work,! hereafter referred to as I, an equa-
tion of state for asymmetric nuclear matter was derived
and used to investigate the instability of hot nuclei caused
by the Coulomb force. The investigation was carried out
with the use of a model suggested by Levit and Bonche?
which treats the hot nucleus as a spherical liquid drop
with uniform density, a sharp edge, and a surface tension
immersed in a uniform vapor. This is an extension of the
liquid-drop model which is successful at very low temper-
atures. The equation of state used in I to describe the
liquid and vapor phases was derived with the use of a
Skyrme-type effective nucleon-nucleon interaction . that
did not include the so-called finite-range terms and hence
did not include the important effects of the density
dependence of the effective mass m *(p).

This inadequacy is remedied in the present work where
a more general Skyrme-type interaction is used that not
only allows for an examination of the role of the effective
mass but also makes possible in the present calculations
the use of any of the various parametrizations of the
Skyrme interaction currently found in the literature since
these parametrizations always yield an effective mass
m*(p)¥*m. The advantage of using such parametriza-
tions is that it allows a comparison between the current
results and those of finite-temperature Hartree-Fock cal-
culations such as those carried out by Bonche et al.?

Another inadequancy of the work reported in I is that
it assumed the vapor surrounding the nuclear drop to be
electrically screened. Here this assumption is found to
appreciably alter the properties of the drop-vapor system
and therefore a proper treatment of the charge of the va-
por is carried out so that the model becomes capable of
yielding reliable results.

In Sec. II the role of the effective mass is investigated
for the case where protons and neutrons are treated
equally and the equation of state of symmetric nuclear
matter is used to study the properties of hot nuclei. The
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equation of state is then generalized in Sec. III to include
the effect of the neutron-proton asymmetry and used to
investigate the instability of hot nuclei. The effects of the
charge of the vapor are taken into consideration and
found to be important. Section IV contains a discussion
and concluding remarks about the present work.

II. EQUATION OF STATE
OF SYMMETRIC NUCLEAR MATTER
AND THE COULOMB INSTABILITY
OF HOT NUCLEI

The equation of state of nuclear matter depends on the
assumed form for the effective nucleon-nucleon interac-
tion. In this work the following general form for a
Skyrme-type interaction is used:

Vip=—to(1+xyP,)8(r;—1,)
+1t,[P %8(r; —1,) +8(r, —1,)P?]
+t,P"-8(r,—1,)P

r,+r,
2

+1t3(1+x3P, )p° 8(r;—r), (2.1

where P, is the spin-exchange operator and P and P’ are
(V,—V,)/2i and —[(V;—V,)/2i], respectively. The pa-
rameters ¢y, X, ¢, ¢,, 3, and x5 are determined phenom-
enologically by fitting the ground-state properties of nu-
clei and/or nuclear matter. The nuclear density is denot-
ed by p and the exponent o of the density-dependent
term is taken as a parameter that controls the compressi-
bility of nuclear matter.* The interaction (2.1) differs
from the one employed in I by the inclusion of the finite-
range terms ¢, and ¢, and also by allowing for the possi-
bility of varying the value of x; which was fixed at x; =1
in L

For symmetric nuclear matter the equation of state is
independent of x, and x; and is given in terms of an ex-
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pansion in the degree of degeneracy of the system*

~ t
P(T,p)=—3top*+ fg( 1+0)p*te

3
3 dm* > Arp
+ 1—=—L- b ,
{ 2 m* dp Pn§0 " g
(2.2a)
or
~ —_ 3 _t_3_ 1+o
B(T,p)=—3top+ 1 (2F0)p
n
dm* 2 7‘3TP
—rL_am_ b
: m* dp n§0 " 4
A o A3
+Tlin TP +s n+1b,, TP ’
n=1 h g
(2.2b)

where P is the pressure, [i is the chemical potential, T is
the temperature in energy units, g is the spin-isospin de-
generacy (g=4 for symmetric nuclear matter), and A is
the thermal wavelength of the nucleon

i 172
A’ =3 (2.2C)
T m*T
The effective mass m * is given by
—1
m*=m 1+—8n—;%(3t1+5t2) (2.2d)

Note that m*=m if t,=t,=0 as was used in I. The b,’s
are the coefficients of the virial series for an ideal Fermi
gas with b, =1 and the remaining coefficients, up to n=35,
are listed in I. Only terms up to fifth order in degeneracy
(n <5) are included in all calculations in the present
work as well as in I.

With the equation of state (2.2), the coexistence equa-
tions between the liquid drop, assumed to be a uniform
sphere with radius R;, and the surrounding uniform va-
por are determined by the standard requirements of the
equality of the liquid (L) and vapor (V) temperatures,
pressures, and chemical potentials:?

P(T,pp)+Pcoulpr)+ P TopL ) =P(T,py) , (2.32)

V4
A(T,pL)+—tcoulp) =B Topy) » (2.3b)
where P, and (Z /A4 )uc,, are the Coulomb contribu-
tions to the pressure and chemical potential of the drop
which contains Z protons and N = 4 —Z neutrons

172
4mpy Z2e?
Peou= |34 54 PL> (2.4a)
173
4mpy,
Pcou=S$Ze? EVE (2.4b)

P, is the contribution of the surface tension y(T) of the
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liquid drop
4 1/3
2¢(T) TPL
Psurf:——Jl’Q—L—=—2y(T) v (2.5a)
with
372
_ 3 T T
=1. 2 == 1—= 2.5b
Y(D=1.14 MeV fm ™2 |1+ 2 T. T, (2.5b)

as used in I.

As found in Ref. 2 and also in I, the coexistence equa-
tions (2.3) have a real solution only up to a limiting tem-
peratures T, indicating that the liquid drop is unstable
above this temperature. This instability is due to the
Coulomb force since it disappears if the protons are as-
sumed chargeless? and the nucleus can then survive up to
the critical temperature T, which is the temperature
above which there is a single fluid phase. The values of
T)im calculated for two values of the parameter o of the
density-dependent term and for various values of m *(p,),
the effective mass as evaluated at nuclear saturation den-
sity p,, are given in Table I for the case of a 2°’Pb nucleus
together with the corresponding values of the critical
temperature of symmetric nuclear matter. In each case,
for every pair of values of m*(p) and o, the parameters
of the Skyrme interaction are determined in terms of the
binding energy per particle Ez(=16 MeV) and the kinetic
energy per particle Ex(=24 MeV) in the ground state of
nuclear matter:*

%ropoa=(1+a)EB+EK+(U—§);*’—’(’p—)EK, (2.6a)

0

%t3p(1)+oo-=EB+EK—%*m:r(17EK . (2.6b)
0

By examining Table I it is obvious that the limiting tem-
perature varies with the value of the effective mass and
correspondingly, through Eq. (2.2d), with the values of
the finite-range terms of the Skyrme interaction. This
variation correlates to a large extent with the correspond-

TABLE 1. Values of the limiting temperature of a 2%Pb nu-
cleus for various values of the effective mass at nuclear satura-
tion density (p,) and for two values of o. Also listed are the
corresponding values for the critical temperature of symmetric
nuclear matter. Note that for m *(p;)=0.40 m the results are
independent of ¢ since ¢; =0 in this case.

o=1 o=1
m*(Po)

—— Tjm MeV) T, MeV) Ty, MeV) T. (MeV)
1.0 8.51 22.98 6.27 17.34
0.9 8.30 21.47 6.34 16.76
0.8 8.17 20.27 6.46 16.36
0.7 8.10 19.37 6.66 16.19
0.6 8.10 18.83 6.99 16.43
0.5 8.25 18.81 7.61 17.37
0.45 8.48 19.11 8.26 18.30
0.4 9.23 19.73 9.23 19.73
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TABLE II. Parameters of the SIII and SKM interactions used in the present calculations. Also listed are the values of the critical
temperature of symmetric nuclear matter and the effective mass for p=p, calculated with these interactions. Note that Ref. 3 gives a
value x,=0.34 for the SIII interaction whereas a value x,=0.45 appears in the original work of Beiner et al. (Ref. 5). The value 0.45
is used in the present calculations as it is assumed that the 0.34 value is a result of a typing error. In any case, it has been checked
that changing x, from 0.45 to 0.34 affects the limiting temperature of *Pb by $0.2 MeV.

) 4 143 4] T,
3 5 5 30+3 m *(Po)
(MeV fm°) Xo (MeV fm°) (MeV fm°) (MeV fm)°? X3 o E— (MeV)
SIII 1128.75 0.45 395.0 —95.0 14000 1.0 1 0.760 17.85
SKM 2645.0 0.09 385.0 —120.0 15595.0 0.0 % 0.789 14.58

ing variation in the critical temperature. The value of
Tm becomes increasingly sensitive to the value of
m*(p,) as the latter approaches its lowest possible value
of m*(p,)=0.4 m that corresponds to t; =0'in Eq. (2.6b),
in which case the saturation of nuclear matter is deter-
mined solely by the finite-range terms. Lower values of
m*(py) are not physically acceptable since they would
imply that the density-dependent term is attractive. The
results in Table I do not include the isospin effects associ-
ated with the neutron-proton asymmetry. Nevertheless,
they serve to illustrate the importance of the inclusion of
the proper value of the effective mass especially for the
case with o =1 where T}, changes by about 3 MeV in
going from m *(py)=m to m *(py)=0.4 m.

Finally it would be interesting to calculate T);,, with
some of the various parametrizations of the Skyrme in-
teraction currently found in the literature. Because of
their relevance to the remainder of the present work two
such sets of parameters have been chosen, one corre-
sponding to the standard SIII interaction of Ref. 5 while
the other is obtained from Ref. 6 where it is denoted the
SKM interaction. The parameters of both interactions
are shown in Table II. Without including any corrections
connected with the proton-neutron asymmetry the SIII
interaction yields a value T}, =6.73 MeV while the SKM
interaction gives Ty;,, =5.25 MeV. The values of the cor-
responding critical temperatures are listed in Table II.

III. EQUATION OF STATE OF ASYMMETRIC
NUCLEAR MATTER AND THE COULOMB
INSTABILITY OF HOT NUCLEI

In a proper treatment one must distinguish between
the neutrons (n) and the protons (p) and assign different
densities, effective masses, and chemical potentials to
each species of nucleons. The chemical potential for
species g (where ¢ =p or n) is then given by’

Arp,
,uq=£q+T In T
o A3 "
+z”:1bn —;p—q ] 3.1)
n=1 s

where g, =2 is the spin degeneracy of each species and ¢,
is the single-particle potential energy for species g (Ref. 8)

x
sqz—toHl+—2(l p—(xo+3lpg | T4t +12)7
I3 o o 1+
+%(t2*t1)‘rq+'1—2“‘ 2+*2—+X3 1*-3- o

—2(x; +%)0'p"_1p‘21
+2(x3+5)0—1)p°, ] .

(3.2)

In (3.2) 7, is the kinetic energy density of species g and

‘r='r,,+7'p,

T,=3 n;|Ve;(x,q)I?
’ 3
g [ K|V (r,q)?n

2w
2m* o0 A3 "
=3T—5"s 3 by i (3.3)

where the summation has been changed into an integra-
tion in the standard manner and the last step follows
from the definition of the b,’s.""* In (3.3) n; is the occu-
pation probability of the state i at temperature 7 and the
effective mass for each species is given by

mp, !
4#?

; (3.4)

mr=m [H—(t, +t2)2mﬁ% +(t,—1y)

The contribution of the Coulomb force does not appear
in Eq. (3.2) since it will be included separately in the
coexistence equations.

The final expressions for the chemical potentials to
second order in the asymmetry parameter

a:fﬁ___pi (3.5)
P
are then given by
po(T,p,a)=M(T,p)tp(T,pla+u,(T,p)a*, (3.6a)

where the + (—) sign applies for neutrons (protons) and
O(T,p) is the chemical potential for symmetric nuclear
matter given by Eq. (2.2b). In addition,



1680 H. R.JAQAMAN 40
Yo 1 Iy 1y,0+1 < Arp '

,ul(t,p)Z7(x0+7)p—1—2(x3+7)p +T 20[n+1+%/3'(n+1—[3’)]b,, (3.6b)

and
I3 +1 > |n?2—1 3 dm* | » n(n+1) Azp "
=—— Lop? L= L O g pgp—pg+ T2 3.6

uT,p) 24 X3t 3lop +Tn§O 5 2t dp B°—Bn—B ) " g (3.6¢)

with
m* L1 m* m*
= tL—hp=7"""—"|1—— [=6|1— 3.6d
A 8ﬁ2( 27 hp 3z, +51, m ( m ( )
The pressure of the system is then determined through the Gibbs-Duhem relation

oP d | Z N

L=y 2 | &+ , 3.7

3 Pap |ate™ gt (3.7)
which leads, up to order a2, to the expression

P(T,p,a)=P(T,p)+ Py, (T,p)a*, (3.8a)
where P is the pressure for symmetric nuclear matter given by Eq. (2.2a) and

n
b 3 = n(n+l), |Ap

Psym(T,p)—-T(xo%-%)pz——éz(x3+%)(1+0)p2+”+ Tp El 5 D . +pu3—fu3dp, (3.8b)

where
m(3t;+5¢t,) = A3p " , | m* ’ 5 | m* ? nin+1) | m*
p3=3T—————p . 8 |— | +(6+nd—58) |— | +———= |— (3.8¢)
8% n=0 m 2 m

with 8§ as defined in Eq. (3.6d). The terms that appear in g3 cannot be integrated exactly. From the dependence of m *
on p given by Eq. (2.2d) it is, however, possible to successively integrate each term by parts and express it as a conver-

gent series

s

m* 3 yw—1_v EVdB
— | (A7) dp~
f ripap f (1+awp)®
_ p' ! cwp e(e+1)w?p® . 4. (3.9
(v+1)(1+wp)® (v+2)1+wp)  (v+2)(v+3)(1+wp)? ’ )
[
where P(T,pr,a;)+Peoulpr)+Pyi(T,pr)
3v =P(T,pp,ay), (3.10a)
EZ%"'—2—+S
pn(Topr,ap)=p,(T,py,ay) , (3.10b)
and '
p(Topr,ap)tpcoulpr ) =pp(Topy,ay) . (3.10c)
m (3¢, +5¢,) These equations are a generalization of Egs. (2.3). They
0= T . were solved by the method described in I for the case of a

In practice it was found that the first three terms in the
series (3.9) are sufficient for the accuracy required in the
present calculations.

With the neutron and proton chemical potentials given
by Eq. (3.6a) and the pressure given by Eq. (3.8a) it is
straightforward to write down the coexistence equations
which express the thermal, chemical, and mechanical
equilibrium between the drop and the surrounding vapor

drop corresponding to a 2®®Pb nucleus with the use of the
SIII and SKM interactions whose parameters are shown
in Table I. These two interactions were used in Ref. 3 in
finite-temperature Hartree-Fock (HF) calculations for the
same nucleus which permits a direct comparison between
the present results and those of Ref. 3 in order to exam-
ine the validity of the present model.

With the SIII interaction the limiting temperature of a
208pp nucleus was determined to be 5.8 MeV (as opposed
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to 6.7 MeV obtained in the previous section where sym-
metry corrections were neglected). This is to be com-
pared with the result of the HF calculation,® where it was
found, with the use of the same interaction, that the 2°Pb
nucleus can survive up to a temperature of about 10
MeV. This serious discrepancy indicates the need to ex-
amine the possibility of introducing various corrections
and modifications into the present model in order to see if
the discrepancy can be removed.

One such correction is a better treatment of the
Coulomb energy to include both exchange and diffuseness
contributions

_ 3 Z%?

2/3
e224/3
Coul — 5 R
L

R, ’

_50b
2 R?

_3
4

3
2

(3.11)

where b is the surface thickness of the nucleus as defined
by Myers.” The last term in (3.11) is the Slater approxi-
mation for the exchange part of the Coulomb energy'’
while the term depending on b gives the correction due to
the fact that the nucleus has a diffuse rather than a sharp
edge.!! The corresponding contributions to the pressure
and chemical potential inside the nucleus are then deter-
mined by the relations

Poou=— aaE—;ZUI .
and

Kecour™ EJZ_;’_“‘ v,
where

VL=4T”R,§

is the volume of the liquid drop. The value of b used in
the present calculations is taken from Ref. 11 where it
was evaluated by a thermal Hartree-Fock calculation

b=~0.72(1+9X10737T2) fm . (3.12)

This value somewhat underestimates the diffuseness of
the nucleus which is found experimentally to correspond
to b~=~1fm at T=0. However, (3.12) is used here because
it is obtained by a HF calculation with a Skyrme interac-
tion very close to SIII which makes it possible to contin-
ue the comparison between the present results and those
of Ref. 3. With these corrections to the Coulomb terms it
is found that Ty, for 2°®Pb is raised slightly from 5.8 to
6.1 MeV.

Another ingredient that can be investigated in order to
see its effect on T, is the temperature dependence of the
surface tension. In principle, the surface tension is relat-
ed to the equation of state since they are both determined
by the same effective interaction. This relationship is,
however, not available, and the temperature dependence
of the surface tension is treated independently of the
equation of state except for the fact that the surface ten-
sion vanishes as T'— T, where the critical temperature T,

is determined by the equation of state. The surface ten-
sion given by Eq. (2.5b) has the correct value and quadra-
tic dependence on T for small temperatures. It also van-
ishes at the critical temperature but it is not clear wheth-
er it has the correct magnitude at intermediate tempera-
tures. The calculation of T, is therefore repeated but
with the temperature dependence of the surface tension
given by

TV
T

c

y(T)=1.14 MeV fm 2 (3.13)

rather than by Eq. (2.5b). This expression also vanishes
as T— T, but it yields much lower values of the surface
tension at intermediate temperatures than does Eq. (2.5b).
This change in the temperature dependence of the surface
tension raises the limiting temperature from 6.1 to 7.1
MeV for the SIII interaction. This change in T, is in
the right direction but it is not enough to resolve the
discrepancy with the HF calculations. It may be argued
that at intermediate temperatures the surface tension
should be lower than that given by Eq. (3.13). This, how-
ever, will not be sufficient to raise the limiting tempera-
ture appreciably for even if the surface tension is assumed
to vanish T, is found to reach 7.9 MeV only for the SIII
interaction.

Another contribution that has been neglected so far is
the effect of the charge of the vapor. Treating the vapor
as completely screened is an oversimplification that must
be examined carefully. If the vapor is assumed to extend
from R; up to a radius R, with a total proton number
Zy, surrounding the nucleus which has Z protons, then
the total Coulomb energy of the system is given by

Ec=Ec(dd)+Ec(dv)+Ec(vv) , (3.14)

where E-(dd) represents the Coulomb interaction of the
drop charges with each other and is taken to be given by
Eq. (3.11), while E-(dv) and E(vv) represent, respective-
ly, the Coulomb interaction between the drop and vapor
charges and between the vapor charges themselves.
These are given (for uniform liquid and vapor densities)
by the expression'?

) R} —R}
EC(dV)Z%e ZZV—T'_T , (3.15a)
RV._RL
[(RP)—R})—3R}(R}—R})]
Ecv)=3e2zp— Y 2 2LV "L (3.15b)

(R}—R})?

With the expression (3.14) for the Coulomb energy the
Coulomb contribution to the pressure difference across
the liquid-vapor interface is given by —(8Ec/0V} )z, z,
while its contribution to the chemical potential of the
protons in the drop and in the vapor is given by
(0E-/0Z )z,,v, and (BEc/0Zy) 4 v,» respectively. It is
worth mentioning that the HF calculations of Ref. 3 are
carried out inside a spherical box whose radius corre-
sponds to R, in the present work. This makes the com-
parison between the present results and those of Ref. 3
even more meaningful. Using a value of R, =16 fm (the
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same as in Ref. 3) and with the surface tension given by
Eq. (2.5b), the SIII interaction yields, for the limiting
temperature of 2°Pb, the value of 10.0 MeV which is in
excellent agreement with the results of the HF calcula-
tion.> This value is to be compared with T};,, =6.1 MeV
obtained with the same interaction and surface tension
but with the vapor assumed uncharged. This large
change in the value of Ty, indicates the importance of
the inclusion of the effects of the electric charge of the va-
por.

A question naturally arises as to the effect of the value
of Ry, used on the results of the calculation. In principle,
these results should be independent of R, and this was
the case with the HF calculations for R, > 14 fm.> In the
present case changing R affects the results of the calcu-
lation; for example, with the SIII interaction, changing
Ry, from 16 to 18 fm changes T';,, from 10.0 to 9.4 MeV
while decreasing R to 14 fm raises Ty, to 10.7 MeV.
This dependence on R reflects the effects of the increas-
ing size of the vapor charge and is due to the assumption
of uniform vapor charge density used in calculating the
Coulomb energy of Egs. (3.14) and (3.15). In contrast the
self-consistent HF equations lead to the polarization of
the vapor with the vapor proton density increasing with
the distance away from the surface of the nucleus. This
polarization reduces the effect of the charge of the vapor.

Using the SKM interaction with the surface tension
(2.5b) and R}, =16 fm, the limiting temperature for 2°’Pb
is found to be 7.7 MeV. This is also in good agreement
with the HF calculations® which yield T}, ~8 MeV for
the SKM interaction. The inclusion of the effect of the
charge of the vapor is seen again to produce satisfactory
results. Moreover, the expression (2.5b) is found to ade-
quately describe the temperature dependence of the sur-
face tension at intermediate temperatures when used with
the SKM as well as SIII interactions. In contrast, expres-
sion (3.13) is found unacceptable as it yields values of
Tym for *®Pb that are higher than the HF values by
about 1.3 MeV (it yields Ty, =11.3 MeV with the SIII
interaction and T, =8.95 MeV with the SKM interac-
tion). This illustrates how information on T, can be
used to study the surface properties of hot nuclei.

The effect of polarization can be investigated with a
simple model using a linearly increasing vapor proton
density of the form

ppy=Ppyl1+e(r—R)], Ry <r<Ry, (3.16)

where R is chosen so that the total number of protons in
the vapor (Z, ) is independent of ¢, i.e., Z;, depends only
on Ry and p,y. This is achieved by setting

4_pa

g=3Rr7R (3.17)
4 R}—R}
This choice makes it possible to investigate the effect of
changing the polarization of the vapor without changing
Z,. It is, of course, understood that the vapor neutron
density distribution remains uniform.

With the density distribution (3.16), the total Coulomb
energy for the drop plus vapor system is then found to be
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Ec(e)=E (0)—Fe+Ge?, (3.18a)

where E-(0) is the Coulomb energy for the case of a uni-
form vapor density and is given by Egs. (3.14) and (3.15),
while F and G are given by

(Ry—Rp)* | mp,yZe® R
~Ri&D (R} +4R, R, +R})
21752, e?

45

X(Ry—R. )R} +5R}R, +15RZR}

+20R, R} +4R}) (3.18b)
and )
_mpjye’ (Ry—R.)
210 (R}—R})?
X(RE+TRJR; +28R{R}?+54R}R}
+28RZR}+7R,R; +RE) . (3.18c¢)

Assuming that for a given R, and Z,, the distribution of
the vapor charge is such that it minimizes the Coulomb
repulsion energy, one is led to minimizing E-(g). This
has a minimum at

s=€=§£ (3.19a)
so that
F2
EC(§)=EC(0)——£ . (3.19b)

It is seen that polarization reduces the value of the total
Coulomb energy for the vapor plus drop system by an
amount equal to F2/4G as compared with the case in
which the vapor is assumed to have a uniform charge
density. Moreover, the change of € with R, is found to
partially offset the effect of the corresponding change in
the total charge of the vapor so that the total Coulomb
energy given by Eq. (3.19b) increases more slowly with
R, than does the corresponding expression for a uniform
vapor charge density. As an example, for a 2%Pb nucleus
it is found that € increases from 1.64 to 2.92 fm~ ! as R,
decreases from 16 to 14 fm. The corresponding decrease
in the total Coulomb energy is

E¢ (R, =16 fm)—Ec(R, =14 fm)=405.8 MeV

as compared to 531.5 MeV for the case where no polar-
ization is assumed. Similarly, when R is increased from
16 to 18 fm, € decreases to 1.05 fm ! and E increases by
only 601.6 MeV as opposed to an increase of 752.3 MeV
when a uniform density is assumed. These calculations
are carried out using R, =7.349 and p,; =0.006 14 which
are obtained in the calculation reported above for
T)jm =10.0 MeV with R, =16 fm.

Expression (3.19b) does not, however, completely re-
move the dependence on R, although it diverges more
slowly with R, than do Egs. (3.15). This is because the
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variation carried out has been a restricted one with the
vapor charge density allowed to increase only linearly
with 7. In contrast, the thermal HF calculations® lead to
a vapor charge density that increases exponentially with
r. The present model given by Eq. (3.16) is used here be-
cause of its simplicity and its ability to yield analytical re-
sults. Moreover, no attempt is made here to incorporate
the effect of polarization into the coexistence equations as
it is felt that is goes beyond the scope of the drop-vapor
coexistence model used in this work with its associated
uniform densities. Problems would arise in finding the
equation of state for such a variable-density system and
in calculating the neutron-proton symmetry energy.

IV. DISCUSSION AND CONCLUSION

In the present work hot nuclei are treated as liquid
drops immersed in a vapor of nucleons. Both the liquid
and vapor states are described by an equation of state for
nuclear matter that includes both degeneracy corrections
as well as corrections due to the neutron-proton asym-
metry. This equation generalizes the equation of state of
asymmetric nuclear matter derived in I for the case
m*=m to the case of a density-dependent effective mass.
This generalization allows for an investigation of the
effect of the density dependence of the nucleonic effective
mass on the stability of hot nuclei and also makes possi-
ble the use of standard parametrizations of the Skyrme
interaction. The other modification introduced in the
present work is to include the effects of the electric
charge of the vapor but with the simplifying assumption
that the drop and vapor have uniform charge density.

These improvements remove two of the simplifying
features of Refs. 1 and 2 and, together with the correc-
tions introduced in I, are found to lead to very good
agreement between the results of the present model and
those of finite-temperature HF calculations for both the
SIII and SKM interactions. This agreement is seen to be
useful in gaining information on the temperature depen-
dence of the surface y(7). In particular, expression
(2.5b) for y(T), which satisfies many of the properties ex-
pected on physical grounds,'? is found to yield values of
Tym for 2%8Pb close to those predicted by HF calculations
for both interactions while expression (3.13) yields values
of T}, that are too high by about 1.3 MeV. Another
correction that has been included is the effect of the
diffuseness of the nuclear surface on the Coulomb energy.
This is found to be rather small, leading to a change in
the value of T);;, by ~0.3 MeV. In contrast, the effect of

including the charge of the vapor leads to an increase in
T}im of about 4 MeV.

Despite these improvements the present model still has
some simplifying features that are carried over from the
previous work of Refs. 1 and 2, namely, the neglect of the
temperature dependence of the Coulomb contribution
and the assumption of a uniform density distribution
both inside the nucleus and for the surrounding vapor.
The last feature results in the absence of any polarization
of the vapor in the present work which is reflected in the
fact that the results depend on the radius R, of the
spherical box in which the vapor is enclosed. A simple
model involving a linearly increasing vapor charge densi-
ty has been used to illustrate the effect of polarization in
reducing the dependence of the Coulomb repulsion ener-
gy on the radius Rj. It was not, however, attempted to
include the effect of polarization into the coexistence
equations.

The exchange part of the Coulomb interaction has
been included in Eq. (3.11) for the interaction between
the protons in the liquid drop but not for the interactions
between the vapor protons or between them and the
liquid drop. This is not, however, expected to have an
appreciable effect. Curvature effects have also not been
included. Empirical evidence suggests that the curvature
energy of a nucleus is consistent with zero although a
semiclassical study of nuclear properties with Skyrme-
type effective interactions yields a nonzero value.!* The
curvature contribution is expected to be important near
the critical temperature where the surface tension goes to
zero. However, since T}, is much lower than T, the
curvature term is not expected to have a significant effect
on the results of the present work. Corrections to the
surface tension due to the neutron-proton asymmetry are
also neglected. At zero temperature these corrections for
a 2%8Pb nucleus are approximately 8 and 15 % for the SIII
and SKM forces, respectively.'*

The results of the present calculations indicate that the
liquid-drop model, which has been very successful in
studying nuclear properties at very low temperatures, is
equally successful in studying hot nuclei provided that
care is taken to include the important corrections dis-
cussed here and in I. With these corrections properly
taken care of, the largest uncertainty in the values calcu-
lated for T, is that due to the equation of state used (or
the corresponding effective interaction). Measurements
of T}, can therefore be used to study the equation of
state of nuclear matter.

*Present address: Hahn-Meitner-Institut, Bereich Kern- und
Strahlenphysik, Glienicker Str. 100, 1000 Berlin (West) 39.
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