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A satisfactory analysis of the physics of straggling was first given by Landau, who approximated
the electron-electron cross section for hard collisions by the Rutherford cross section. Data
analysis computer codes continue to use the distribution derived by Landau to calculate the energy
lost by electrons because of straggling. We have performed a study of straggling distributions incor-
porating Mgller and Bhabha cross sections to evaluate the precision of (e,e’) analyses that use the
Rutherford-based Landau formula. In addition, the calculation of the e straggling distribution is
relevant to the analysis of experiments that have been proposed to study dispersive effects in nuclear
electromagnetic processes by comparing results obtained from e~ and e * scattering from identical
nuclei. Measuring differences in such cross sections requires a high degree of confidence in the data
analysis. Since accuracies in cross sections on the order of a few percent are required, any
differences in energy-loss mechanisms of the same order must be taken into account. In this work,
we study the differences in positron and electron straggling at energies of present-day interest.

I. INTRODUCTION

Straggling refers to the distribution in energies that re-
sults when a swift charged particle passes through a thin
target. The distribution arises because the energy-loss
process is inherently statistical. The definition of a thin
target is that the incident particles will undergo, on the
average, one ‘“hard” collision where significant (to be
quantified later) energy is transferred. Thus, there is no
chance for an averaging process to occur, and an asym-
metric distribution of energy losses results.

A satisfactory analysis of the physics of straggling was
first given by Landau.! Landau correctly identified the
regime in which the screening by the bound atomic elec-
trons in the target was important and the importance of
“hard” collisions for the energy-loss region of the strag-
gling distribution. In order to simplify the calculation of
the hard collisions with the atomic electrons, Landau ap-
proximated the electron-electron cross section by the
Rutherford cross section. Many experiments use the dis-
tribution derived by Landau to calculate the energy lost
by electrons due to straggling. A review of Landau strag-
gling for a single absorber, and an exhaustive list of refer-
ences, can be found in a recent article by Bichsel.?

We have studied how the straggling distributions are
altered when, instead of approximating the electron-
electron and positron-electron cross sections by the Ruth-
erford cross section, one uses the more precise Mgller
cross section (for an e~ beam) or the Bhabha cross sec-
tion (for an et beam). Part of the motivation for this
study is simply to understand the precision of the
Rutherford-based analyses of straggling. Further motiva-
tion stems from the precision analysis required by pro-
posed experiments to measure dispersion corrections in
high-energy electron scattering from atomic nuclei. It
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has been known for some time that dispersion corrections
are different for the scattering of electrons and positrons
from identical nuclei.>* The differences are expected to
appear outside the diffraction minima, where the real
part of the static amplitude, which is first order in the
Coulomb potential, dominates. Such effects are seen in
the coupled-channel calculations of Ravenhall and
Mercer.” However, only recently has the positron beam
current and energy resolution improved to the point
where the corresponding experiments are feasible. Ex-
periments have been performed to study these differences
on '2C and 2°®Pb at Saclay.® Dispersion corrections are
generally believed to be of the order of a few percent; in
order to infer their presence in measured electron and
positron spectra we must be able to account for
differences in energy-loss mechanisms for electrons and
positrons to a very high level of accuracy. Rohrlich and
Carlson’ have made order-of-magnitude estimates for
electron-positron differences in the collisional average
energy-loss, straggling, and multiple-scattering effects at
low energies (510 MeV). In certain cases, they found
differences sizable enough to be of concern. In their
work, approximations for cross sections based on expan-
sions in the fractional energy transfer were used. Here,
we extend their analysis of the straggling problem to
higher energies and incorporate the exact Bhabha cross
section and a more accurate approximation for the
Mgiller cross section.

II. ANALYSIS

In this section, we will review Landau’s analysis and
describe how we incorporated the Mgller and Bhabha
cross sections into the same framework.
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A. Preliminaries

Following the lead of Rohrlich and Carlson,” we de-
scribe straggling in terms of the fractional energy loss

(_OE
T b
where T is the kinetic energy of the incident particle and
OE is the energy lost while scattering from an atomic
electron. Note that € has the physical limits

(1)

% Mgller scattering

0<e= (2)

1 Bhabha scattering .

The limit of 1 in the case of Mgller scattering is due to
the indistinguishability of the incident and target elec-
trons; after the collision, the primary electron is identified
as the one with the greater energy. It is useful to define
the quantity.

27rime?

X= 2
where ro=e?/(mc?) is the classical electron radius,
B=v/c, and e, m, and v are the charge, mass, and veloci-
ty of the incident particle.

The characteristic fractional energy transfer, above
which collisions are “hard,” turns out to be®
_ xNox E;n;Z;
& T 3In;A°

) (3)

4

where x is the target thickness, with dimension (M -L ~2)
(e.g., gm/cm?), N, is Avogadro’s number, and the sums
are over constituent atomic numbers and masses weight-

otiw

f(x,

2mi

where o is an arbitrary real constant, w(e) is the proba-
bility that an incident particle will lose fractional energy
€ in a single collision, and €,,, is the maximum energy
loss given by Eq. (2). Note that when the energy transfer
is large enough that we can safely ignore the atomic bind-
ing, w(e) in Eq. (8) goes over into the free-electron
scattering cross section g(e€).

Landau recognized on physical grounds that the only
values of the dummy variable p that contribute
significantly to the integral in Eq. (8) are

<<p <<l , 9)

€max €o

where the characteristic fractional energy transfer ¢,
roughly delimits the region where we can make the ap-
proximation that the atomic electrons are free. A precise
value for €, will not be important. It is of the order
I _10°Zz
PP S , (10)
U T T

ed by the constituent fraction n;. All the target informa-
tion is contained in the dimensionless quantity {. This
makes it convenient to use § as an independent variable.
The cross sections for the scattering of electrons or

positrons from free electrons can be written in the form

do _ x

de Tg(e) . (5)
In this paper, we often refer to the term g(e) itself as the
cross section. The original paper by Landau' approxi-
mated the electron-electron scattering cross section with
the Rutherford cross section

1

€
To correct Landau’s calculation for the more exact
Mgller (electron-electron) and Bhabha (positron-electron)
cross sections we can write

g(e)=%+c(e)=gR(e)+c(e) , (7
€

where the term c(€) will be written ¢, (€) for Mdller and
cp(€) for Bhabha scattering; the corrections are discussed
below.

B. Review of Landau’s analysis

The straggling distribution is f(x,A), where f(x,A)dA
is the probability that the incident particle has lost a frac-
tional energy between A and A+dA after traversing a
distance x inside the target. Landau showed that a gen-
eral solution for f(x,A) is

8= e |pA—tf ™ uwte1—e e |dp ®

where T is measured in MeV and I is average ionization
energy of an atom with atomic number Z in eV, which is
given approximately by

T~9.1Z(1+1.9Z7%273) eV=10Z €V . (11)

For completeness we note that for composite targets Eq.
(11) is replaced by®

InT =3, f;InI; ,
where
_ n,Z, (12)
fi= Enz '’

and, as before, n; is the constituent fraction. Landau also
showed that Eq. (9) is equivalent to

€0<<E<<e€pnay - (13)

Since § depends explicitly on target parameters and the
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incident energy, this equation can be viewed as determin-
ing whether or not the Landau analysis is applicable. To
see this more clearly, consider the following order-of-
magnitude estimates. First, we have the trivial estimate
€..,~1. Secondly, using the approximations S~1 and

max

A =2Z then Eqgs. (3) and (4) give

=

X
10T ’

where x is in gm/cm? and T is in MeV. Taken together
with Eq. (13), these estimates establish a restriction on
the target thickness

(14)

107% Z <<x << 10T . (15)

Of course, this inequality is meaningful only if the im-
plied units for x and T are not forgotten.

Landau noted that Eq. (9) allows us to define an €, such
that €, > €, while at the same time we still have p <<1/¢,.
Then the integral in the exponent of Eq. (8), which we
call I;, can split into two parts:

L= [ ™w(e)1—e P)de

0
- El __ —pe €max __ —pe
J, wieri—e r9de+ [ MgpleNi—e e .

(16)

In the first region, the definition of €, permits the simpli-
fying approximation (1—e "P€)=pe. That integral then
represents the average energy loss over the low-energy re-
gion and has a well-known result’ which is incorporated
below in Eq. (17). In the second region, the inequality of
Eq. (9) and the behavior of gi(e) imply that the upper
limit of the integral can be extended to . The result ob-
tained by Landau is

I, =p[1—Ine'p—T+0O(ep)], (17)
where I'=0.577. .. is the Euler constant. €' is defined
by

72

Ine'=In————+p8, (18)

2my*pT

where ¥ =(1—82)"1/2 is the relativistic factor.
It is easy to see that this evaluation of I; leads to the
result

Fln =L (ot utuing, (19)
g 2mi Yo—iw
where the dimensionless variable A is given by
A

r=2 ir—14mE (20)
¢ e

An important result is that we can write
f(x,A)=~2—d>(k), @1)

where ®(A) is a universal function independent of target
and beam parameters. Two important phenomenological
results obtained from numerical tabulation of the univer-
sal function are!®!!

I&
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FIG. 1. Standard (Rutherford) Landau straggling for 450-
MeV electrons on 2°*Pb with a target thickness of 0.01 gm/cm?.

Ayp=~E 1n§ +0.198 |, (22)

where Aygp is the most-probable energy loss and
W =4.02¢ , (23)

where W is the full width at half maximum (FWHM) of
the distribution. It is of interest to see how these quanti-
ties differ from their Rutherford values for the Bhabha
and Mdller cross sections.

It is of both historical and practical interest to note
that the original Landau result for Ay, is incorrect; it
contains a term 0.37§ rather than the 0.198 appearing in
Eq. (22). Landau deferred the numerical evaluation of
Eq. (19) to the Calculation Bureau of the Mathematical
Institute of the Academy of Sciences of the U.S.S.R.
Despite its relatively simple appearance it is not a trivial
integral, even when using modern computers. One can
imagine the difficulty in its evalution using the computa-
tional resources available in 1944.

An example of a “standard” (i.e., Rutherford cross sec-
tion) Landau straggling distribution is shown in Fig. 1.
In the following sections, we examine the corrections to
Landau straggling when the Mdller or Bhabha cross sec-
tion is used in place of the Rutherford cross section, and
compare the straggling for incident electrons with that
for positrons.

C. Incorporating the Bhabha
and Mdller cross sections

The problem at hand is to modify Landau’s calculation
of the integral in Eq. (8) to reflect the appropriate cross
section. We can write the integral as

€
I= max __ —pe
fo w(e)l—e Yde
=1, +
-

Clearly I is the correction term for cross sections other
than Rutherford. Note that we have assumed that the

max

cle1—e P)de=I; +I; . (24)
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low-energy portion of the integral (e <€) is unchanged.
This is reasonable since that is the regime of scattering
from bound electrons and it should not be affected by our
choice of free-electron cross section. Also, we have re-
stored the upper limit in the correction term to its “prop-
er” value of €,,,. The correction term I modifies Eq.
(19) to
1 ot Autulnu—§I-(u/g)

fix, A)—ETI‘ e du , (25)

where u ={p. This equation shows that we can no longer
factor out the target dependence, i.e., there is no longer a
universal function ®(A). However, it is still useful to
write f(x,A) as

f(x,A)=éd>(7»,§), (26)
1. Mdller formulation

Referring to Eq. (7), the correction term for the Mgller
cross section'? is

2y—1 1
1—e

y—1
Y

eple)= ~z1l

7/2 € ,},2

1
1—e

(27)

Inserting this into the correction term of Eq. (24) and us-
ing the table of integrals from the Appendix, we get

IA=2+c¢, 1 +c¢ (C+Inp)—(c,+pW(p), (28)
where u ={p and
) 2
- |Y—
Co=™ |7 »
° ¥
o=2r71, 29)
Y

and

_ emaxe_pf
J(p)—fel —_de.

It is easy to see that a very good approximation for J (p)
in the region 1/€,,,, <<p <<1/€ is

max

Jp=te 26 (30)
p p p
Using this result we can write I as
12 =2 _llnE—l- 2 m, ‘4‘;] ] 31)

where the m,, are defined by
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m__1=cl ,
mo=4co+2+¢,T,
m;=—(co+c;+1), (32)

m2=_—(cl +2) N
and
my=—(2c,+6) .

The reason for transforming I} into the form given by
Eq. (31) will become apparent in the next section.
Rohrlich and Carlson’ used only the 1/€ term from Eq.
(27) in approximating the Mgller cross section. Our use
of Eq. (30) amounts to adding on an approximation of the
terms that they omitted by, in effect, extending the ex-
pansion up to the €? term. This is what we mean when
saying that we have used a more accurate approximation.

2. Bhabha formulation
For the Bhabha cross section, we can write the exact

correction in Eq. (7) as a finite power series in the frac-
tional energy loss € (cf. Ref. 12)

2
gl€)= 3 a,€", . (33)

i=—1

where the coefficients a, are

2_
a~1=}/—7—2—!—[(7+1)_2—-2] :

2
= [3’;—1 [(y+1)"2+3],

(34)
_ —2y—1)

a. =
Yoy +1)?

and

0. = (y—1)*
oydy 1

If we insert this series into the Bhabha correction factor

IZ defined by Eq. (24) then, using the table of integrals

from the Appendix, it is straightfoward (but tedious) to

derive

3
b,lln%+ S b,
n=0

where, as before, u ={p and the b, are defined in terms of
the a, of Eq. (34) by

p=1

) (35)
g

s]"

—1=%a_y,

boy=¢la_T+ap+1a,+1a,),

blz—gao N (36)
by=—48a,,

and
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by=—2fa, . Mdller cross section are obtained by using the same tech-
Note that Eq. (35), the correction term for the Bhabha niques as described below for the Bhabha case with mere-

cross section, has been cast in exactly the same form as 1Y 2 repl?.cemgnt of coefficients.
the Mdller correction of Eq. (31), with only the substitu- Inserting I¢ from Egq. (35) into Eq. (25) leads to the fol-

tion of the coefficients b, for m,. The results for the  lowingresult:

n
o+ o

D(A §)=—1— exp |Au+ulnu—>b lni—é b £ du . 37)
’ 27i Y o—ico e "y

n=0

To evaluate this integral we follow closely the analysis for the Rutherford cross section carried out by Bérsch-Supan.!!
First make the trivial substitution « =0 +iy. Then we choose the saddle point for the Rutherford case 0 =e¢ ~** 1, Fi-
nally (here we deviate from Ref. 11) we make another change of variable y = —Ing. As it must, the imaginary part of
the integral vanishes. After much algebra we find

—(
<I><k,§)=%e °+b°)§b“f011¢§”dq , (38)
where
- Sg7? S S
Jh= (Tg+1) ©Q _ & + OF 2°PT
g 9 Slljﬂ/zexl’ S, byo bzgsL +b308 s?
Q
Xcos {Lg %1nSQ—1+§L— b1+2b2§%+b3§2§§ +Tg(o—b_) |, (39)
L
and the symbols in Eq. (39) have the following meanings:
LQ=1nq ,
L
Q
Li=—=,
S o
Sy =0*+Lj ,
S
- 2 L
So=1+Ls=—,
(40)
TS:tan—lLS )
SF=0'2_L5 ’
Sr=0>—3L} ,
and
Qr=30>—L} .

Unfortunately, our work is not yet complete. Consider the simple case where all b, =0, i.e., the Rutherford case. Fig-
ure 2 shows the integrand J,;” plotted for two values of A. Evidently J;” is well behaved for small A but wildly oscilla-
tory for large values. Thus we limit the application of Eq. (38) to the range A <A,, where A, is some critical value to be
determined.

For large A, it is convenient to avoid the branch cut in the integrand of Eq. (37) by choosing as a path the infinite
semicircle in the negative real plane, as in Ref. 11. After a change of variables we find

—b 1
<I>(7~,§)=-$e oé_b_lfojéz)dq , 41)
where
J‘;z):q(x—H—lnLg)(_LQ)-—b_le*ZQ(bl+bzzQ+bszé)sin[ﬂ.(LQ_bil)] , (42)
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Small A Integrand [J{"]

Integration Variable gq

FIG. 2. Integrand J{" from Eq. (39) plotted for A=0.1 and
20. The oscillatory behavior for large A necessitates a different
numerical method for that region.

and

Zy=—-. 43)
Q
The symbol L, has the same meaning as defined in Eq.
(40).

The integrand J;z’ is well behaved for large A (see Fig.
3). From experimentation, a good value for the critical A
delimiting the two regions was found to be A, =0.2. The
small and large A formulations gave identical results in
the neighborhood of A.. Again, we emphasize that the
analysis for the Bhabha cross section, culminating in the
integrals of Egs. (38) and (41), is equally applicable for
Mgller scattering if all b, are replaced by the m, of Eq.
(32).

III. RESULTS

The numerical calculations were performed using the
computer code LASPE,'*® which uses a binary tree driven
Gaussian quadrature integration routine. In this section

2 b EON ]
_ , . - - - - A=0.1
S ! ! A=20.0
— / \
— 1k I \ 1®y30 N
o , [J47x30]
g ' \
) ‘" ! \
af ! \

1

] 0 T T T -
= \ ! \
—_ - \
~< Vo \
® I Y \ _
20 \
b
[} \
— \

—2r \\ -

I ]
0 0.2 0.4

Integration Variable q

FIG. 3. Integrand J/* from Eq. (42) plotted for A=0.1 and
20. This integrand is well behaved for large A.
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we describe some of the results we obtained. Many of the
results reported here are for the case of a 450-MeV beam
incident on a 0.1-gm/ cm? thick target of 208pp. which
corresponds to £=1.35X107°. This value is typical of
modern experiments.

A. Apyp, the most-probable energy loss,
and W, the width of the straggling distribution

As mentioned previously, it is of interest to see how the
approximations for the most-probable energy-loss Ayp
and the distribution W differ from the Rutherford results
of Egs. (22) and (23). Also, we would like to compare our
results with those of Rohrlich and Carlson’ who investi-
gated the problem using approximations for the Mgller
and Bhabha cross sections.

To compare with Rohrlich and Carlson, we assume
forms similar to those found in their paper

Afp=¢ 1n§ +0.198—a*v (44)
and

WE=E4.02—atp), (45)
where

at=¢B2—(y—1)77]
and

a_=§l%l . (46)

The values of v and u, assumed by Rohrlich and Carlson
to be constants, are to be determined from the calculated
straggling distributions. The only difference from the
Rohrlich and Carlson forms is that they use the incorrect
constant in the expression for Ayp taken from the origi-
nal Landau paper.

Figures 4 and 5 summarize the results of a series of cal-
culations of electron and positron distributions for ener-

2.5 T T T T

24 ~ 4

v 23 =~ 1

22 r ~ J

2.1 * - - -

6.9 T T T T
T=30 MeV
6.8 -

6.5 .
105

Bhabha Mgller

FIG. 4. Variation of v and u with respect to § for a constant
energy T=30 MeV.



1638

2.37

=5.0x10"°
2.36 | ¢ -7
235 -7 ]
v _ -
234 t —= 1
283 F T ------7 - 1
2.32 ; ; - ;
0 20 40 60 80 100
T (MeV)
6.75 T . . .
¢=5.0x10" R
6.70 | == 1
w66s -7 1
-
6.60 1
6.55 . . . . L
0 20 40 60 80 100
T (MeV)
Bhabha = 00— —---- Mgller

FIG. 5. Variation of v and p with respect to energy for a con-
stant £=5.0X107°.

gies ranging from 3 to 450 MeV and varying the target
thickness such that ¢ ranges from 1075 to 1072, As can
be seen from the figures, v and u are approximately con-
stant over a broad range of parameter values of interest
for typical electron scattering experiments. We were able
to determine best-fit values of

v=2.341+0.08 ,

47)
p1=6.62%0.09 .

These results should be sufficient for any forseeable appli-
cation. The result for u is in agreement with Rohrlich
and Carlson.” Comparing values of v however, is prob-
lematic due to their use of an incorrect constant in the
expression for App.

The fractional change in the FWHM, W of the strag- -

gling distribution from the Rutherford value is shown in
Fig. 6. Note that as § increases T decreases (for fixed x).
Modern-day experiments tend to fall on the left half of

g 10_1 T T T T
s Bhabha
I ’
————— Mol
Z 107? t e g .
£
L)
ap
§ 1073 .
ol
O
E
S 1074 R
-~
Q
[
S
=
10—5 | | | L )
1078 1075 1074 1073 1072 107!

¢ Parameter

FIG. 6. The fractional change (from the Rutherford values)
of the distribution width. Note that for small £ the Mgller re-
sults become indistinguishable from the Rutherford case.
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1072 . .
Bhabha
& ] m=m=-- Moller
4 1073 | .
g .
- _
&2
< 10_4 = B
~
(&)
S 1075 | o7 8
- -
Q Phd
o ~
@ B
=
10——6 | |
10-9 1074 10-3 1072

¢ Parameter

FIG. 7. The fractional change (from the Rutherford values)
of the most-probable energy loss. Note that for the same value
of &, the fractional change in Ayp is about ten times smaller
than the change in the width.

the abscissa. A similar plot of the fractional change in
the most-probable energy loss, Ayp is shown in Fig. 7.
Note that for a given value of &, the fractional change in
Ayp is about an order-of-magnitude smaller than the
change in the width.

Figures 6 and 7 provide the first indication that for
small values of  the results for the straggling distribution
calculated using the Mgdller cross section are indistin-
guishable from those calculated by Landau using the
Rutherford cross section. This result can be understood
by examining the relativistic limit of the cross sections.
In the remainder of this work, we will place greater em-
phasis on Rutherford-Bhabha differences.

B. Straggling distribution differences

A plot of the difference in the straggling distributions
for the Rutherford and Bhabha cross sections for
£=1.35X10"° is shown in Fig. 8. To appreciate the
magnitude of this curve, the ordinate scale should be
compared with that in Fig. 1. Not marked on the plot is

T T T T T
¢ = 1.35x107°
1.5 r Ayp = 4.6x107* 5
) L
< 10
=
|
< 05
B3
s
0.0
1 i 1 1 1
3 4 5 6 7 8

Fractional Energy Loss (Ax10%)
FIG. 8. Differences in the straggling distributions between

450-MeV electrons and positrons incident on 2%*Pb (x=0.1
gm/cm?).
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30 |

f(x,A)

Rutherford

————— Bhabha
10

¢ = 5.12x107°

0 I | I L
6 6.5 7 7.5 8 8.5

Fractional Energy Loss (Ax10%)

FIG. 9. A particular example of the comparison between the
Rutherford and Bhabha distribution near the peak. The value
of £=5.12X 1072 corresponds (in this case) to a 3-MeV beam
incident on 2%®Pb with x=0.25 gm/cm?.

Apyp=4.6X 10™#, which falls very near to the energy loss
at which the difference curve changes sign. Note that the
curve in Fig. 8 must integrate to zero if both straggling
distributions are correctly normalized.

In Fig. 9, we plot the distributions near the vicinity of
the peak (for a thicker target and a much lower beam en-
ergy corresponding to £=5.12X1073). Note that the
peak for the Bhabha distribution is enhanced relative to
the Rutherford result; this effect is also evident (on a
much smaller scale) for the case of £=1.35X 107 shown
in Fig. 8. Also note that in examining Fig. 9 it is not ap-
parent that the width for the Bhabha distribution is
smaller, as given by Eq. (45), since it is not easy to com-
pare the widths visually when the two curves have
different maxima. In Fig. 10, we show the tail region of
these same distributions; the increase in height of the
Bhabha distribution near the peak is compensated by a
decrease in this region, as must be the case if the distribu-
tions are correctly normalized.

5 T T
\
Rutherford
4r \ ————— Bhabha 7
¢ = 5.12x107°
3r n
=
>
= 2+ -
1r o
0
10 15 20 25

Fractional Energy Loss (Ax10%)

FIG. 10. A particular example of the comparison between
the Rutherford and Bhabha distribution in the tail region. The
value of §=5.12X 1073 corresponds (in this case) to a 3-MeV
beam incident on 2%Pb with x=0.25 gm/cm?.
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T T T T T
¢ = 2.06x107°
80 Ayp = 3.0x1072 _
9
60 + > -
—_ 3
< T
> g
&40 % .
20 a
0 | 1 | I
2 3 4 5 6 7 8

Fractional Energy Loss (Ax10%)

FIG. 11. Differences in the Rutherford and Mgller straggling
distributions for a 3-MeV electron incident on 2%Pb (x=0.1
gm/cm?).

The results shown in Figs. 8-10 are general in the
sense that for any choice of beam-target parameters for
which this analysis is valid, the qualitative nature of the
curves will not change. The Bhabha distribution will al-
ways have a smaller width, be enhanced in the vicinity of
the peak, and be quenched in the tail region. Finally, we
point out that differences between the Rutherford and
Mdller distributions are too small to be perceivable in
Fig. 8.

To see the effect of the difference between the Mgller
and Rutherford cross sections, we must go to much
larger values of §, corresponding to much lower beam en-
ergies. In Fig. 11 we show the Rutherford-Mgller
differences for the case of a 3-MeV incident beam.

C. Rutherford-Bhabha W(A ) differences

Data analysis programs that use the radiative correc-
tion technique to determine the total cross section require
tables of values for the function W(A) defined by

= [ “em,0dr, (48)

8 F T T T T T ™

¢ = 1.35x107°

[¥r(\)-¥5(N)]x10°

FIG. 12. Example of the change in the function W(A ), which
is often used in data analysis programs.
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where we have omitted reference to the explicit weak &
dependence in . This function represents the total frac-
tion of particles which have lost due to straggling a frac-
tional energy greater than the A corresponding to A [A
and A are related by Eq. (20)].

In Fig. 12, we plot a curve of the difference between
Rutherford and Bhabha values of W(A) for
£=1.35X107°. Note that the effect on W(A) of using the
Bhabha rather than the Rutherford cross section is quite
small. The peak of Fig. 12 occurs at A=~4.5. By consult-
ing a table of W(A) values we known that ¥(4.5)=0.2473.
Thus, for the case shown in Fig. 12, the fractional
difference (Wx —Wx)/¥yg near the peak is only about
0.03%.

IV. CONCLUSIONS

We have found approximations for the most-probable
energy loss and the straggling distribution width summa-
rized by Egs. (44)-(47), which are applicable over a broad
dynamical range of interest. For most applications of
electron scattering, especially in the medium to high en-
ergy regimes, differences between the straggling distribu-
tions derived from the Rutherford and Mdiller cross sec-
tions are negligible. Data analysts can continue to use
the Rutherford based Landau distributions without con-
cern. For positron beams at intermediate energies, the
deviation of the Bhabha based straggling distribution
from Landau distribution, while still small, is more
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significant than in the Mgller case. It may be necessary
to take into account such differences, especially in experi-
ments designed to measure small effects such as the
dispersion correction differences between electron and
positron scattering.
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APPENDIX: TABLE OF INTEGRALS

The following integral results are easy to derive. In
keeping with the spirit of Landau’s analysis, we have
. —PDE€
neglected terms O(€,p ) and the exponential e * ™,

emax
I} L1—erode~tnpe,, +T,
El €

max

€
[ ™= Pdex S (pep—1)
€ )4

€max — 1 2
fe‘ €(l1—e pe)dezp_z[%(Pemax) —1],

€max —
f (1—e ”e)dez——l;H(pemax)L—Z] .
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