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A satisfactory analysis of the physics of straggling was first given by Landau, who approximated
the electron-electron cross section for hard collisions by the Rutherford cross section. Data
analysis computer codes continue to use the distribution derived by Landau to calculate the energy
lost by electrons because of straggling. We have performed a study of straggling distributions incor-
porating M@ller and Bhabha cross sections to evaluate the precision of (e, e') analyses that use the
Rutherford-based Landau formula. In addition, the calculation of the e+ straggling distribution is
relevant to the analysis of experiments that have been proposed to study dispersive effects in nuclear
electromagnetic processes by comparing results obtained from e and e+ scattering from identical
nuclei. Measuring differences in such cross sections requires a high degree of confidence in the data
analysis. Since accuracies in cross sections on the order of a few percent are required, any
differences in energy-loss mechanisms of the same order must be taken into account. In this work,
we study the differences in positron and electron straggling at energies of present-day interest.

I. INTRODUCTION

Straggling refers to the distribution in energies that re-
sults when a swift charged particle passes through a thin
target. The distribution arises because the energy-loss
process is inherently statistical. The definition of a thin
target is that the incident particles will undergo, on the
average, one "hard" collision where significant (to be
quantified later) energy is transferred. Thus, there is no
chance for an averaging process to occur, and an asym-
metric distribution of energy losses results.

A satisfactory analysis of the physics of straggling was
first given by Landau. ' Landau correctly identified the
regime in which the screening by the bound atomic elec-
trons in the target was important and the importance of
"hard" collisions for the energy-loss region of the strag-
gling distribution. In order to simplify the calculation of
the hard collisions with the atomic electrons, Landau ap-
proximated the electron-electron cross section by the
Rutherford cross section. Many experiments use the dis-
tribution derived by Landau to calculate the energy lost
by electrons due to straggling. A review of Landau strag-
gling for a single absorber, and an exhaustive list of refer-
ences, can be found in a recent article by Bichsel.

%'e have studied how the straggling distributions are
altered when, instead of approximating the electron-
electron and positron-electron cross sections by the Ruth-
erford cross section, one uses the more precise Mufller
cross section (for an e beam) or the Bhabha cross sec-
tion (for an e+ beam). Part of the motivation for this
study is simply to understand the precision of the
Rutherford-based analyses of straggling. Further motiva-
tion stems from the precision analysis required by pro-
posed experiments to measure dispersion corrections in
high-energy el'ectron scattering from atomic nuclei. It

has been known for some time that dispersion corrections
are different for the scattering of electrons and positrons
from identical nuclei. ' The differences are expected to
appear outside the diffraction minima, where the real
part of the static amplitude, which is first order in the
Coulomb potential, dominates. Such efFects are seen in
the coupled-channel calculations of Ravenhall and
Mercer. However, only recently has the positron beam
current and energy resolution improved to the point
where the corresponding experiments are feasible. Ex-
periments have been performed to study these differences
on ' C and Pb at Saclay. Dispersion corrections are
generally believed to be of the order of a few percent; in
order to infer their presence in measured electron and
positron spectra we must be able to account for
differences in energy-loss mechanisms for electrons and
positrons to a very high level of accuracy. Rohrlich and
Carlson have made order-of-magnitude estimates for
electron-positron differences in the collisional average
energy-loss, straggling, and multiple-scattering effects at
low energies (510 MeV). In certain cases, they found
difFerences sizable enough to be of concern. In their
work, approximations for cross sections based on expan-
sions in the fractional energy transfer were used. Here,
we extend their analysis of the straggling problem to
higher energies and incorporate the exact Bhabha cross
section and a more accurate approximation for the
Mufller cross section.

II.- ANALYSIS

In this section, we wi11 review Landau's analysis and
describe how we incorporated the Mufller and Bhabha
cross sections into the same framework.
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A. Preliminaries

Following the lead of Rohrlich and Carlson, we de-
scribe straggling in terms of the fractional energy loss

where T is the kinetic energy of the incident particle and
5E is the energy lost while scattering from an atomic
electron. Note that e has the physical limits

Me(lier scattering
0&t.&

1 Bhabha scattering . (2)

The limit of —,
' in the case of Me(lier scattering is due to

the indistinguishability of the incident and target elec-
trons; after the collision, the primary electron is identified
as the one with the greater energy. It is useful to define
the quantity.

ed by the constituent fraction n;. All the target informa-
tion is contained in the dimensionless quantity g. This
makes it convenient to use g as an independent variable.

The cross sections for the scattering of electrons or
positrons from free electrons can be written in the form

G CT =—g(e)8E' T

In this paper, we often refer to the term g(e) itself as the
cross section. The original paper by Landau' approxi-
mated the electron-electron scattering cross section with
the Rutherford cross section

1g~(e)= —,.

To correct Landau's calculation for the more exact
MaBler (electron-electron) and Bhabha (positron-electron)
cross sections we can write

277 p p7yzgx= (3) g(e) =—,+c(e)=g&(e)+c(e),1

E'

where ro=e /(mc ) is the classical electron radius,
P= u /c, and e, m, and u are the charge, mass, and veloci-
ty of the incident particle.

The characteristic fractional energy transfer, above
which collisions are "hard, " turns out to be

oy X, n, z,
T Xn;3; (4)

where x is the target thickness, with dimension (M.L )

(e.g. , gm/cm ), Xo is Avogadro's number, and the sums
are over constituent atomic numbers and masses weight-

where the term c(e) will be written cM(e) for Mdller and

cjoy(e) for Bhabha scattering; the corrections are discussed
below.

B. Review of X.andau's analysis

The straggling distribution is f(x, b, ), where f(x, A)dA
is the probability that the incident particle has lost a frac-
tional energy between b, and 6+dA after traversing a
distance x inside the target. Landau showed that a gen-
eral solution for f(x, b, ) is

o.+i oo

f(x, A)= j exp pb, g f —'"iu(e)( 1 —e ~')de dp,
0

1 1«p «
6'0

(9)

where the characteristic fractional energy transfer ep
roughly delimits the region where we can make the ap-
proximation that the atomic electrons are free. A precise
value for ep will not be important. It is of the order

where o is an arbitrary real constant, iu(e) is the proba-
bility that an incident particle will lose fractional energy
e in a single collision, and e,„ is the maximum energy
loss given by Eq. (2). Note that when the energy transfer
is large enough that we can safely ignore the atomic bind-
ing, w(e) in Eq. (8) goes over into the free-electron
scattering cross section g(e).

Landau recognized on physical grounds that the only
values of the dummy variable p that contribute
significantly to the integral in Eq. (8) are

For completeness we note that for composite targets Eq.
(11) is replaced by

lnI=X;f;lnI;,

where

n;Z

X;n;Z;
(12)

and, as before, n; is the constituent fraction. Landau also
showed that Eq. (9) is equivalent to

where T is measured in MeV and I is average ionization
energy of an atom with atomic number Z in eV, which is
given approximately by

I=9.1Z( 1+1.9Z ) eV = 10Z eV .

I
0 (10)

eo « g «e,„. (13)

Since g depends explicitly on target parameters and the
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I 2
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2&i p
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' is the relativistic factor.
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low-energy portion of the integral (e & ei) is unchanged.
This is reasonable since that is the regime of scattering
from bound electrons and it should not be affected by our
choice of free-electron cross section. Also, we have re-
stored the upper limit in the correction term to its "prop-
er" value of e,„. The correction term IC modifies Eq.
(19) to

and

m )=c)
mp = 2cp+2+c) I

m, = —(co+c, +1),
mz= —(c, +2),

(32)

cr+ co ku+u 1nu —glc(ulg)x, b, =— e dQ
g 2ni

(25) m3= —(2ci+6) .

f(x, h)= —@(A,, g),1
(26)

where u =gp. This equation shows that we can no longer
factor out the target dependence, i.e., there is no longer a
universal function C&(A, ). However, it is still useful to
write f(x, h) as

The reason for transforming I& into the form given by
Eq. (31) will become apparent in the next section.

Rohrlich and Carlson used only the 1/e term from Eq.
(27) in approximating the Mdller cross section. Our use
of Eq. (30) amounts to adding on an approximation of the
terms that they omitted by, in effect, extending the ex-
pansion up to the e term. This is what we mean when
saying that we have used a more accurate approximation.

1. Mttiller formulation

1

y

2
2y —1 1 2y —1 1

y E y 1 —E'

Referring to Eq. (7), the correction term for the Me(lier
cross section is

2. Bhabha formulation

2

cB(E) g a (33)

For the Bhabha cross section, we can write the exact
correction in Eq. (7) as a finite power series in the frac-
tional energy loss e (cf. Ref. 12)

(27) where the coefficients a„are

Ic =2+co ———+c,(I +lnp) —(c, +p)J(p),1 1
(28)

where u =gp and
2

Inserting this into the correction term of Eq. (24) and us-

ing the table of integrals from the Appendix, we get
r

and

2 —1
a i

= [(y+1) —2],

ao = [(y+1) +3],
y

—2(y —1)'
y(y+1)

(34)

and

Cp
y

2y —1
C] =

y

J(p)= J de .

(29)

(y —1)"
y'(y+1)'

If we insert this series into the Bhabha correction factor
Iz defined by Eq. (24) then, using the table of integrals
from the Appendix, it is straightfoward (but tedious) to
derive

It is easy to see that a very good approximation for J(p)
in the region 1/e,„«p « 1/E, is

n

Ic=—b, ln —+ g b„
1 u

u
(35)

J(p)= —+ + +1 1 2 6

p p p p

Using this result we can write Iz as

3

IC =—m, ln —+ g m„
u

n

(30)

(31)

b i=pa
b go(a iI +ao+ —,'ai+ —,'a2),

bi = —0ao

a

(36)

where, as before, u =gp and the b„are defined in terms of
the a„ofEq. (34) by

where the m„are defined by and
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b3 = —2/a~ .
Note that Eq. (35), the correction term for the Bhabha
cross section, has been cast in exactly the same form as
the M(((lier correction of Eq. (31), with only the substitu-
tion of the coe%cients b„ for m„. The results for the

MuAler cross section are obtained by using the same tech-
niques as described below for the Bhabha case with mere-
ly a replacement of coefFicients.

Inserting IP from Eq. (35) into Eq. (25) leads to the fol-
lowing result:

3

@(A,, g)= . I exp Au+ulnu b,—ln ——g b„
27Tl o —i oo u

n

(37)

To evaluate this integral we follow closely the analysis for the Rutherford cross section carried out by Borsch-Supan. "
First make the trivial substitution u =o.+iy. Then we choose the saddle point for the Rutherford case 0.=e ' +". Fi-
nally (here we deviate from Ref. 11) we make another change of variable y = —lnq. As it must, the imaginary part of
the integral vanishes. After much algebra we find

e(X g)= —'e '+"'g'-'f J"'d
'7T

q, (38)

where

(Ts+" SF STJ"'=q „exp — b, o. +b2( +b3o g z
L Sl

Xcos L& —lnS& —1+ bi+2b2( +b3(1 , QT

2 SL si'
+Ts(o b ))—- (39)

and the symbols in Eq. (39) have the following meanings:

L& =lnq,

Q
L

S

S =o. +LQ

SL
Sg =1+L~=

(40)

Ts=tan 'Ls

S =o. —Lg,
S =o. —3L,2 2

T Q

QT=3o LJ(. —

Unfortunately, our work is not yet complete. Consider the simple case where all b„=0, i.e., the Rutherford case. Fig-
ure 2 shows the integrand J'" plotted for two values of A, . Evidently J'" is well behaved for small A, but wildly oscilla-
tory for large values. Thus we limit the application of Eq. (38) to the range A, (A,„where A,, is some critical value to be
determined.

For large A, , it is convenient to avoid the branch cut in the integrand of Eq. (37) by choosing as a path the infinite
semicircle in the negative real plane, as in Ref. 11. After a change of variables we And

4&(A., g)= ——e 'g ' I Jq 'dq, (41)

where

J(P)
—

g ( L )
—b (

—Zg(b +b2(Zg+b3Zg) .
) (L b ) jq Q sin m (42)
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FIG. 2. Integrand Jq from Eq. (39) plo(i) lotted for A, =0. 1 and
20. The oscillatory behavior for large A. necessitates a different
numerical method for that region.

As mentioned previously, it is of interes t to see how the
approximations or ef the most-probable energy-loss AMp

itsand the distri ution'0 ' 8'differ from the Rutherford resu ts
of Eqs. 22) and (23). Also, we would like to compare our
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'
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Q
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III. RESULTS

The numerical calculations were performed using the
er code LASSIE, ' which uses a binary tree driven

Gaussian quadrature integration routine. n is

and

W~ =g(4. 02 —a—p ), (45)

where

a+=gP [2—(y —1) ]

and

(46)

T=30 MeV

2y —1a y'
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g PararTleter
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FIG. 7. The fractional change (from the Rutherford values)
of the most-probable energy loss. Note that for the same value
of g, the fractional change in EMp is about ten times smaller
than the change in the width.

gies ranging from 3 to 450 MeV and varying the target
thickness such that g ranges from 10 to 10 . As can
be seen from the figures, v and p are approximately con-
stant over a broad range of parameter values of interest
for typical electron scattering experiments. We were able
to determine best-fit values of

v= 2.34+0.08,
p=6. 62+0.09 .

(47l

These results should be suScient for any forseeable appli-
cation. The result for p is in agreement with Rohrlich
and Carlson. Comparing values of v however, is prob-
lematic due to their use of an incorrect constant in the
expression for AMp.

The fractional change in the FWHM, 8' of the strag-
gling distribution from the Rutherford value is shown in
Fig. 6. Note that as g increases T decreases (for fixed x}.
Modern-day experiments tend to fall on the left half of

the abscissa. A similar plot of the fractional change in
the most-probable energy loss, AMp is shown in Fig. 7.
Note that for a given value of g, the fractional change in
AMp is about an order-of-magnitude smaller than the
change in the width.

Figures 6 and 7 provide the first indication that for
small values of g the results for the straggling distribution
calculated using the Mufller cross section are indistin-
guishable from those calculated by Landau using the
Rutherford cross section. This result can be understood
by examining the relativistic limit of the cross sections.
In the remainder of this work, we will place greater em-
phasis on Rutherford-Bhabha differences.

B. Straggling distribution differences

A plot of the difference in the straggling distributions
for the Rutherford and Bhabha cross sections for
/=1. 35X10 is shown in Fig. 8. To appreciate the
magnitude of this curve, the ordinate scale should be
compared with that in Fig. 1. Not marked on the plot is

10

1.5
1.35x 10

h~p ——4, 6x 10

Q3
bO

10—

o 10 4
U
a5

4
10-5

10-6 10 10 4 10
( Parameter

$0 1

FIG. 6. The fractional change (from the Rutherford values)
of the distribution width. Note that for small g the Melller re-
sults become indistinguishable from the Rutherford case.

1.0

0.5—

00
I. . . . I. . . , I. . . , I. . . , I

3 4 5 6 7 8
Fractional Energy Loss (h, x10 )

FIG. 8. Differences in the straggling distributions between
450-MeV electrons and positrons incident on 'Pb (x=0.1

gm/cm ).
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where we have omitted reference to the explicit weak g
dependence in V. This function represents the total frac-
tion of particles which have lost due to straggling a frac-
tional energy greater than the b, corresponding to A, [b,
and A, are related by Eq. (20)].

In Fig. 12, we plot a curve of the difference between
Rutherford and Bhabha values of %(A. ) for
g= 1.35 X 10 . Note that the efFect on 4(A, ) of using the
Bhabha rather than the Rutherford cross section is quite
small. The peak of Fig. 12 occurs at X=4.5. By consult-
ing a table of %(A, ) values we known that %(4.5) =0.2473.
Thus, for the case shown in Fig. 12, the fractional
difFerence (%ti —hatt)/%z near the peak is only about
0.03%.

IV. CONCLUSIONS

We have found approximations for the most-probable
energy loss and the straggling distribution width summa-
rized by Eqs. (44) —(47), which are applicable over a broad
dynamical range of interest. For most applications of
electron scattering, especially in the medium to high en-
ergy regimes, differences between the straggling distribu-
tions derived from the Rutherford and Manlier cross sec-
tions are negligible. Data analysts can continue to use
the Rutherford based Landau distributions without con-
cern. For positron beams at intermediate energies, the
deviation of the Bhabha based straggling distribution
from Landau distribution, while still small, is more

significant than in the M&ller case. It may be necessary
to take into account such differences, especially in experi-
ments designed to measure small effects such as the
dispersion correction differences between electron and
positron scattering.
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APPENDIX: TABLE QF INTEGRALS

The following integral results are easy to derive. In
keeping with the spirit of Landau's analysis, we have

maxneglected terms 8(rip ) and the exponential e

f —(1—e y')de=lnpe, „+1
E'I

max E(1—e ~')de= —(pe,„—1),

f e(1 —e ')de=
2 [2(pe,„) —1],

~1

f e (1—e ~')de=
3 [—,'(pe, „)3—2] .
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