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A model for statistical multistep direct and multistep compound reactions is presented. It pre-
dicts (double-di8'erential) neutron and proton spectra including equilibrium, preequilibrium, direct
(collective and noncollective) as well as multiple particle emission processes. Calculations for
nucleon-induced reactions have been performed for about 30 nuclei at incident energies between 5
and 26 MeV without any parameter fit.

I. INTRODUCTION

Over the years, nuclear reaction mechanisms have been
investigated within the theoretical concepts of statistical
multistep compound (SMC) (Refs. 1-7) and statistical
multistep direct (SMD) processes. ' ' ' Until now, a lot
of experimental data have been compared either within a
pure SMC model ' " ' or within a pure SMD ap-
proach. ' But in nucleon-nucleus reactions at bombard-
ing energies between 5 and 30 MeV (which are of interest
for nuclear engineering) both SMC and SMD processes
are important. For this purpose, a SMD-SMC model in-
cluding direct collective excitations was proposed in Ref.
15. In subsequent papers' ' this model was improved
and derived from a Green's function formalism and ran-
dom matrix physics. " In this respect we try to over-
come the gap between refined theories (which are too
complicated for application) and simple-to-handle models
for nuclear data evaluation.

In this paper we limit ourselves to the basic ideas of the
SMD-SMC model. A brief foundation of this model and
comparisons with other approaches are given in Sec. II.
After discussion of the first-chance emission process (Sec.
III), this model will be generalized for multiple particle
emission (MPE) in Sec. IV. Finally, it will be applied to
calculations of neutron and proton (double-differential)
emission cross sections. The results which cover quite a
large range of nuclear masses ( A ~ 27) and incident ener-
gies (5 —26 MeV) are presented in Sec V.

Here, the final wave function is decomposed into states of
exciton classes n =p+h (of the composite system A), v is
a running index in class n. In the many-body theory, '

the transition operator T is expanded in powers of
the irreducible effective interaction I,

T=I+IGO T . (3)

=Gs(n, n )+GU(n, n ), (4)

where y„, qv'„+,' are bound and bound eigenfunctions of
o + n, n with eigenvalues en v and En vc

=en —1 v+ Ec
B+„respectively. Here, E, =erik, /2m and B, are the ki-

netic and binding energies of the unbound nucleon.
It is especially convenient if both the bound and un-

bound GF's in Eq. (4) are split into one pole part and one
smoothly energy-dependent regular part. Then we may
convert ' Eq. (3) to an expression which contains the
pole parts of Go only,

The irreducible interaction In n is a sum of different

Feynman graphs (containing the bare NN interaction)
which cannot be cut into parts by just cutting n lines.
The Green's function (GF) in Eq. (3) is a product of n

single-particle (s.p. ) GF's. It has the spectral representa-
tion

(+) (+)+
pnv pnv + + pnvc pnvc

E —e, , E —E„,+ig

T=I+I(G'+'+G +')T, (5)
II. SMD-SMC MODEI.

A. Basic formalism

The differential cross section for a reaction (a, b) is
given by

while the regular parts of Go are used for a renormaliza-
tion of the effective interaction,

I=I+I(GU+Gs )I .

dCr, b(E, )

, I T.b I'S(E. E, ), —
b a

where the T matrix can be written as

T.b= gc.':&V'..blTIV."'& . (2)

This effective interaction in the form of (mean) squared
matrix elements enters the further treatment as a main
ingredient. According to the splitting in Eq. (4) we have
to distinguish between four types of elements, I~, IBU,
IUB, and IU denoting the coupling between bound and/or
unbound states.
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where the multistep direct part is given by the Born
series,

T =I+IG TU

and the multistep compound part has the form

TB=T G~+ ~T +T G~+ ~y G~+ ~TB B B

(8)

(9a)

Similar (approximative) expressions were derived either
within a shell-model approach or projection operator
formalism. However, the approximation T =I by some
authors ' was used in Eq. (9a). Following Ref. 1 we ex-
tend this approximation by an additional term, IGU+'I,
which yields the matrix element

T,b = IUB( G~+ ' I~ InU G—~—+ 'IUa ) 'IBU (9b)

In contrast to the multistep direct processes, Eq. (8), the
multistep compound series in Eqs. (9) describes processes
in which the nuclear system undergoes at least one transi-
tion to stages in which all particles occupy bound orbitals
characterized by GB+'. Thus, a single-step contribution
occurs only in Eq. (8).

B. Statistical assumptions

In nuclear physics it becomes customary to decompose
Eq. (5) into two parts,

T=T +7 GB+ T=T +T

SMD d SMC
Oab ~ab

dEb dEb
(13)

The statistical assumptions are defined by treating the
effective interaction as a random matrix taken from
Cxaussian orthogonal ensembles (GOE).' ' Then, the
first moments of all elements (mean value) vanish and the
second moments are defined by
I 1

In vn

'v'Imam�'p'

( 5nm 5 vy5n
'm'5v'p'

+5„5 5„5 „)I~~(n,n') . (14a)

1 2 I

IUBIUB =I UB(nc, n'), IiiUIBU =IiiU(n, n'c'),
I I

IUIU=IU(nc, n'c') .

(14b)

(14c)

Here the upper contraction lines denote an averaging
over the A-body ensemble while the bottom lines indicate
(A —1)-body ensemble averaging. In addition, both en-
sembles are assumed to be statistically uncorrelated.

The channel index c =
t E„Q„v,or m.

I will be chosen
as kinetic energy, direction, and particle type (neutron or
proton) of the unbound particle. Further, E =E, +B,
and U=E —Bb —Eb are the excitation energies of the
composite and residual systems.

Equation (14a) is defined for the bound-bound case. Simi-
larly we have for other cases (in a more compact
prescription)

For complex nuclei and sufficient high incident ener-
gies, the cross section in Eq. (1) cannot be evaluated mi-
croscopically. Analytical expressions are obtained for
energy-averaged cross sections only. This fact is also
governed by the finite energy resolution of the experimen-
tal facilities. The energy uncertainty of the incident
beam leads to an average over quasibound levels of the
composite system 3, while the finite detector resolution
causes an exit-channel averaging (i.e., it averages over the
eigenstates in the residual nucleus, A —1).

It is well known' that incident-energy averages taken
over levels of the 3-body system yield the decomposition

4 3
+

dEb
(12)

Now, if we take an exit-channel average (denoted by an-
gular brackets carrying the subscript A —1) we arrive at
analytical expressions for both the SMD and SMC cross
sections,

with (T b) z =0 . (10)

Since Eq. (8) is assumed to depend smoothly on incident
energy, we have

(T,l, (E, ))„=T,b(E, +id, , )=T b(E, ),
where the averaging width is taken as 6, =0. 1 —1.0 MeV.
Comparing Eqs. (7) and (10), it yields Tfb —T,z, and via
Eq. (1), also

Target ~2 (Mev) co3 (Mev)

48T1

51V

52C

"Mn
56Fe

Ni
"Co
"Cu
"Zr
93Nb

"Zr
'4Mo
"Mo

Mo
'~Mo
107A

112cd 113Cd
115I

118S

121sb
127I

128T

181T
186~
208Pb o Bi

1.78
0.98
1.55
1.43
0.83
0.85
1.45
1.33
1.35
2.19
0.93
0.92
0.87
0.78
0.79
0.54
0.51
0.35
1.29
1.30
1.17
0.44
0.74
0.09
0.12
4.08

0.41
0.27
0.17
0.22
0.25
0.24
0.18
0.21
0.18
0.09
0.13
0.09
0.15
0.17
0.17
0.23
0.23
0.22
0.11
0.11
0.11
0.18
0.14
0.07
0.08
0.05

6.88
3.00
3.00
4.59
4.60
4.52
4.47
4.05
3.70
2.25
2.30
2.12
2.53
2.24
2.50
1.91
2.07
1.97
1.95
2.32
2.39
2.30
2.50
1.50
1.50
2.62

0.22
0.14
0.14
0.18
0.18
0.18
0.18
0.17
0.16
0.13
0.18
0.12
0.13
0.13
0.13
0.12
0.12
0.12
0.12
0.13
0.13
0.13
0.13
0.10
0.10
0.14

TABLE I. Energy and deformation parameter of two low-
lying phonon states of multipolarity 2+ and 3



STATISTICAL MULTISTEP REACTIONS: APPLICATION 1621

C. Restricted partial state densities

The partial (or exciton) state density of the composite
system results from the pole part of the bound GF (after
averaging)

(+) p+h—6'z+'(n, n)~ g 5(E —e„)= g 5
V IjkI k =1

g(gE)" '

p!h!(n —1)!
=p„(E) (15)

and is given in the independent-particle model (IPM) by
the Ericson formula. Here, the density of the mean-

l

field single-particle and hole states jk of energy e are ap-

proximated by g, i.e., the s.p. state density at Fermi. ener-

gy cF-—40 MeV. By the same token, the exciton state
density p„,( U) of the residual system is obtained from
GU+'. All these results are derived from the assumption
that the effective interaction changes the exciton number
without any restriction.

The formulas alter drastically if k-body forces are
assumed which change the exciton number by
An=nI —n;= —k, —k+2, . . . , k —2, k. As a conse-
quence, p„(E) and p„&(U) tend to the restricted partial
state densities p'„"'(E) and p'„" '

( U), respectively.
They are defined by

7l
n —n.

l n —ifp'„" '(N)=p„'(E)++5 E—g e, f dt5 t —g e 5 e t ——g e
p. Ijkj k =1 k =1 k=1
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FIG. 1. {a) Angle-integrated (n, xn) spectra for various nuclei at 14-MeV incident energy. Experimental data from Ref. 38 (open
circles), Ref. 39 (closed circles), and Ref. 40 (crosses). For denotations see the text. (b) Same as (a). (c) Same as (a) but crosses denote
experimental data from Ref. 30. (d) Same as (a) but crosses denote experimental data from Ref. 30. (e) Same as (a) but crosses denote
experimental data from Ref. 30.
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FIG. 1. (Cantinued).

where n; =p;+h, and nf =pf +hf denote the numbers of
active particles and holes before and after the collision.
Mathematically, the k-body assumption is connected
with a transition from GOE to the embedded GOE
(EGOE). ' Comparing Eqs. (15) and (16) the GOE and
EGOE quantities are related by

The dependence on the exciton number is absorbed into
the (two-body) restricted partial state densities intro-
duced above. (ii) All types of unbound mean-squared ma-
trix elements are reduced to bound-bound ones,
Iz =( Vo/A ), where Vo is the strength of the residual in-
teraction,

p„(E)= g p'„"'(E),
(hn)

(17) V(r„r2) = —Vo 37rro5(r, —r2) .

where the sum runs in two steps over all values An ~
~
n ~.

Starting out from Eq. (16) and assuming two-body
forces, we obtain the (two-body) restricted partial state
densities of both the composite system, p'„"'(E), and the
residual system, p'„" "(U). The former enter the damp-
ing widths I'„"'$ and were first suggested by Williams '

(cf. also Ref. 22). The latter, which enter the escape
widths 1 '„&"'(El, ) f, were first pointed out in Ref. 2.

D. Residual interaction

The explicit values of all mean-squared matrix ele-
ments defined in Eqs. (14) are obtained in three steps: (i)

IsU(Ei )=Ia(2s+1)p(Ei )=lap'""(Ei ) )

(cf. Ref. 23), as well as

(18a)

I2 (E )
—(m)(E )I2

I2 (E E ) (in)(E )I2 (out)(E

(18b)

(18c)

where

(iii) Finally Vo is found by equating the optical model
(OM) reaction cross section to the same quantity evalu-
ated from the particle-hole concept.

The reduction to I~ is realized (approximately) by



STATISTICAL MULTISTEP REACTIONS: APPLICATION 1623

10
.1 MeV

vides a correct 3 dependence of the OM reaction cross
section (for neutrons and E, ~ 5 MeV)

~oM(E, ) = (4n /k2 )I (E )p',
~~ )(E) (23)

10
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I

which is the formation cross section of a 2p lh-doorway
state starting out from a 1p configuration. Using

(b n =2)(E)Pi

=(g~2+gz) f dE, (E E, )—(2s+1)p(E, +EF+B,)

(24)

and g)v =(N/A)g, g, =g —
g)v, the value Vo —-19.4 MeV

was obtained from Eq. (23). [This value, together with
Eq. (19b), coincides with the parametrization given in
Ref. 17.] It will be used for all SMD calculations.

Coulomb eFects, i.e., the dependence of unbound
mean-squared matrix elements on particle types v and m.

are treated in a simple way: Equation (20) should be mul-
tiplied by the penetration factor, P, (E, ), defined in Ref.
15.

K. SMC processes

According to Eq. (13) the SMC cross section is ob-
tained' ' from Eq. (9b) using the contraction technique'
as
d~s~Mc(E

b b 5( Eb)id~A —)dEI,
7l(E ) g [I 'b'(Eb)t+&(„b '(Eb)t),

(25)

I I I I ) I I I I j I I I I l I I I I

E,(MeV)
3

10 0 MeV

FIG. 1. (Continued).

p'"'(E, )=(2s+1) '(k, R) p(E, ) .

Here,

(19a)

10
2

10'—

4m.Vmk,
p(E, )= —,

' g (2l +1)—
Iriv, (2~)3))1~

(20)

2(2s + 1)p(sF) =g = A /13,
where the factor 2 contains the isospin degeneracy.

If a surface-delta interaction is assumed

(21)

is the sp state density in the nuclear volume,
V=4m.R /3, and R =roA '~ . The value of the radius
parameter ra = 1.40 fm was obtained from the relation (in
MeV ')

C)
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UJ
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1 03

O

Z 10
C)

10
UJ

(vib)

V(r, —rz) = —Vo ro5(r, —rz)5(r) —R),2 0 3 0

then Eq. (19a) changes into

p(in() E ) ( r /R )2p(in)(E )

(22)

(19b)

Even this parametrization, rather than Eq. (19a), pro-

100
SMC

(2vib)

I I I I I I I I I I I I I-'
1 Xl I ' I II I

5 10 15
E„.(MeV)

FIG. 2. Same as Fig. 1(a) but at 18-MeV incident energy.
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where ~„satisfies the time-integrated master equation,

—ziti„„=I'„+'2lr„+I'„+'2&r„~2—I „r„. (26)

The superscripts (+), (0), and ( —) refer to b,n=+2, 0,
—2, respectively. Here, the damping and escape widths
are given by

I (an)l 2 I2 (an)(E)
n ~ aPn

I (a )n(E ) 1 2 I2 (an —I )( U)

(2gE)' which includes the equilibrium stage
n =(1.4gE)'

It is an advantage of the parametrization in Eq. (18a)
that all Ia cancel exactly within the sum of Eq. (25).
Thus, the shape of the SMC emission spectra becomes in-

dependent of I~.
Finally, the normalization constant in Eq. (25) is ap-

proximated by

SMc(E ) y SMc(E ) OM(E ) g ~SMD(E

E —EbI'„a")1'= g J dEbI' "'(Es)1' .
b =V, 7I

The total width is

—I (+)g+I ( —)1 +1 (0)y+ I ( —)1

(28b) (29)

which is dictated by Aux conservation. Here, o.,&

signifies the (energy-integrated) SMD cross section given
below.

Notice that an escape mode I'„'1' is absent since it is im-

possible from energetical arguments. The sum over the
exciton number in Eq. (25) runs from no =3 up to

F. SMC versus the exciton model

For the sake of completeness we have to mention in
which sense the SMC model, Eq. (25), differs from the
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FIG. 3. (a) Same as Fig. 1(a) but at 25.7-MeV incident energy. Experimental data from Ref. 41. (b) Legendre coeKcients f, and

f2 of (n, ~n) spectra depicted in (a).
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phenomenological exciton mode124 ~5 (EM),

EM(E )

dEb
OM(E ) y "

1 EM(E )1
n

Within the EM the escape widths

1.EM(E )1
(2s + 1) mE o,„„(E )

P (n —1) U
nb b 2~2 b n b E E

(30)

n 2

(31)

the relation'

(E )1=&'„b'(Eb)i' (34)

is found. Hence, the EM follows immediately from the
SMC model if (i) the backward escape mode is neglected,
I'„b '(Eb ) 1' —=0, and (ii) direct reactions are absent,
cr,b

0——, which yield, in Eq. (29), o, =o,
It is clear from the above that the approximation in

Eq. (32) prohibits a cancellation of I~ within the EM.
Thus I~ is treated as a fit parameter in the EM.

are obtained from a detailed balance principle. Therein
the inverse cross section is approximated by the OM re-
action cross section,

inv(E ) OM(E (32)

o'„""(Ei,)=(477 /k )I (E )p (E) (33)

However, this is not always true since the exciton number
dependence is ignored. More precisely, the inverse cross
section should be de6ned as

|. SMD processes

3

k,2
(T,bT, i,*5(E, Eb))q—

d o.'b'(E. )

dEb

The SMD cross section follows from Eq. (8) as

d osMD(E. )

dEb

(35)

rather than Eq. (32). After inserting Eq. (33) into Eq. (31) Before evaluating Eq. (35) we have to distinguish' be-
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FIG. 4. (a) Angle-integrated (n, xn) spectra for Nb at different incident energies. Experimental data from Refs. 29 and 42 (at
E„=9MeV). For denotations see the text. (b) Same as (a) but for '"In. Experimental data from Ref. 43.
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b(E ) 2 (+)=IU(E„E&)pi (E, Eb—),
dEb

do.,'b'(E, ) dE, —
IU(E„E, )

dEb 4m

(36a)

tween the sudden and adiabatic approximations. Howev-
er, within the independent-particle model (IPM), and us-
ing the parametrization in Eqs. (19), both approximations
coincide. ' Thus, for the one-step and two-step processes
we have (despite a kinematical factor 47r /k, )

Vor05(r —R) by P),V+R5(r —R), where

p =[41T(2k+ . I )] '~ p

4~ kb
~ [a] P, (E, )P&(E&),

(k,R)
(39)

Here, Vz ——48 MeV is the real potential depth.
Starting out from Eqs. (36), (37), and (19b) we finally

obtain simple expressions for the SMD cross section,

da, b (E, )

dE& 2~Pi

X2~ p', +'(E, —E, )IU(E, , E&)

Xpi (El —E& ) (36b)

where [a] symbolizes two one-step and four two-step
contributions, denoted according to the sequence of exci-
ton and phonon excitations,

with the restricted partial state densities p', +'( U)
—(gN+gz ) U.

To include collective modes (of multipolarity k, energy
co&, and deformation parameter. pz) we decompose'
the transition probability,

(x =A (V A 'g) U,
a„;b=5,& QP&V~5(U —co&),

(40a)

(40b)

I2 (+)( U) :IU p'i+ '( U) +g I)„5(U —A, ) . (37)

The ansatz for the particle-vibration coupling

I)„=P) V~ (k, R ) p(E, )p(E& ) (3g)
10

can be obtained after replacing in Eq. (22) the quantity 10
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FIG. 5. Angle-integrated (n, xn) spectra for Co, Mo, and
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FIG. 6. Angle-integrated (p, xn) spectra for ' ' Mo at
25.6-MeV incident energy. Experimental data from Ref. 44.
For denotations see the text.
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a2,„=%,bRbb(VOA g) q, U /6,

ex, vib vib, ex

(41a) d o, b(E, ) do, b (E, ) 2L+1
aI (Eb )Pl (cos8)

b b b L, =o 4~

=%,b( Vo A g) q, Q p h V„( U —a)h ), (41b) d(rsMc(E )

4 dE„
(43)

~2 (b ~ b g & hP1'V~q)~( U ~. ~) ')

/

The combinatorial factor is given by

A'A, b=5,b(N +Z')+(1 &,b—)(N'&b, +Z &b )

and

(41c)

(42)

q, = )n(k, R) p (E, ) .

III. FIRST-CHANCE EMISSION

The first-chance emission will be evaluated within the
SMD-SMC model as

Here, the angular distribution of SMC emission is as-
sumed to be isotropic, while for the SMD processes the
empirica] systematics of Kalbach and Mann are adopt-
ed.

Since the SMD process terminates after a few col-
lisions, we restrict ourselves to one-step and two-step
contributions for the incident energy range below 30
MeV. A11 SMD calculations are performed with the re-
sidual interaction strength VO=19.4 MeV. In case of
phonon excitations, we restrict ourselves to two low-lying
vibrational states of multipolarity A, =2+ and 3 . For
odd-mass nuclei the weak-coupling model was adopted.
The phonon parameters 13& and co2 are taken from Ref. 28
(except for Nb where Ref. 29 was used). Otherwise, a)3

are received from Refs. 27, 30, and 31. All 133 parameters
are calculated from

10
Ph = (2A. + 1)coh /2C& (44)

10'

10o

10

Ep 6.0 MeV

with' C3 =500 MeV. In summary, all parameters used in
the calculations are listed in Table I. Moreover, the delta
functions entering Eqs. (40b) and (41c) are replaced by
Gaussians of width 1 MeV simulating both the limited
(exit-channel) energy resolution in the experiments and
the spreading of spectroscopic strength.

The SMC processes are calculated by adopting the re-
stricted partial state densities of Refs. 2 and 21. Both
Pauli and pairing corrections are considered by an energy
shift,

10

X
10

a h
= 2 h I 1+[2g6( A )/n] J

'~

+ —[b, ()( A ) —b, ( A )], (45)

C)

C3
UJ
Vl

10
C)

C3

10O
cA

X 101
UJ

eV

eV

where 2 h =(p +h +p —3h)/4g. The ground-state
correlation function Ao(A)=b, o(N, Z) depends on the
neutron and proton numbers in the nuclear systems. This
quantity can be obtained from the condensation energy
C(N, Z) =gbo/4 inferred from odd-even (o/e) mass
differences. More explicitly, C (e, e) =b)v+ h z —5,
C(e, o)=b)v, C(o, e)=bz, and C(o, o)=0 where A)v, bz,
and 5 are taken from the systematics is Ref. 33. Thereaf-
ter, the excited-state correlation function b, (n, U) will be
calculated analytically from 50.

The energy shift defined in Eq. (45) enters the restrict-
ed partial state densities in different modifications. More
precisely, we have

10 3 2

(+) g (E ap+), h+) p+I, h+1p„(E)=
2(n +1)

n —1

E„.( Mev)

FIG. 7. Same as Fig. 6 but for Zr at different incident ener-
gies. Experimental data from Ref. 45.

c4

p„(E)=( ) gph (n —2)
2 E Q

n —1

(46b)
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which enter the damping widths in Eq. (27) and
E*=E —a h. Similarly, the residual excitation energy U
which enters p'„" "(U) in the escape widths should be
replaced by

A —bU =E —Bb Eb —
ap+~p I, +~I, (47)

whereas the energy denominator, E, in Eqs. (5.16)—(5.18)
of Ref. 2 should be changed into E*. En Eq. (47) the ab-
breviations bp =b n l2 —1 and b, h = b, n l2 hold.

IV. EMISSION SPECTRA

A. General considerations

The double-difFerential cross section (DDX) for the re-
action (a, xb) is given by

d rr, „b(E,) do, b(E, )

dEbd Ab dEb

X g fr' (E„Eb)Pl (cos8),2J- +1 (, ~b)

(48)

where the differential cross section (energy spectrum),

drr, b(E, ) do, b do, ,b

dEb dEb, dEb
+g

da cdb+g ' +. . .
dEb

(49)

sMD(E

dEb

do, b(E., )
al (Eb) . (50)

b

Henceforth, the particle-type indices a, b =n, p, and y
denote neutron, proton (it should not be confused with
exciton and particle number introduced above), and y
ray.

The following (model-independent) relations for
energy-integrated cross sections should be satisfied (at in-
cident energy E, )

is a sum of first-chance emission, second-chance emission,
etc. Assuming isotropic multiple particle emission, the
Legendre coefftcients in Eq. (48) simplify to (I. ~ 1)

f(a, xb)(E

10

I I I I I I I 1 I I I I I I I I0 00
0 0 E -14 Mev I I I t I I I I ) I I I
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1P
0
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1
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1
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X
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D
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010
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FICx. 8. (a) Angle-integrated (n, xp) spectra for different nuclei at 14-MeV incident energy. Experimental data from Ref. 46 (' Fe,
Cu), Ref. 47 ( Nb), and Ref. 48 (' Ag, " In). For denotations see the text. (b) Legendre coefficients f, and f2 of (n, xp) spectrum

for Nb at 14-MeV incident energy.
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o, b=cr, b+ ger. ..b+ go...db+ ' ' ' (51)

where the partial cross sections are given by

~a, b a, bc

and (52a)

OM(E )
—g ~ (E )

b

(52b)

Now, adopting Eqs. (52), the total emission cross section
in Eq. (51) can be cast into a form which contains excita-
tion functions (e.g., measured by activation technique)
only,

Cra xb Cra by+ X (Cya tcy+Oa cby)

+ g (Oa, bcdy+~a, cbdy+Oa, cdby)+
c, d

(53)

where b, c,dXy. Neglecting charged-particle emission,
Eq. (53) reduces to

a, xn +~a, ~n
v= 1

(54)

Qtherwise, for example, the (a, 2ny)-excitation function
can be calculated by the relation

a, 2ny +a, 2n a, 3n (55)

B. Multiple particle emission

The MPE is treated as a pure SMC approach. Hence,
Eq. (25) will be used, but it should be modified in two
respects.

(i) The residual excitation energy U given in Eq. (47)
which enters the escape widths should be replaced by

Oa, bc g Oa, bcd
d

etc. In this context the OM reaction cross section is
defined as

All other SMC quantities entering Eqs. (25) and (26)
remain the same as in the first-change emission case, i.e.,
the damping widths given by Eqs. (27) and (46) as well as
the energy denominator within the escape widths are
both referred to E*=E—a &. Since the escape widths
for MPE via Eqs. (56) become much smaller compared to
the first-chance emission the mean lifetimes ~„ in the
master equation (26) increase rapidly. Notice that here y„
is the mean lifetime of exciton class n in the composite
system A with reference to the emission of more than one
particle.

In comparison with other MPE approaches, in our
simple formalism the master equation has to be solved
one time only for each MPE process (o, ,b, o, ,db, etc.).
Formally, this model looks very similar to a simple
cascade-evaporation procedure where an average
emission-energy shift (caused by the previous emitted
particle) in Eqs. (56) is roughly simulated by the Pauli
and pairing corrections a &.

V. RESULTS

To prove the consistency of the predicted SMD-SMC
model, neutron, and proton spectra (n, xn) and (n, xp), as
well as (p, xn) including three decays of the compound
system, are calculated by code ExIFON (Ref. 35) for about
30 nuclei between 2 =27 and 209 at incident energies be-
tween 5 and 25 MeV. Using throughout the same param-
eters [g = A/13, r0=1.40 fm, V~ =48 MeV, and
V0=19.4 MeV, which is the surface-delta interaction
strength in Eq. (22)] a global description was performed
Further, all binding energies are taken from Ref. 36. The
OM reaction cross sections are calculated analytically
(Wilmore-Hodgson for neutrons, Becchetti-Greenlees for
protons). All phonon parameters are listed in Table I (cf.
Sec. III). The running time on a personal computer
(IBM AT) is 5 —50 s per nucleus depending on incident
energy.

U=E B B b Eb Q

for the second-chance emission (a, cb), and by

U =E —B,—B« —B«b —Eb —
ap+Qp $+Qp

(56a)

(56b)

for the third-chance emission (a, cdb), respectively. The
quantities B,b and B«b are the binding energies of parti-
cle b in the residual systems (A —c) and ( A —c —d).

(ii) The normalization constant in Eq. (25) should be re-
placed by (cr, , —o, ,y) for the (a, cb) process and by
(o, ,d —o, ,dy) for the (a, cdb) process, respectively Ap-.
proximative expressions for the y-emission processes are

E —B
cr, ,y(E, )=J dE, [do, ,(E, )/dE, ], (57a)

C CV

o, ,d (E, )

0
10

E

O
2

10
LU
V)

1o 10

O
V)
V)

10

l

E„=14.') MeV

208

10
E„,(MeV)

E —B —Bd=f dEd [do, ,d(E, )/dEd ] .
c cd cd'

(57b) FID. 9. Angle-integrated (n, xn) spectra for Pb at 14.1
MeV for g = A /13 (solid line) and g = A /26 (dashed line).
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The results are depicted and compared with experi-
mental data ' ' in Figs. 1 —9. (The meaning of the
curves is the same in all figures. Dot-dashed line: first-
chance emission; dot-dot-dashed line: first-chance plus
second-chance emission; long-dashed line: SMD or SMC
separately; short-dashed line: a,„contribution; dotted
lines: a„& and a2„,], contributions separately, ' solid line:
total emission spectrum. ) We see that despite the great
simplicity of the model it is successful in reproducing ex-
perimental emission spectra for both different incident
energies and different nuclei. This holds for energy as
well as angular distributions. The latter are shown for
neutron [Fig. 3(b)] and proton emissions [Fig. 8(b)] in the
form of the first two Legendre coefticients.

In summary, the following conclusions can be drawn.
(i) Ignoring shell effects, a fair description of emission

spectra was obtained by adopting global parameters only.
However, special care is required for magic nuclei where
the sp state density g strongly deviates from the global
value A /13. This is the main reason for the discrepancy
in the description of Pb and Bi at 14 MeV in Fig.
1(e). The influence of the emission spectrum on g is
demonstrated in Fig. 9 where calculations for Pb with

g = A/13 and A/26 are compared.
(ii) Whereas for the SMC description no nuclear struc-

ture information is used (e.g. , cancellation of Its), the cal-
culation of SMD processes, e.g. , the excitation of collec-
tive modes, requires spectroscopic values (P&, co&).

(iii) Whereas the proposed MPE model predicts the
right spectral shape for the second- and third-chance
emission (cf. Fig. 6), the magnitude of MPE calculation in
the threshold energy region overestimates the experimen-
tal data. Here, the magnitude of MPE as well as the
SMC cross section is determined only by a normalization
constant in Eq. (25). For MPE the latter is too high since

in Eqs. (57) so far a correct y competition is absent. Also
(n, a) processes are ignored. Thus, especially for light
and medium nuclei ( Al, Fe, Co, and Cu in Figs. 1

and 2), discrepancies in the low emission-energy region
occur.

(iv) As shown in Figs. 6 and 8(a) for (p, n) and (n,p) re-
actions, the calculated one-step direct contribution which
influences the high-energy tail of the spectra overesti-
mates the experiments. It results from Eq. (40a) which is
a rather crude approximation for charge-exchange pro-
cesses.

To this end we continue with some general remarks of
how a (n, n') process is composed of the following.

(i) The ratio of SMD to SMC contributions increases
with incident energy and is close to 1 at 30-MeV incident
energy.

(ii) The one-step contribution dominates. It is about
18% (30%) of the OM reaction cross section at 14 (26)
MeV incident energy. Otherwise, for the two-step contri-
butions, we have 3% (10%) at 14 (26) MeV. The ratios
are independent of mass number.

(iii) While the integral contribution of direct particle-
hole excitations rises with incident energy (a,„-A ~ E,
and a2,„-A E, ) it decreases for phonon excitations.
At about 10 MeV we have a,„=a„;&.

(iv) The ratio of two-phonon to one-phonon excitations
is almost independent of 3 and E, . It takes the value

a)„;b/ct„;b —-0. 1.
(v) Direct three-step processes, a3„;b, are very small and

thus can be neglected for incident energies below 26
MeV.

The authors are grateful to Lien Hoang Ngoc from Na-
tional Atomic Energy Institute Hanoi for support in per-
forming the calculations.
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