
PHYSICAI. REVIE%' C VGLUME 40, NUMBER 3 SEPTEMBER 1989
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A potential containing a one-pion-exchange tail and regularized at the origin by means of three
parameters is used to construct several families of deuteron wave functions, which are employed in
the assessment of the inAuence of the inner parts of the potential over observables such as r, g, and
Q. The off-energy shell extrapolation of the results is considered, so as to provide guidelines for the
treatment of other systems such as the triton. We also show that, provided the central potential
contains a one-pion-exchange tail, the value of g is determined with great precision by just the inner
part of the tensor component of the interaction.

I. INTRODUCTION

More than 25 years ago Glendenning and Kramer' es-
tablished a close relationship between several deuteron
properties and the pionic tail of the nucleon-nucleon po-
tential. Since then, this relationship has been both ex-
tended and refined, and nowadays it is well accepted that
pion dynamics dominates observables such as the quadru-
pole moment Q and the asymptotic D/S ratio rl. The
latter, in particular, deserved considerable attention in re-
cent times, for it was realized that its value is a direct
consequence of the NN interaction, whereas Q is
inAuenced by meson-exchange currents, and hence is sub-
ject to additional theoretical uncertainties. '

The theoretica1 association between g and the one-pion
exchange potential (QPEP) proved to be very fruitful.
For instance, it paved the way for the derivation of rather
narrow bounds for a11owed values of this asymptotic ra-
tio and also motivated an effort to disentangle effects due
to single-pion exchange from those arising from multiple
pion scattering, form factors, and quark bags. ' Indeed,
the domination of single-pion dynamics was found to be
so strong as to allow g to be taken as a sort of evidence
for the very existence of pions in nuclei. And it is worth
noting that this is a substantive question, at a time when
both pucleons and pions are understood as objects made
of bound quarks.

In the framework of nonrelativistic potential theory,
the value of any observable can be obtained from the
solution of the Schrodinger equation for a given NN in-
teraction and hence, in principle, it could depend on all
the parameters used to describe that interaction. In the
case of g, for instance, this possibility may be summa-
rized by the expression g=q[g, p;(o.p.)], where g is the
n.N coupling constant, p is the pion mass, and (o.p. ) indi-
cates collectively all the other parameters on which the
potential depends. On the other hand, when an observ-

able is dominated by pion dynamics, one expects the
influence of the other parameters to be an indirect one,
occurring through the values of either the binding energy
(E)0) or a(a —=&mE ). Again in the case of rf, this idea
could be formalized by writing g =g(g, p; a ), where a de-
pends on all the parameters of the potential. This
amounts to stating that q is an external quantity, depend-
ing only on the tai1 of the wave function, which is deter-
mined by the potential at large distances.

In recent papers, Ericson and Rosa-Clot studied in
great detail the dynamical content of g, employing a
method based on a Green's function for the deuteron
differential equation. ' Their analysis showed that 95%
of the value of this ratio can be ascribed to the exchange
of a sing1e pion, whereas the leading correction would
come from the two-pion exchange process, whose contri-
bution would be about 4%. The formalism developed by
Ericson and Rosa-Clot seems also to be suited to the
study of external observables of other few-body systems
such as, for instance, the asymptotic D/S ratio g, of the
triton-deuteron-neutron (tdn) vertex. This quantity
deserved some attention lately, both by experimentalists
and theoreticians' '" and it may, in principle, provide in-
formation about the dynamical content of this vertex,
especially concernipg the role of three-nucleon forces.
The 1ongest-range three-nucleon interaction is the two-
pion exchange three-nucleon potential (mmE-3NP), ' and
recent calculations leave no doubt that it does inft. uence
the triton binding energy. ' ' The present stage of the
problem consists in quantifying precisely this statement,
since numerical results depend quite strongly on the mN
form factors included in the ~mE-3NP. Nevertheless, the
conclusion is possible that this force can inAuence the tdn
asymptotic D/S ratio at least indirectly, through the
value of the separation energy. However, in the tdn ver-
tex, the m~E-3NP has components whose ranges are
comparable to either the OPEP or to the two-pion ex-
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change component of the NN force. The former case
occurs when one of the pions of the 3NP is hidden within
the deuteron, whereas the latter happens when both pions
are outside it. These dynamical features, when combined
with the fact that the tdn separation energy is about three
times larger than the deuteron binding energy, allow the
hope of a non-negligible direct inhuence of the mmE-3NP
over 'g].

In the study of the deuteron performed by Ericson and
Rosa-Clot, ' the binding energy was always kept fixed,
while the sensitivity of g to changes of the various pa-
rameters of both the interaction and the S wave function
was estimated. The assessment of the implications of this
crucial element of their analysis is one of the purposes of
the present work. The motivation for this assessment is
twofold. First, we note that the study of the deuteron
was made possible due to the availability of several wave
functions, constructed by means of realistic NN poten-
tials and having the correct binding energy. The case of
the triton, on the other hand, is different. Theoretical
calculations based exclusively on pair interactions yield
binding energies which are both dependent on the realis-
tic NN potential adopted and below the experimental
value. ' ' The inclusion of three-nucleon potentials is
able to increase the binding energy, but uncertainties as-
sociated with the mN form factor do not allow a unique
value to be obtained. ' ' Therefore, we take the deute-
ron as a test ground for studying how changes in the
binding energy of a system affect its external observables.
Our second motivation concerns the theoretical method
developed by Ericson and Rosa-Clot. ' In their study of
the deuteron, they found a quite important dependence of
the asymptotic D/S ratio on mN form factors. This
finding carne as a surprise, since changes in form factors
are supposed to be confined to small internucleon dis-
tances, and hence might be expected to be unable to
inAuence external observables. In the case of the tdn ver-
tex the situation may become worse, since its bigger sepa-
ration energy tends to expose more the nonpionic content
of the interaction. Thus it is important to understand the
implications of their method before considering applica-
tions to other systems. In this work we also estimate the
importance of nonpionic effects in several external deute-
ron observables and check the role of the pion in correlat-
ing them.

n. nvxwMK, 's

In this work we are concerned with the structural
dependence of the deuteron external observables on g, p,
and a rather than with precise phenomenology, and
hence we study the solutions of the standard Schrodinger
equation using a simplified NN potential which contains
the OPEP tail and is regular at the origin. This regulari-
zation is achieved by means of effective monopole form
factors, which are formally introduced by multiplying
each mN coupling constant g by a factor

[(A' —p')/(A +k')],
where A is a parameter that accounts for the non-OPEP
nucleon-nucleon dynamics. The pure OPEP case is

r
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The function G(r) is such that in the case of pointlike
nucleons we have

lim G(r)= 5 (r) .4m

A —moo p
So, in this limit, G(r) represents the well-known contact
interaction present in the pure OPEP. On the other
hand, when A is finite, the nucleon is surrounded by a
meson cloud and G(r ) may be interpreted as a contact in-
teraction between extended objects, in the sense discussed
in Ref. (16). The parameter 5 in Vc allows this interac-
tion to be switched on (5=1) or off (5=0). For the sake
of the Aexibility of the model, other values of 5 may also
be used. When we set Ac=AT=:A and 5=1, the mono-
pole interaction employed recently by Friar, Gibson, and
Payne' in their OPEP study of the deuteron is recovered.
On the other hand, the OPEP potential used by Ericson

recovered in the limit A~ ~.
In order to prevent misunderstandings, we would like

to stress that our A does not represent the true mN form
factor, which is associated with short-range exchanges
that occur when a pion interacts with a nucleon. For in-
stance, these vertex effects correspond, at the hadron lev-
el, to the meson cloud that dresses a pointlike nucleon,
whereas in a bag model they are related to the size of the
bag. True form factors are those considered in correc-
tions to the Goldberger-Treiman relation' and in the
study of Ericson and Rosa-Clot. ' In our case A
represents both the true eN form factor and other
dynamical effects such as multimeson nucleon-nucleon
exchanges. In particular, our A includes the central and
tensor contributions of the two-pion exchange. Therefore
our A describes, at best, an effective form factor.

%'ith the purpose of allowing for more flexibility in our
potential, we let its central and tensor components be reg-
ularized by different parameters, denoted, respectively, by
Ac and AT. Its explicit components are written as'

Vc(r ) = —g[ Uc(r ) 5G(r—)],
V (r)= —g[U (r)],

where g is the mN coupling constant and
—A r

e "" Ac eUc(r)=
pr p Acr
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and Rosa-Clot corresponds to Ac=Ar=A and 5=0,
whereas that adopted by Righi and Rosa-Clot' is given
by AT =A, Ac ~ ~ and 5=0. In order to produce a feel-
ing for the role of the parameters AC, AT and 5, we plot
in Fig. 1 the potentials Vc and VT for the cases 5=0 and
5= 1, when the nucleons are either pointlike
(Ac=AT~~) or corrected by form factors, with the
realistic choice A~ =AT =900 MeV. Inspecting this
figure we note that the main effect of the contact term is
to produce a repulsive core for the central potential, that
would otherwise be entirely attractive. The amount of
repulsion can be controlled through the parameters Ac
and 5. An increase in Ac would move the point P up-
wards and the point Q to the left, in such a way that, for
Ac= ~, the curve cI becomes identical to the curve C
plus a repulsive 5 function at the origin. Similarly, an in-
crease in Ac and AT would move the curves co and t to-
wards the curves C and T. In the opposite limit, the
value Ac=p allows the entire central potential to be
turned oK

The deuteron wave function is written as
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where S&z is the tensor operator and yf is a triplet spinor.
The Schrodinger equation for our OPEP is

u" —(a +mVc)u =&8mVTw, (8)

6w" — a' + +m(VC —2VT} w =&8m VTu . (9)
r

The solutions u and w of these coupled equations allow
the asymptotic normalizations to be obtained as

As
—= lim u ( r ) le (10)

1+ 3+ 3 —ar
ar cx2r 2

Following the common usage, g = AD/As.
In order to test the numerical stability of our results,

we have also evaluated As and AD with the help of the
free Green's functions for Eqs. (8) and (9), through the
equations

Az=m drrjo iczr Vc r u r + 8VT r w r
0

(12)
I

AD=m f dr rj~(i ra)I& 8V(Tr) (ur)
0

+ [V& 2Vz (r )]w(r ) I (13)

where jo and j2 are spherical Bessel functions. This last
expression is totally equivalent to that derived by Ericson
and Rosa-Clot in terms of 82, the exact Green's func-
tion for the right-hand side of Eq. (9), and which can be
written as

A&=m r 2iur SVT r u r
0

(14)

For future purposes, we also quote their Vr'KB approxi-
mation for 82, suitably adapted for our case

' —1/4

FIG. 1. The components of the potential for di8'erent values
of the parameters. The central part V& is represented by the
curves C(AC~ 00, 5=0), co (Ac =900 MeV, 5=0), and
c& (Ac=900 MeV, 5=1). The tensor component is given by
the curves T {AT~~ ) and t (A+=900 MeV).

82(iar)=exp ~ — f dt t[V&(r) 2Vr(r)] 1+ r~[—V&(r) 2VT(r)] . —
C T 25

rj2(iar) . (15)

For the sake of completeness, we give the expressions
for the single nucleon contribution to the quadrupole mo-
ment Qp and the root mean square r

r =4 f dr r [u(r) +w(r)2] .

III. RESULTS AND DISCUSSIGN

(17)

Q~= f dr r u(r)w(r)—
50

1 2w(r)
8

A. The pion in the deuteron

In order to study the stability of various deuteron ob-
servables under variations of the inner parts of the poten-
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FIG. 2. Curves relating the values of A& and AT that yield
the experimental deuteron binding energy for central potentials
with 5=0 ( ———), 5=1.0 ( —.—~ —~ ), 5=1.5 ( —~ ~ —~ ~ ), and
5=2.0 (. ~ ). The triangle corresponds to the potential of
Ref. 17.

tial, we fixed the ~N coupling constant as g =10.904 370
MeV, corresponding to f =0.079, and searched out the
values of A& and AT that, for a given 5, would yield the
experimental binding energy E=2.2246 MeV. The nu-
merical integration of Eqs. (8) and (9) was performed up
to 26 fm, using a variable step and employing 890 points.
The value of the S wave constant Az was extracted using
both the direct ratio [Eq. (10)] and the integral method
[Eq. (12)], and results agree within 0.03%. The D wave
constant AD was evaluated by four different methods,
namely the direct ratio [Eq. (11)] at both 16 and 26 fm,
the complete integral method [Eq. (13)], and its WKB ap-
proximation [Eqs. (14) and (15)]. The agreement between
the results from both integral methods and that extracted
at 16 fm is better than 0.3%, whereas the value extracted
at 26 fm diverges by less than 4% and was not con-
sidered.

The values of Ac and AT obtained for the choices
5=0, 1.0, 1.5, and 2.0 allowed the construction of the
curves shown in Fig. 2, where the triangle indicates the
dipole case considered by Friar et al. ' A remarkable
feature of this plot is that the range of variation of Az is
much greater than that of Az-. The former can have any
value between p and infinity, whereas the latter is
confined to the interval 750 MeV & AT & 1200 MeV. This
result rejects the well-known dominance of the tensor
force in the binding of the deuteron. The values of AT
for the cases including contact interactions (5%0) lie
generally above that corresponding to 5=0. This is easi-
ly understood, since contact interactions are repulsive
and hence, for a given Ac, the binding of the deuteron
demands a deeper tensor potential. The potentials corre-
sponding to 5%0 are much closer to reality, due to the
presence of the central repulsive core. In order to test
the extension of the inhuence of the contact term over the
results, we have analyzed the behavior of the curves for
large values of Az, when its range tends to zero, and
found that they approach each other at a slow pace; for
instance, for Ac around 20 GeV, there is still a 3%
difference between the corresponding values of AT. In
the case 5=0, the value of AT remains almost constant
after Ac =800 MeV, meaning a saturation of the

inhuence of A~ over the potential. It is interesting to
note that all the curves converge to the point Ac=p, as
this means that the central potential vanishes and the
binding is achieved by the tensor force alone. Therefore,
when Ac is close to p, the central OPEP is suppressed by
a term having comparable range and only. for values of
Ac larger than 800 MeV does the central potential recov-
er its characteristic pionic tail.

In Figs. 3(a)—3(d) we display our results for As,
r /As, rl, and Q~/Az as functions of Ac. In all curves
one finds a rapid variation for small values of Ac,
whereas they become much more stable for Ac bigger
than 1000 MeV. All the curves show an inhuence of the
repulsive core, represented by the parameter 5, and those
corresponding to 5=0 are Hatter than the others, due to
the saturation of the central potential for large values of
Ac. All the curves with 5%0 tend to that with 5=0 for
very large values of A& since, as mentioned before, in this
case the corresponding central potentials differ only by a
5 function located at the origin.

One of the purposes of this work consists in assessing
the extent of single-pion dominance over deuteron ob-
servables. In our study the binding energy was kept fixed
and hence, for given values of g and p, the parameters 5,
A&, and AT are constrained by the condition
a(g, p;5, AC, AT)= constant. This means that a result
which does not depend on 5 and A& is also independent
of Az and can, in principle, be ascribed to the pion. In
the plots of Fig. 3, independence of short-range dynamics
manifests itself through the convergence of all the curves
to a single horizontal line.

The ratio r~/Az, given in Fig. 3(b), is remarkably
stable under changes in the inner parts of the potential.
This means that our model potential yields the same
linear correlation between r and Az as found empirical-
ly by Ericson' and Klarsfeld et a/. As pointed out by
the former, this happens because the bulk of the contri-
bution to r in Eq. (17) is due to the asymptotic part of
the S wave function. In order to check the extent that
the ratio r~/As is influenced by pionic parameters, in
Fig. 4 we display the effects of changes in the mX cou-
pling constant and pion mass, together with values corre-
sponding to various realistic XN potentials. Once again,
one finds a great stability.

The behavior of q is shown in Fig. 3(c), and one notes a
dependence on the inner components of the potential,
represented by 5 and Ac. Nevertheless, in spite of the
very wide variation of parameters considered here, the
value of g does not change more than 5%. If Ac were
confined to a more conservative interval such as, for in-
stance, 700 MeV & A& & 1500 MeV, the variation induced
in g would be considerably reduced. Thus our results
agree qualitatively with those of Friar, Gibson, and
Payne, ' as well as with the refined analysis of Ericson
and Rosa-Clot. '

For a given 5, the curves for g and Qp/As resemble
each other for values of A& larger than 800 MeV. In or-
der to explore this similarity, we display the correlation
between Q~/As and g in Fig. 5, where it is possible to
note that, for large values of A~, all the curves merge
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into a single straight line. This line is universal in the
sense that it is independent of 5, Ac, and, due to the con-
straint imposed by the fixing of the binding energy, also
of Az. This linear relation between Q and g has a long
history, going back to Blatt and Biedenharn, and a re-
cent discussion of the subject can be found in Butler and
Sprung. On the other hand, the relationship between
Q~/Az and g is dependent on the inner parts of the in-
teraction for small values of Ac, when the pionic tail of
the central potential is very disturbed by the form factor.
This result sheds hght on the fact that the universal line
derives from the joint action of the tails of both central
and tensor potentials.

B. The role of the binding energy

We now study the sensitivity of deuteron observables
to changes in the binding energy, with two motivations.
First, we are interested in using the deuteron as a test
ground for other systems, such as the triton, where calcu-
lated wave functions fail to reproduce the measured bind-
ing energy. The second one is to check the geometrical
character of some results. A quantity can be considered
as geometrical when its value is determined by the energy
scale of the system. If this is the case, the multiplication
by a suitable power of o. yields a dimensionless quantity
that is independent of the energy.

The ratio r /Az, for instance, is quite insensitive to
both internal and pion dynamics. Its asymptotic value,
obtained by using Eq. (10) into Eq. (17), is' a ~ /4.
Therefore in Fig. 6 we plot the dimensionless form
(4r a /Az) against the deuteron binding energy,
which was allowed to vary between 2 and 10 MeV. In
spite of the various choices of parameters employed, all
the points fall within the narrow shaded band. Over the
whole energy interval considered, the dimensionless ratio
does not vary more than 4%, and it is instructive to com-
pare this value with those corresponding to (r a) and
(Az/t a), which are 20% and 24%, respectively. This
means that, to a few percent, the ratio r /Az behaves as
a geometric quantity.

The behavior of g as a function of a, in the interval 2
MeV &E &10 MeV, is given by the shaded band in Fig.
7, for a wide variety of inner parameters of the potential.
Its width indicates an almost uniform 4% spread in the
values of g for a given energy, and can be ascribed to the
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FIG. 3. The plots express the values of Az (a), r /A~ (b), g
(c), and Q~/Az~ (d) as functions of Ac for the values of
5=0 ( ———), 5=1.0 ( —.—.—.), and 5=2.0 (. ~ ~ ).
Please note that a scale in terms of percentage is supplied on the
right of the figures.

FIG. 4. Inhuence of pion parameters over the ratio r /Az.
The continuous line indicates the sensitivity to changes in the
~N coupling constant, whereas the triangle indicates the e6'ect

of an increase of 3%%uo in the pion mass. The dots correspond to
the selected values quoted in Ref. 4, for the following NN poten-
tials: (HJ,HW), corrected versions of Hamada and Johnston
(Ref. 21); (Y), Yale (Ref. 22); (RHC, RSCA), Reid (Ref. 23); TS
(super soft core C), (Ref. 24); (TRS), de Tourreil et al. (Ref. 25),
and (P), Paris (Ref. 26).
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FIG. 5. The universal correlation between Q/Az and g is represented by the continuous line, and it is given by the merging of the

various broken lines associated with the potentials corresponding to 5=0 ( ———), 5=1.0 ( —.—.—.), 5=1.5 {—~ ~ —~ ~ ) and
5=2.0 (. . ). Some points indicated by [5; Ac (in MeV)] illustrate the universality of the correlation, whereas the dark squares
correspond to realistic IVX potentials (conventions as in Fig. 4).

short distance behavior of the interaction. The roughly
linear relationship between g and e, on the other hand,
reAects indirectly the inhuence of pionic parameters.
This can be understood by noting that g is a dimension-
less quantity, and hence the dependence on these parame-
ters occurs through the ratios g/a and p/a. Thus an in-

1OOTI—
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5 10

l ~ I

&20'L

exp
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FIG. 6. The ratio (4r a /Az) as a function of the energy,
showing its geometrical character. The shaded band was ob-
tained by fixing 5 and A& as (0, 1000 MeV), (1, 800 MeV), (1,
1000 MeV), {1,1600 MeV), and (1.5, 1000 MeV) and looking for
the values of AT that produce the desired binding energy.

0 I I I I I

0 0.1 0.2 0.3 0.4 0.5
a(fm )

FIG. 7. The dependence of the asymptotic D/S ratio on the
deuteron binding energy. The shaded band was obtained as in
Fig. 6.



40 PIONS IN THE DEUTERON 1465

crease in a is equivalent to a simultaoeous decrease of
both g and p. In cases such as the triton-deuteron-
nucleon vertex, theoretical calculations yield the function
g(a), where a is in general different from the observed
value. However, one is interested in finding out the
"true" value of g, which is associated with the observed
binding energy. The study of the deuteron allows us to
expect a width in the theoretical correlation between the
separation energy and the asymptotic ratio, rendering
very difficult the solution of this problem. It is worth
noting that a spread in the values of the tdn asymptotic
ratio is indeed present in a recent study by Friar, Gibson,
Lehman, and Payne. "

C. The method of Ericson and Rosa-Clot

The third problem we are interested in concerns the re-
lationship between g and A~, that is displayed in Fig. 8.
There one finds a behavior analogous to that encountered
in the g —Q/Az correlation, namely the existence of a
line which is independent of the central potential when
A& is not too small and it already possesses the OPEP
tail. In other words, this line indicates that the value of
the asymptotic ratio depends on the existence of the
OPEP tail of the central potential, but is totally indepen-
dent of its internal structure. On the other hand, there is
a clear dependence on the non-OPEP structure of the
tensor potential, which allows it to be constrained by the
experimental value of g. This conclusion is, of course,

I

quite similar to that reached by Ericson and Rosa-Clot in
their study of the deuteron. ' There are, however, im-
portant conceptual differences between their result and
ours. One of them concerns the meaning attached to the
parameter A, which in their case represents the mX form
factor, whereas in ours it is associated with the whole
non-OPEP content of the tensor interaction. As dis-
cussed in the introduction, the latter contains an impor-
tant contribution from the two-pion exchange NN in-
teraction.

There is also an important difference concerning the
methods employed in both studies. The work of Ericson
and Rosa-Clot is based on Eq. (14), which is an exact re-
sult only when the function u(r) is consistent with the
potential used in it. This means that Eq. (14) is a
mathematical identity only when the u(r ) used in it is the
solution of the Schrodinger equation for that potential.
In this case, and in this case only, Eqs. (13) and (14) are
fully equivalent. In their work, the sensitivity of g to the
re%.form factor was investigated by keeping u(r) fixed
while the parameter A in the potential was varied. This
procedure may induce changes in the binding energy of
the system, turning Eq. (14) into a method for extrapolat-
ing AD to values of A other than that corresponding to
consistency between u (r ) and the potential. In our work,
on the other hand, we always varied both the potential
and the wave function simultaneously, while a was kept
fixed.

In the context of our model, Eq. (14) niay be rewritten
as

A D( 5, Ac, Az, '5, Ac, Az-)= mf dr cled(iar;5, AC, A&)&8V&(r;Az)U(r;5', A~, Az) .

100 (2.0;600)

7—

2.6—
(0.0,20000)

I I I I I I I I I I I I I I l I

w, (lvlev)

FIG. 8. The correlation between q and Az, conventions are the same as in Fig. 5.
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line is the same as in Fig. 8; the dashed and dotted curves were
obtained from Eq. (18) with the following choices: 5=5'=2,
Ac =Ac =1381 3 MeV, AT =1135 5 MeV, and 5=6 =2,
Ac=Ac=2367. 9 MeV, AT=978. 8 MeV.
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FIG. 10. The inhuence of the central potential over the
g —AT correlation produced by Eq. (18). In all the curves the
parameters of u ( r ) were fixed at 5' =2, Ac = 1381.3 Me V,
AT=1135.5 MeV, whereas the dotted, dot-dashed, and dashed
lines correspond, respectively, to the choices 6=0, Ac=AT,'

6=2, Ac=AT,' and 5=2, Ac=Ac. The continuous line is the
same as in Figs. 8 and 9 and was included for the sake of com-
parison.

The consistent situation is attained when the primed and
unprimed parameters are identical.

With the purpose of estimating the significance of the
use of a potential which is not consistent with the wave
function, we have fixed all the parameters but AT in Eq.
(18), which was then used in order to generate a relation-
ship between g and AT. In Fig. 9 we display the results
of this procedure for two sets of fixed parameters, togeth-
er with our g —AT correlation, and it is possible to note
that our method and that based on Eq. (18) do not pro-
duce identical results. Nevertheless, the main trends of
all the curves are the same and the numerical differences
are less than 1% for the range of AT considered. For
small values of Az. these differences tend to be more pro-
nounced, but we should recall that we have learned from
Fig. 2 that this parameter must not be arbitrarily de-
creased. For instance, even for the extreme case of a po-
tential whose central part does not have a repulsive core,
AT should not be made smaller than 750 MeV.

Another interesting feature of Fig. 9 is that there are
two curves generated by Eq. (18), and the diff'erence be-
tween them is due to the value of A& adopted in each
case. This means that the results of Eq. (18) can be
influenced by the central interaction. In order to explore
this dependence, we plot in Fig. 10 the relationship be-
tween g and AT for various forms of the central potential
in the interval 750 MeV &AT &4000 MeV. The curves

indicate the extent of the inAuence of both 5 and Ac over
the results. The dotted line corresponds to the case
AC=AT and 6=0, considered by Ericson and Rosa-
Clot. ' Inspecting this figure one learns that a change in
the value of 6 from zero to 2 modifies the curve in the re-
gion of small AT. On the other hand, the fixing of A&
while AT is varied inAuences the results over the whole
interval considered. The main conclusion to be drawn
from Fig. 10 is that the inhuence of the central potential
over the g —AT relationship produced by Eq. (18) is
small, but by no means negligible. This is in qualitative
disagreement with our Fig. 9, which shows that, provided
the central potential has an OPEP tail, the value of g is
very precisely determined by AT only.
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