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Proton mean-free path in nuclear matter and in finite nuclei
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The mean-free path of protons is calculated in nuclear matter and in finite nuclei using the ex-

tended Skyrme interaction. The Green's function technique is employed for infinite nuclear matter
to carry out the calculations analytically. The connection to finite nuclei is established and results

are compared to data extracted from reaction cross sections and optical-potential fits for three
closed-shell nuclei. Fixing the radius parameter as in the interpretation of the measurements leads

to reasonable agreement within the accuracy of the data.

I. INTRODUCTION

The mean-free path of the constituents is a fundamen-
tal property of a many-body system. In the case of the
propagation of a nucleon through the nucleus, the data
indicate that the mean-free path is of the order of 4—6 fm
for protons of energy E =50—200 MeV. ' The relative-
ly long mean-free path of the nucleons implies a smooth
average potential, upon which the well-known in-
dependent-particle model is based. The nucleon mean-
free path is also a crucial parameter in theoretical treat-
ments of nuclear collisions, which explore nuclear matter
away from zero temperature and normal nuclear densi-
ty. In the present paper, we restrict our attention to
densities up to that of normal nuclear matter and to zero
temperature.

According to the standard kinetic argument, the nu-
cleon mean-free path in nuclear matter can be written as
A,o=(op) ', where o is the nucleon-nucleon cross section
and p is the density of nuclear matter. The kinetic argu-
ment is based entirely on the density of the medium, and
is typically used with the free experimental average
nucleon-nucleon cross section. This simple estimate
yields = 1 —2 fm for the mean-free path of protons in nor-
mal nuclear matter in the energy region considered here
(E =50—200 MeV). To obtain a longer mean-free path
theoretically, one needs to take into account the specific
properties of the nuclear medium. It is well known that,
e.g., the Pauli principle acts to enlarge the mean-free
path, and this increase leads to representative values for
A, in the range 2.5 —3 fm. ' Recently, the effect of the
nonlocality of the nucleon propagating through the nu-
clear medium was incorporated in calculations of the
mean-free path. " '" To set the stage for the present cal-
culation, in Sec. II we will qualitatively review the effects
that increase Xo.

The aim of this paper is to explore a microscopic calcu-
lation of the nucleon. mean-free path based on the extend-
ed Skyrme interaction. ' ' Skyrme forces have been
used successfully as effective interactions in nuclear struc-

ture calculations for many years (see, e.g. , Ref. 20). Their
simplicity has provided an enormous computational ad-
vantage over realistic nucleon-nucleon forces, while yield-
ing a comparable fit to bound-state properties. ' The ex-
tended Skyrme interaction was recently shown to give
promising results also in the area of optical-model calcu-
lations. '

The extended Skyrme interaction, which has a finite-
range density dependence, gives better fits to nuclear
properties (in particular to nuclear spectra), than conven-
tional Skyrme forces with a zero-range density depen-
dence. ' ' Indeed, to a good approximation, the
density-dependent term has the same range as the
density-independent term. This is suggestive of a model
where the density-independent two-body interaction is
multiplied by a function of the local density. Such a
model leads to good fits to spectra of nuclei in the s-d
shell.

It is realized that Skyrme interactions were designed
with a rather limited scope of applications in mind. We
feel, however, that the previously mentioned successes in-
vite applications in other areas. In particular, we would
like to assess the potential of the extended Skyrme in-
teraction in calculations of the mean-free path. As our
calculational method, we employ the Green's function
technique, the efFiciency of which was recently demon-
strated in applications to the optical potential and to
single-particle spreading widths. ' One of the advan-
tages of this approach is that the Fermi motion of the nu-
cleons and the Pauli principle are automatically built in
from the beginning.

A full calculation of the optical potential (which in
turn determines the mean-free path) should ideally be
based on a g-matrix approach using one of the modern
nucleon-nucleon potentials (e.g., the Paris, or the
Bonn potential). Such numerical calculations are natu-
rally quite elaborate. For an estimate of the mean-free
path, in particular in view of the uncertainty with respect
to the free nucleon-nucleon force, it appears to be more
economic to use an effective force. The Skyrme interac-
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tion represents an expansion of both the range and the
nonlocality of a realistic interaction through second order
in momentum space, i.e., only terms of order p and p
are kept. This is equivalent to making a short-range ex-
pansion in coordinate space and keeping only the lowest
two moments.

Since the Skyrme interaction is an effective force, care
must be taken in evaluating higher-order diagrams, such
as the second-order diagrams for the imaginary part of
the optical potential. We expect that here, just as in the
case of the real part, the lowest-order nonvanishing dia-
grams will give the main contribution, mocking up
higher-order effects. Considerable progress has already
been made in relating the Skyrme interaction to the g ma-
trix for a realistic interaction. Further work along
these lines is clearly important, but is outside the scope of
the present paper.

The extended Skyrme interaction' can also be used to
calculate the nuclear incompressibility and the mean
field, which are key elements of the nuclear equation of
state and of dynamical descriptions of nucleus-nucleus
collisions. In the present work we focus on the mean-free
path as a specific example of the quantities of interest.

In Sec. III the extended Skyrme interaction is intro-
duced brieAy, and the elements of the Green's function
approach are reviewed. The section ends with a discus-
sion of the imaginary part of the optical potential and the
mean-free path. Section IV first presents our results for
nuclear matter. The connection to finite nuclei is estab-
lished via the local density approximation and compar-
isons to data are displayed. The parameters of the
Skyrme interaction used here are identical to those suc-
cessfully used in bound-state and optical-potential calcu-
lations. ' ' ' Our findings are summarized in Sec. V. Cal-
culational details are relegated to the Appendixes.

II. QUALITATIVE ESTIMATES

In the energy range of our interest (up to 200 MeV),
the total (elastic) cross section for nucleon-nuleon scatter-
ing in free space (averaged over isospin) can be roughly
represented by

600
g E

where E is the laboratory energy in MeV, and the cross
section is given in units of fm . Using p=0. 16/fm for
normal nuclear matter density, we then obtain from the
standard kinetic argument for the mean-free path of a nu-
cleon in nuclear matter

A,o
= =0.01E,= 1

CTP

i.e., 1 fm for a nucleon of 100 MeV.
The effect of the nuclear medium is completely neglect-

ed (apart from the numerical value of its density) in this
argument. Physically, it is easy to recognize three
different (but not independent) ways in which the nuclear

medium increases the nucleon mean-free path: (1) by the
reduction of the nucleon mass (effective mass), (2) by the
explicit density dependence of the nucleon-nucleon in-
teraction used (density dependence), and (3) by the block-
ing of occupied states (Pauli principle). To gain insight,
here we discuss each of these qualitatively and give a
crude estimate of each effect. Since the effects are not in-
dependent, some double counting is expected at this level.
More detailed calculations are described in the remaining
sections of the paper. Similar discussions for higher den-
sities, where other ingredients also come into play, have
been given recently in the context of nuclear collisions.
(See, e.g. , Ref. 29).

A. EB'ective mass

A reduction of the effective mass of the nucleon, due to
the nonlocality of the single-particle potential, spreads
out the single-particle levels. This reduces the effective
cross sections. In particular, the imaginary potential 8'
contains a multiplicative factor m *. Now, as will be dis-
cussed in Sec. III C, the mean-free path can be written as
the mean lifetime (proportional to 1/W) times the group
velocity. Since the group velocity is inversely proportion-
al to m *,we have

(3)

where A,o represents the value obtained by the simple ki-
netic argument. The extended Skyrme interaction GS2,
mostly used in this paper (see Table I) leads to an
effective mass m*=0.65m. Taken at face value, this
effect alone will approximately double the mean-free
path. (It may be argued that this value of m ' is too low,
particularly in light of the energy brought into the system
by a 100-MeV proton. An effective mass of 0.8m would
correspond to an increase by a factor of 1.56. To allow
for this uncertainty, we will use a factor of 1.8 in the
present estimate. )

B. Density dependence

The explicit density dependence of the two-body in-
teraction has a significant effect. For a Skyrme interac-
tion with the parameters to, t„ t3, and t4 (see Table I)
satisfying the relationship 6t4/t3 = t, lto, the density-
dependent part of the interaction has (approximately) the
same range as the density-independent part. This results
in a significant reduction of the scattering amplitude. We
calculated the numerical value of the reduction for an in-
teraction similar to (but somewhat simpler than) CxS2.
The quantity that governs this reduction is the ratio
t3pl(6to). Since this ratio has the value = —0.27 for
GS2, the scattering amplitude will approximately be re-
duced by a factor (1—0.27)=0.73. The mean-free path
is thus increased by a factor =1/(0. 73) =1.9. By con-
trast, if t4 =0, then the density dependence has no reduc-
tive effect on the mean-free path, since a zero-range
repulsion has vanishing scattering amplitude.
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C. Pauli principle

The important effect of the Pauli principle on the
mean-free path has been stressed repeatedly by a large
number of authors. One of the first thorough investiga-
tions of this effect was carried out by Clementel and Vil-
li. Neglecting the energy and angular dependence of the
nucleon-nucleon cross sections, they obtained an explicit
expression for the increase in the mean-free path due to
the Pauli principle. Their result is written as

A, =XD/Fo(R ) . (4)

The integral F~(R) is referred to as the "Pauli factor, "
and is given by simple calculation in the form

1 —
—,'R '+ —'R '(2 —R) for 1~R (2

1 —
—,'R ' for 2~R (5)

with

R =k /k~=(E+ V)/TF, (6)

where k is the momentum of the incident nucleon, kF and
TF are the Fermi momentum and kinetic energy, respec-
tively, and V is the depth of the potential inside the nu-
cleus. For E=100 MeV, V=30 MeV. Using T~=3S
MeV, we obtain 8 =3.7, and thus F~=0.62. According
to this simple estimate, the Pauli principle increases the
mean-free path by about 50%%uo at 100 MeV. Of course,
the fractional increase gets larger with decreasing energy.

In this paper, the energy dependence of the cross sec-
tion is explicitly taken into account as well. If the cross
section as a function of the relative momentum can be
written as

cr(k) =crc,+o,k +cr2k

then the effect of the Pauli principle can be calculated
separately for each of these terms and we get

op,„];(k)=F()cr()+4F,o,k +16F~cr2k

where Fc, is the "Pauli factor" (5). [The momentum in-
tegral in our general calculation, I',", in (41) of Appendix

a p
8, is proportional to Fo for symmetric nuclear matter.
The detailed forms of the general quantities correspond-
ing to F, and F2 are also given in Appendix B.]

Combining these three effects, we estimate an increase
of the mean-fr'ee path for a 100-MeV nucleon in sym-
metric nuclear matter by a factor of about 1.8
X 1.9X1.S=S over the "free-space" value. Our detailed
calculations, presented in the subsequent sections of this
paper, give an enhancement factor of =4 at 100 MeV. In
light of the fact that the effects discussed above are not
completely independent, the estimated value appears to
be in reasonable agreement with the results of our calcu-
lations.
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III. THEORETICAL TOOLS

A. The Skyrme interaction and parameters

and

+ t2k' 5(r)k+i Wo(o &+oz) k X'5(r)k (10)

We will briefly discuss three versions of the Skyrme in-
teraction, ' usually referred to as conventional, general-
ized, and modified Skyrme interactions, respectively. The
conventional Skyrme interaction consists of terms cor-
responding to two-body and three-body interactions,

V —g U(2)+ y u;~.~~ .
i&j i &j&k

The two-body and three-body interactions are taken as

u,.
' '=to(1+xoP )5(r)+ —,'ti [5(r)k +k' 5(r)]

where r =—r; —r,
k:——.(V; —VJ ) acting to the right,1

21

k'=———.(V; —7' ) acting to the left .1

2i

(12)

(13)

U,j,
i&j

P is the spin exchange operator and o. represents the
Pauli spin matrices. The parameters of the conventional
Skyrme interaction are denoted by to, t„t2, t3, xo, and

0
The generalized and modified Skyrme interactions are

density dep-endent zero-range two-body interactions,
which can be cast into a unified form known as the ex-
tended Skyrme interaction'

V=

u,
' „'=t35(r, —r )5(r —rk ), (11) where

u, =to(1+xoP )5(r)+ ,'t3(1+—x3P )[p(R)] '5(r)+ ,'t, (1+—x,P )[5(r)k +k' 5(r)]

+ ,'t~(1+—x~P )[5(r)p(R)k +k' p(R)5(r)]+t2(1+x2P )k' 5(r)k

+t~(1+x~P )k' 5(r)p(R)k+iWO(o i+o'z) k'X5(r)k (15)

with R=—(r, +r~ )/2. The quantities r;, x;, i =1, . . . , 5 and Wo and ao are parameters of the extended Skyrme interac-
tion. When ao= 1, Eq. (14) specializes to the so-called generalized Skyrme interaction, while putting t4=ts =0 reduces
it to the modified Skyrme interaction. Several parameter sets of the extended Skyrme interaction are listed in Table I.

B. Green's function approach

This approach is based on the fact that the single-particle optical potential is equivalent to the self-energy of the
single-particle Green's function, ' in which the first-order self-energy contributes the main part of the real potential,
while the second-order terms give the main contribution to the imaginary potential. The corresponding first- and
second-order diagrams are depicted in Fig. l. A static potential is implicitly assumed (so that we deal with Goldstone
diagrams ), and the diagrams drawn are meant to include both the direct and the exchange part of the interaction. The
first-order diagram, XH„represents the interaction with the mean field in the Hartree-Fock approximation. Here, we
are mainly interested in the polarization diagram, X, and the correlation contribution X„. However, as we will see, it
is necessary to calculate the mean field for both the single-particle energies (18) and the eff'ective mass m* (23). The
analytical expressions for the diagrams in Fig. 1 read as follows:

VHF(E)=—XHF(k, E)=g n„( kk„~ V~k, k„)~,

X,(k,E)=—,'g (1 n„)(l—n, ) ni(—(k, k&~ V~k&k ) ) „l(E+ei—e„e,+i'), —
pvA,

X„(k,E)=
—,
' g (1 n„)n,ni ((k, k„~ V~k—gi„) ) ~ /(E+e„ei —e, —i'—) .

pvA,

(17)

In Eqs. (16) and (17), the subscript A represents antisym-
metrization and (at zero temperature considered here)
n„=8(kF —k„), with the single-particle energies )ip )iv l/A &~ ))p&&~

fi k
+ ~HF

P

2711
(18)

HF PO CO

where VH+ stands for the Hartree-Fock mean field.
Equations (16) and (17) can be evaluated in infinite nu-
clear matter using the extended Skyrme interaction (14).
The details of this calculation are presented in Appendix
A.

FIG. 1. First- and second-order self-energy diagrams for the
single-particle Green's function. HF presents the Hartree-Fock
mean field, po and co stand for the polarization and correlation
contributions, respectively. The diagrams include both the
direct and the exchange parts of the interaction.
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has been employed. Averaging over the spin and isospin
variables enables us to write the imaginary potential in
the form

7
W= g (f;[I,",'(k )+I',",(k)]+g;I(,",(k)],64~', ,

(20)

where f, and g; for i = 1, . . . , 7 are combinations of
Skyrme-interaction parameters and powers of the density
p and I"' for i = 1, . . . , 7 denote the momentum integrals
occurring. The detailed form of these quantities is given
in Appendix B.

The mean-free path A, can be expressed in terms of the
imaginary potential (20) with the help of the group veloc-
ity U:

g
Au

28' ' (21)

where ~ is the mean lifetime. The group velocity U de-
scribes the physical propagation of the wave packet
representing a nucleon inside nuclear matter:

dE
fidk

where the effective mass m * is given by

d ~HF
pl =m 1

dE

(22)

Equation (21) allows the calculation of the nucleon
mean-free path in nuclear rnatter in terms of the effective
mass m* and the imaginary potential W(20). In order to
connect to experimental information, we need a measure
of the mean-free path in finite nuclei. In contrast to the
experimental analysis of the data, where simple square
wells have been used to represent the nuclei, we wish to
allow for more realistic density distributions. The price
to pay is that a procedure is needed to get the mean-free
path in finite nuclei from the nuclear matter values, and
we resort to the local density approximation. The density
distributons of finite nuclei are taken to have the usual
Woods-Saxon shapes,

p( r) =po( 1+exp[(r —c ) /a ] ) (24)

where, for definiteness, we fix the parameter values as

p0=3A[4~c (1+~ a /c )]

c =(0.978+0.02062 '~
) A ' fm,

a =0.54 fm .

(25)

C. Imaginary potential and mean-free path
h

In the present approximation, the imaginary part of
the optical potential is obtained by evaluating the
second-order diagrams (17) in Fig. 1 with the extended
Skyrme interaction (14). In order to carry out the in-
tegration, the principal integration formula

1 1=P — i—m5(x ) (19)(x+i ri) x

Assuming identical shapes for the proton and neutron
distributions and taking p /p„=Z/(A —Z), the asym-
metry parameter a characterizing nuclear matter [see
Appendix A, Eq. (35)] can be identified as

a=(A —2Z)/A . (26)

Using the local density approximation in Eq. (21) yields a
spherically symmetric distribution of the mean-free paths
at a given incoming proton energy E. We will denote this
distribution by A,(E, r). Since experiments of course pro-
vide a "global" value of the mean-free path at a given en-
ergy in a given nucleus, we need to take a finite-nucleus
average of A, (E,r). It is physical to think about this aver-
age as first carried out along the beam direction and then
transverse to the beam, but the same result can be ob-
tained utilizing the spherical symmetry as

A, (E)= 3 f A, (E, r )4rrr dr
3 R

4~R '
with

R =r 3'~
0

(27)

(28)

where we have chosen ro = 1.35 fm (the value used in Ref.
3 to extract the mean-free path from the data) for the ra-
dius parameter. The sensitivity of the results to the
upper limit of this integration will be discussed in the
next section.

IV. RESULTS

The parameter set labeled GS2 in Table I has been used
throughout the present calculation. In the following, we
first illustrate the dependence of the results on the param-
eters characterizing the infinite nuclear medium the pro-
ton is moving in, and compare to another Skyrme in-
teraction to convey the effect of different Skyrme parame-
ter sets. We then turn to the mean-free path in finite nu-
clei and to comparisons to actual measurements. We
focus on densities up to standard nuclear-matter density,
and on the energy region between 50 MeV and =160
MeV, where good-quality data are available.

A. Mean-free path in nuclear matter

Figure 2 displays the dependence of the proton mean-
free path on the density of nuclear matter at two different
values of the asymmetry parameter e: the upper panel of
the figure pertains to symmetric nuclear matter, while
+=0.2 in the lower panel. The expected strong depen-
dence of the mean-free path on the density is clearly seen.
Above =100 MeV, the mean-free path increases with de-
creasing density. At low energies, however, the energy
dependence of the nucleon-nucleon interaction becomes
important, and (21) and (17) cannot be thought of as
A, -p . At sufticiently high densities the mean-free path
decreases rnonotonically with increasing incident energy
in the energy region considered, while a rnaxirnum ap-
pears at low densities.

The results for asymmetric nuclear matter are similar
to the ones obtained for a =0. To bring out the
difference, in Fig. 3 we display together the proton
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FIG. 5. Radial distribution of the proton mean-free path in
Pb in the local density approximation at different energies.

The divergence as r~ ~ is discussed in the text.

FIG. 7. Average calculated proton mean-free path as a func-
tion of energy in Zr (solid line). The experimental data
represented by the symbols are determined from reaction cross
sections (Refs. 1, 2, 4, and 5). The simple formula A.o=(o.p) is
also shown {dashed line).

quality of the agreement between the data and the calcu-
lations presented later in this paper.

Our final results for 4 Ca, oZr, and 2ospb are presented
as the solid lines in Figs. 6, 7, and 8, respectively. We
compare to data extracted mostly from reaction cross
sections at different energies (symbols, from Refs. 1 —5).
The open circles represent values determined from
optical-potential fits for Pb. Also shown are the re-
sults of the approximation A,o=(op) ' (dashed lines) with
p=0. 16 fm 3. This simple formula (neglecting the Pauli
principle and surface efFects) severely underestimates the
mean-free path in the entire energy range considered. On

the other hand, the "data" scatter reasonably around the
results of the calculation with the Skyrme interaction
GS2, probably without a hint of the overall decreasing
tendency of the mean-free path with energy displayed by
our computation. Considering the uncertainties, howev-
er, it seems fair to extract a band of experimentally al-
lowed mean-free paths from the data for each nucleus.
Our results are consistent with such bands in the energy
region considered.

We carried out the calculations with the additional
Skyrme parameter sets listed in Table I. The mean-free
paths obtained with the other parameter sets are too
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3). The simple formula A.o=(o.p) ' is also shown (dashed line).
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short (=3 fm) in accordance with our earlier finding that
GS2 yields the longest mean-free path in nuclear matter.
Note also that in some of the other parameter sets t4 has
been set to zero for simplicity, in violation of the general
relationship t3/to=6t4/t3. The t4 term gives a small
contribution only, and including it is not expected to
change the above general conclusion.

V. SUMMARY

In this paper, we demonstrated the usefulness of the
extended Skyrme interaction (and, in general, of proper
zero-range forces) in calculations of the mean-free path of
a nucleon in the nuclear medium. The Green's function
technique proved to be very efficient to incorporate the
Pauli effect. Nonlocality enters in our calculations
through the Pauli principle and through the effective
mass. Together, these effects appear to resolve much of
the discrepancy between the simple formula Ao=(o'p)
and experimental data, as pointed out earlier. "' How-
ever, the large uncertainty in the data due to surface

effects should be kept in mind. Nevertheless, the present
results are felt to provide further encouragement for the
application of the extended Skyrme interaction in nuclear
collision calculations.

This work was supported in part by the U.S. Depart-
ment of Energy under Grant DE-FG02-86ER40251.

APPENDIX A

In infinite nuclear matter, the nucleon wave functions
can be taken as plane waves

(29)

where 0 is the normalization volume and g and g
represent the spin and isospin parts of the wave function,
respectively. Evaluating the mean field (16) with the
wave functions (29) yields for the neutron and proton
(distinguished by the index r) potentials, respectively,

V =(m,*/m„) to[(1+ ,'xo)p —(xo+—,')p ]+—,'t, p '[—(1+—,'x, )p —(x, + —,')p, ]

+ [t, (1—x, )+tqp(1 —x~ )+3t~(1+xi )+3t~p(1+x ~ )]k,
40m

+ [ti(1+—,'x& )+t&p(1+ —,'x&)+tz(1+ —,'xi)+t&p(1+ —,'xz)](2kF —k, )
~ +(1—m,*/m, )E .

Here E is the incident energy and the effective mass m is defined in Eq. (23). In terms of the Skyrme parameters,

(30)

Pl ~ Pg
1+ [t i [(1+—'x

) )p —(x ) + —,
' )p,]+t4p[(1+ —,'x4)p —(xq+ —,

' )p,]m,

+ t~[(1+—,'x~ )p+ (x~+ —,
' )p,]+t,p[(1+—,'x, )p+ (x5+ —,

' )p, ] J (31)

In Eqs. (30) and (31) the subscript r stands for the isospin
component. The densities and the Fermi momenta satis-
fy the standard relations

and isospin indices allows the collection of the terms ac-
cording to the momentum integrals I,",' with the
coefficients

2k'
p pn+pp = 3'

k
p~

=——,'(1 —a)p=

k„p„—= —,'(1+a)p =
37T2

with the asymmetry parameter

(32)

(33)

(34)

f, =2[(1+xo+xo)to

+ —,'(2+xo+x3+2xox3)tot3p '

+ —,', (1+x3+x 3 )t 3p '],
f2 p [(2+xo+x 1 +2xox 1 )tot]

+(2+xo +x4+ 2xox4 )tot4p

a =—(p„—p~)/p .

APPENDIX B

(35)
+—,'(2+x3+x, +2x3x] )t3 ]tp

1
1+ao+—,(2+x3+x4+2x3xg)t3t4p ],

f3
=

—,'[(1+x,+x i )t, +(2+x, +x4+2x, x4)t, t4p
The imaginary potential W' (20) is obtained from the

second-order diagrams in Fig. 1. Averaging over the spin +(I+x4+x4)t4p ],
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f4
=

—,
' [(2+xp+xz+2xox2 )tot2

+ ( 2 +x p +x g +2x p x 5 )tp t 5p

+ —,'(2+x3+x2+2x3xz )t3tzp '

1
]. +ao+—,(2+x3+x5+2x3xz )t3t5p ],

fs
=

—,'[(2+x(+x2+2x, x2)t, t2

(36)

g6= —,', [(1+4xz+xz )tz

+2(1+2x2+2xs+x2x5)t2t5p

+(1+4x5+x5)t~p ],
g =—'8'

The momentum integrals entering the second-order dia-
grams can be written as

+(2+x, +x5+2x, x5)t, t~p

+(2+x4+xz+2x4+x2)t~tzp

+(2+x4+x5+2x4x5)t4t5p ],
f6 =

—,'[(1+x2+xz )t2

+(2+x2+x~+2x2x~ )t2t5p

+(1+x~+x5)t5p ],

g, = —
—,'[2(1+4xp+xp)tp

+ —', (1+2xp+2x3+xpx3)tpt3p '

+ )g( 1+4x3+x3 )t3p ]

g2
~ [(1+2xo+2xi+xox& )tot,

I,", Jdk„dkqdk„h, (k, k„,kq, k, )

X5(E+e„—ez —e )

X5(k +k —kq —k ),
where

h, =1,

h4=k „k~
h~= —,'(k „+kq )(k „kq,),
h6=(k „kq )

h7=(k „Xkq )

(38)

(39)

+ ( 1 +2xp +2x4 +xpx4 )tpt4p

+ —,'(1+2x3+2x, +x3x, )t3t, p
'

1 ]+ao+
6 (1+2x3+2x4+x3x4)t3t4p ]

g3 = —
—,', [(1+4x,+x, )t,

+2(1+2x, +2x4+x, x4)t, t4p

+ (1+4x 4+x 4 )t 4p ],
g4 g5 (37)

k „=k —k„, k~ —=k~ —k (40)

The domain of integration in Eq. (38) is con&ned by the
relations k„~k, k& ~ k, , k ~ k

P
where k, , k, , k, , k are the Fermi momenta.

First, momentum addition for particle pairs was car-
ried out to simplify the integrals. This made it possible to
integrate out certain variables while keeping careful ac-
count of the integration regions. After these manipula-
tions, the integrals (38) can be carried out analytically to
yield

1(1)
a p

I(2, )

a p

2 2

[(58p+3k, )k, +2( —Bp)'~ 8( B)]p, —

2

[[358pBi+21(Bi+Bp82)k, +1582k, ]k, +2(78' —38pBq)( —Bp) i 8( Bp)I, —
105k P /3,

2 2
I~ ~: I[1058p83+63(83+Bp84)k +45(Bq+BpBq)k +35Bqk ]k945k /3' /3' P

+2(2183 98o84+582+q)( Bp) ~ 8( Bo)I

(41)

~2I' ', = I[1058pBs+63(Bs+Bp89)k, +45(89+BpB,p)k, +358(pk, ]k,315k P P P P
a

+2(218s —98o89+58pB,p)( Bp) ~ 8( —Bp)J, —

2 2
I~, ~, = I[358p86+21(86+Bp87)k, +1587k, ]k, +(786 —38p87)( Bp)~~28( B)Ip, — —

a
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I', ', = I[1058iiBii+63(Bii+808,2)k, +45(Bi2+BiiBi3)k, +358i3k, ]k,
945k~ P

+2(218„—9808,2+5808,3)( —80) i 8( Bo—) I,
I~ ~ I[1058oBi4+63(Bi4+BOBi5)k +45(Bis+8 oB 6i)k +358

P P P P
a

+2(218iq —9808iq+5808i6)( 80—) 8( Bo—) J I, —'

where

1, if x~0
0(x): '0 'f 0 (42)

[(P. +P.„)p.k'
a p

(P. —P. )(P—, k', P, k',—)],
The combinations 8; in Eq. (41) are defined as follows:

Bo=(P, k —P, k —P k, )/P,

Bi =p, H, +p, H2,

Bz=( ', P. +P,—)P, ,

83=8, —p, p H, H2,

G2 =4+S,
G3 =(P' —P' )/(6p', ) .

Finally,

p.+p;
a a P

(45)

Bg =[2(P, Hp+P, H, )+P, P, (H, +Hi )

+2P, Bi+4P, P, k2]P,

8~=( —",P, +3P, P, +P, )P,

86=(k, —k, ) ——,'80(p, —p, )/p,

87 = ,'(P. P, —)/P—, , —

BS=G&B6—G3Bo ~

B9=G2B6 +G 1B7 2G3Bo

B1o=G2B7 —G3

B =3B +—'SB11 6 4 0

4G1, 4k~+6B6B7+ —,'S Bo ~

B13=3B +4S+—S +-
Bi4=3(Gi —k )k

B,~ =5G, +(3S—2)k

B16=5S—~,

with

H, =P k +(P, —P )k,

(43)

(44)

For symmetric (N =Z) nuclear matter these expressions
simplify considerably. We 6nd

Bo—k kF,

8, =2P k

—I0 p2
3

83 =3P'k

Bq=14P k

4&
5

(47)

and the first three I„in (41) reduce to the following sim-
ple equations:

I'"=ckF (R),
I' '=ck F,(R),
I' '=ck F2(R),

(48)

Fo(R) =1——,'R

where c =2ir k~ /(3p), and the functions F„are the quan-
tities used in Eq. (8) with R defined as in Eq. (6). For
R =k /k~ + 2 we have

and

H2=p k —(p, —p, )k, F, (R) =1——', R ' —
—,'R

F2(R ) = 1+—'R ' ——"R 2 ——"R
5 35 315

(49)
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