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By considering a number of nonrelativistic potential models, the relationship between the S,
scattering length and the root-mean-square radius of the deuteron is studied. It is found that this
relationship for certain classes of potentials is characterized by approximately straight line graphs
similar to the one obtained by Klarsfeld et al. for a set of realistic nucleon-nucleon interactions.
The implication of this study is that nonrelativistic nucleon-nucleon potentials of the types con-
sidered must include nonlocal components in order to be able to predict simultaneously the experi-
mental triplet S-wave scattering length and the root-mean-square radius of the deuteron.

I. INTRODUCTION

A number of nonrelativistic potential models give
reasonable descriptions of the nucleon-nucleon interac-
tion. Since these models are fitted to elastic scattering
data and the deuteron properties, they are approximately
equivalent on the energy shell, but because of the limited
amount of additional data used in the fitting they lead to
different off-shell properties of the transition matrix. In
order to determine which of these potentials provides the
most accurate description of the nuclear force, one needs
to study physical properties that depend on the short-
and medium-range behavior of the wave function.

In a precise comparison of certain low-energy proper-
ties predicted by a variety of realistic potentials, Klars-
feld et al.! found a severe constraint on the relationship
between the triplet scattering length and the root-mean-
square (rms) radius of the deuteron. The graph of the
triplet scattering length as a function of the rms radius
for various potentials is a straight line. (See Fig. 6 of Ref.
1.) Since this line, i.e., the a, —r,, relation, does not pass
through the experimental region but below it, it appears
that realistic nonrelativistic potentials are unable to fit
within experimental error the triplet scattering length
and the rms radius of the deuteron simultaneously.

Explanations for this discrepancy have been sought.
Klarsfeld et al.! rule out meson-exchange-current effects,
as they give corrections to the matter radius which in-
crease rather than decrease the disagreement between po-
tential models and experiment. Using one-dimensional
models Toyama and Nogami? have investigated the effect
on the scattering length and the rms radius when the
Dirac equation rather than the Schrodinger equation is
used as the fundamental equation of motion. They find
that the same linear a, —r,, relation holds for both rela-
tivistic and nonrelativistic models. Hence they conclude
that relativistic calculations will not give agreement with
experiment. Although their analysis is limited to one-
dimensional models, preliminary calculations with three-
dimensional models using the Dirac equation with separ-
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able potentials and their phase equivalent nonrelativistic
potentials lead to the same conclusions.?

Another possible avenue of investigation involves the
quark and other exotic degrees of freedom in the
nucleon-nucleon interaction. However, a prior question
is whether within the framework of nonrelativistic poten-
tial models it is possible to find potentials whose scatter-
ing lengths and rms radii correspond to points that do
not fall on the linear a, —r,, relation of Klarsfeld et al.!
If such points are found, what characteristics do those
potentials display that are different from the set of realis-
tic potentials that yielded the results of Refs. 1 and 2?

In this paper several classes of potential models are
considered, all of which have the same bound-state ener-
gy, namely, the deuteron energy. By varying some pa-
rameter, different members of a particular class of poten-
tials are generated along with their scattering lengths and
rms radii. In this way one obtains the a, —r,, relation for
that class of potentials. Since Toyama and Nogami? sug-
gest that the @, —r,, relation may be sensitive to the non-
locality of the potential, some of the potential models are
constructed to have different degrees of nonlocal behav-
ior. The results show indeed that the nonlocal potentials
yield a, —r,, relations that are shifted in the right direc-
tion by sufficiently large amounts, so that potentially the
discrepancy between experiment and theory can be
resolved by including nonlocal parts in realistic interac-
tions.

It must be pointed out that the calculations of this pa-
per are model calculations. Higher-energy scattering
phase shifts can be shown to vary significantly in these
models, as is also noted in Ref. 2. One can, in principle,
constrain the phase shifts to the experimental phases by
employing more complex models, but that would not
alter the qualitative conclusions of the nature of the
a, —r,, relation. It should be noted that the a, —r,, rela-
tion from the analysis of realistic potentials by Klarsfeld
et al.! and those obtained in this paper using much
simpler models are very similar.

In Sec. II several classes of potentials are introduced to

1437 ©1989 The American Physical Society



1438

compare their @, —r,, relations. The effect of D-state
probability on this relation is also investigated. The
consequences of several types of nonlocal potentials are
analyzed in Sec. III. Section IV is a discussion of the re-
sults.

II. SCATTERING LENGTHS AND rms RADII

In order to study the a, —r,, relation, model calcula-
tions with a variety of elementary interactions are per-
formed. The interactions are chosen so that in many
cases analytical expressions for the scattering length and
rms radius are obtained.

A. S-state interactions

For the S-state interactions the /=0 partial-wave
Schrodinger equation is employed. The basis of ortho-
normal wave functions in the S state is taken to be*

(p/r)=V2/msin(pr) . (2.1)

The normalized bound-state wave function is denoted by
u (r) in coordinate space and by

Tl(p)=\/2/1rf0°° sin(pr)u (r)dr (2.2)
in momentum space. )

The scattering phase shift 6(k) is determined from the
asymptotic form of the scattering wave function in coor-
dinate space u (k,r), where k? is the center-of-mass ener-
gy of the system. Thus as r— o,

u(k,r)~V2/msin(kr +8) . (2.3)
At low energy an effective range expansion holds; in the S
state it is

k cot8(k)=—i+lrtk2+ cee
a, 2

(2.4)
where a, is the scattering length and r, the effective
range.
The rms radius of the bound state is denoted by r,,,
where
r2=1(ry=1 [ " r2uXrydr , (2.5)
4 4 0
and where u is normalized to unity. When the bound-
state wave function is found in the momentum represen-

tation, e.g., for separable potentials, it is easier to employ
a relation equivalent to Eq. (2.5), namely,

2._|f°°
r—_
LI UM

In the remainder of this subsection a number of poten-
tials acting only in the S state are introduced. These
models have different characteristics in terms of local and
nonlocal properties, incorporation of the hard core, and
the manner in which the potential goes to zero as the
nucleon-nucleon separation distance increases.

2
dp . (2.6)

du
dp
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1. Separable effective range interaction

A nonlocal potential of the separable type giving the
two-term effective range formula exactly in momentum
space is®

Vip,p')=—Aw(ph(p’), 2.7
where
=__PY
v(p) PR (2.8)
The scattering length is given by the expression
a, L (2.9

Ty =2/(mAy)

The condition that the potential of Egs. (2.7) and (2.8)
support a bound state is

a=—y+iriy*>0, (2.10)

where a? is the binding energy. The scattering length

may be written in terms of a and y, so that
aty
ay

Using the bound-state wave function in momentum
space, one obtains the rms radius in terms of an integral,

a,= (2.11)

_2p4__p27/2+,;/2a2)2
(p2+,y2)3(p2+a2)4
Throughout this paper the numerical value «a is fixed by
the deuteron bound-state energy; i.e., a=0.2316 fm L.
The relationship between the scattering length and the
rms radius may be studied by using Egs. (2.11) and (2.12),
i.e., by calculating these quantities for different values of
Y.

a 2 =4
#(a+y) fo

=

dp. (2.12)

2. Yamaguchi potential

The Yamaguchi potential® has the form of Eq. (2.7)
with the form factor

2
vip)=—LE 2.13)
p°+B
Its scattering length is known analytically as
— 2 (2.14)
ST B4 '
There is one bound state when
a=—B+§~\/rrk1/3>0. (2.15)

This condition is used to determine A, for a given value of
B. The bound-state wave function in coordinate space
has a simple form

u(r)=N(e_“’*e_B’) R (2.16)

where N is the normalization constant.
The scattering length and rms radius are therefore ra-
tional functions of & and f3;
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g = 2atpy 17 Vith
Y aBla+28) . o . v(q);(q)
and I,-j(k ) =P fO dq?—?’ L] =1,2 (2.27)
;L= 1 (a+B)*+aBla+pB)P+4a*F (2.13)  The scattering length is
" 8 azﬁz(a +B)2 ) ) S(k)
a,= — lim 209LY) (2.28)

Thus for a given binding energy, 8 may be varied to yield
the a,-r,, relation.

3. Hulthén potential

The scattering and bound-state solutions for the local
Hulthén potential
—ur

—_y e
Vin=—Vo——0p

2.19)
are well known.” This potential supports one bound state
when

Vo

1< — <4 . (2.20)
u

The bound state has the same ground-state energy and

wave function as the Yamaguchi potential, provided that

Vo=B*—a? p=B—a. (2.21)

In that case r,, is that of Eq. (2.18) and the scattering
length is expressed as an infinite sum
2d* g 1

- , (2.22)
YT B 2 ni—d)

where d =(B+a)/(B—a). Since the Hulthén and
Yamaguchi potentials whose parameters are related
through Eq. (2.21) have the same bound-state wave func-
tions, their rms radii are also the same for each value of
3, whereas the corresponding scattering lengths are
different.

4. Rank-2 separable potential

Consider now a two-term separable potential of the
form

Vip,p') =M (plv(p")+A0,(plv,(p’) . (2.23)
Its phase shifts can be expressed as
tand(k)=— - ZJX (kkz)) , (2.24)
where
NE)=Aw2(k)[1—A 5 (k?)]
+2 A0, (K)o, (k) 5 (k?)
F A3 (R[1—A (k)] (2.25)
and
Dk =[1= ATy (k)] 1= Ay L5 (k)]
(2.26)

—MALI3, (k) ,

k-0 k

Depending on the values of the strength and range pa-
rameters the potential supports no, one, or two bound
state(s). The real zeros of D(—a?) are the bound-state
energies with bound-state wave functions,
N 1—}\,1111(—(12)
u(p)=— Ao (p)+—————
p p2+a2 1lp Iu(_az)

UZ(p) ’

(2.29)

where N is the normalization constant. The rms radius
r,, is obtained using Eq. (2.6).

As a specific example of such an interaction, v; and v,
are taken to be

(2.30)

so that A,, A,, B;, and B, are the parameters of the in-
teraction. To illustrate typical @, versus r,, behavior,
three different situations are considered.

Case 1. There are two bound states with the deuteron
corresponding to the excited state. The system is
artificial, but nevertheless instructive to determine wheth-
er the a,-r,, relation is different for the case of one or two
bound states. To realize this situation, 3, is taken to be
the running variable, A, is chosen so that there is a
strongly bound state when A,=0, 3, is set equal to 23,
and A, is determined from the condition that D(—a?)=0.

Case 2. The interaction supports only one bound state
and is strong in the sense described below. For given f3;
one defines

ko=—%ﬁl(a+ﬁl)2 , (2.31)

the potential strength of the rank-1 Yamaguchi potential
with a? the bound-state energy of the deuteron. The
strengths A, and A, are defined in terms of Ay i.e.,
A1=11A3 and A,=—10A,. The range parameter 3, is
then determined from the bound-state energy condition,
D(—a?)=0.

Case 3. This case is the same as case 2, except that A,
is set equal to 1.1Ay and A,= —2A,. In the last two cases
the potential has short-range repulsion with medium- to
long-range attraction.

5. Sticky hard core

To simulate a potential with a hard core, a core with
zero-range attraction is employed. Such a potential may
be obtained from a hard core with an attractive &-shell
potential at the core surface. For this potential the
bound-state wave function is
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Ne % forr=c,
u(r)=

0 for0<r<c. (2.32)
The rms radius is easily determined as
1 | 172
4
=5 " 2 2.33
Tm 2 2ac 2a2c2 ] ( )

Using the effective range expansion at the bound-state en-
8
ergy

a=Lt+1,42, (2.34)
a;
where
r==%c [3—3 <+, (2.35)
a; a;
one obtains an equation for «,
a=ttc|i—L 4 |2, 2.36)
a, a, 3a, .

The core radius c is varied, so that for the given «, the
quantities @, and r,, are determined from Eqgs. (2.36) and
(2.33).

6. Woods-Saxon potential

One might surmise that the a,-r,, relation of Klarsfeld
et al'isa consequence of the one-pion-exchange tail that
is common to the potentials in their analysis. In order to
study the effect of the manner in which the potential falls
off to zero, a class of potentials with different edge or
surface-behavior is considered. One such class of poten-
tials is obtained by varying the range and surface thick-
ness parameters of the Woods-Saxon potential

1

==V 14er—RV/t

(2.37)

The parameters R and ¢ are taken to be the free parame-
ters and ¥V, is fixed by the bound-state energy of the
deuteron. The rms radius is obtained by integrating the
Schrodinger equation numerically and the scattering
length by integrating a differential equation for the
scattering length derived by using the variable phase
method of Calogero.’ In the limit as ¢ approaches zero,
the potential becomes a square well with radius R.

In Fig. 1 the scattering length is plotted as a function
of r,, for all the potential models discussed above except
the Woods-Saxon potential and the rank-2 separable case
with two bound states. The graph of the latter case coin-
cides with the strong rank-2 case shown. Each of the po-
tential types, all of which give the same deuteron binding
energy, produces a characteristic a, versus r,, curve. The
curves are approximately parallel straight lines. The in-
terval of r,, values along the horizontal axis of Fig. 1 is
the same as that of Ref. 1 for realistic potentials. The ex-
perimental point and the size of experimental errors are
indicated on the graph, not so much in order to make

I8
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FIG. 1. Scattering length vs rms radius calculated with
different triplet S-wave potentials as indicated. All the poten-
tials have one bound state with the deuteron binding energy.
The cross gives the experimental region (Ref. 1).

comparisons with experiment, but rather to be able to
compare the size of the effects to the magnitude of the
discrepancy between experiment and theory and also to
the size of the experimental uncertainties. Clearly the D
state and more realistic forms of the potential ought to be
considered before comparison with experiment can be
made.

Figure 2 illustrates the model dependence of the a,-r,
relation over a greater range of values of r,,. The range
of the interactions decreases as one moves along the
curve to the left and down. Thus for short-range poten-
tials there is a ““‘universal” curve, but for the longer-range
potentials the model dependence becomes evident. On
this graph the Woods-Saxon potential results are plotted
as well. The Woods-Saxon (and/or the square-well) po-
tentials give an a, vs r,, curve which is remarkably in-
sensitive to the parameters ¢ and R.

The calculation of the Woods-Saxon potential can be
repeated for other local potentials. Figure 3 illustrates
the resulting graphs for the exponential, Yukawa,
Hulthén, and Woods-Saxon potentials. The model
dependence is due to the smallness of the range parame-
ter. For instance, the graph of the Yukawa potential,
V=—Vye #/r, covers values of the range parameter
from ©=0.66 fm~! to ©=0.78 fm™!, whereas the Yu-
kawa potential with a core of 0.5 fm has range parame-
ters from p=1.69 fm~! to u=2.23 fm~'. It should be
noted that the local potential curves cluster below those
of nonlocal potentials.
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FIG. 2. Scattering length vs rms radius calculated with
different triplet S-wave potentials giving the same deuteron
binding energy.
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FIG. 3. Scattering length vs rms radius for a number of local
potentials. When the hard core is included it is taken to be 0.5
fm. The exponential plus core and the Yukawa plus core results
lie on top of one another.
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B. S and D states

In order to study the effect of the tensor component of
the nucleon-nucleon force, two models are considered,
the boundary-condition model'® and the Yamaguchi in-
teraction with the tensor force.!! These interactions cou-
ple the 35, and 3D, states in both the bound-state and the
scattering systems.

1. Boundary-condition model

In the boundary-condition model the interaction be-
tween the two nucleons is formulated in terms of an
(energy-independent) logarithmic derivative of the wave
function at a fixed separation distance r,. As in Ref. 10,
the boundary condition is taken to be

dy

- =F¥(r,) .

r=r0

o (2.38)

In the triplet state, W(r) has two components, written as
¥, (r), with the same total angular momentum but
different orbital angular momentum; i.e.,

1pl,O
1pl,2

The coupling of these components due to the tensor force
is realized by letting F be a nondiagonal 2 X2 matrix,

fro (1”
f (1” S
Fesbbach and Lomon'® choose values for the elements of
the matrix F, so that the scattering and bound-state data

are reproduced. For our purposes we need the triplet S-
state scattering length a,, where

Y(r)= (2.39)

. (2.40)

1_1 1+ 1 , (2.41)
a ro V4
with
(f(lt) )2
= 2.42
P=rf10 f+3 ( )

The rms radius for the deuteron is obtained by assuming
that the bound-state wave function is zero for r <r; and
satisfies a free-particle wave function for »r > r,. The S-
and D-state radial wave functions are

coswNge ™%, r=r,
u(r)=coswfs(r)= 0, r<ry, (2.43)
w(r)=sinwf,(r)
. - 3 3
sinoNpe ™% 1+?;+a2r2 , r2rg
o, r<rg. (2.44)

The functions « and w are normalized so that
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[ drlu¥n+winl=1, (2.45)

and fg and f are both normalized to 1 to fix the nor-
malization constants Ng and N,. Then sin’w is the D-
state probability of the deuteron. Inserting the expres-
sions of u (r) and w(r) for r 2 r, in the boundary condi-
tion, Eq. (2.38), yields two equations which can be rewrit-
ten as expressions for tanw,

i

a’r+3a’r}+6ary,+6

(f(lt) )2=[_a"o"‘(f10+1)]

azr(z) +3ary+3
The rms radius is 7,, = 1({ r2))172, where

14242

——(f12+1)‘ .

144+74(2ary)+14(2ary)* +(2ar,)?
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_ rofsrg)—(f1o+1)fs(rg)
a ffplre)
f&t)fs("o)

rofp(ro)=(fiz+Dfplre)

where fg p(r)=df p/dr. The two expressions for tanw
can be equated to give the eigenvalue equation for a,

tanw , (2.46)

tanw = (2.47)

(2.48)

(r?)=r2|cos’w
0

2arg  (2ary)?

Rather than solving the eigenvalue equation, Eq.
(2.48), one assumes that a is known from the binding en-
ergy of the deuteron. In fact, given a,w, fq,7y, One can
determine f{" from Eq. (2.46), and once f\" is known,
one uses Eq. (2.47) to obtain f,. Since the parameters of
the interaction are now determined, the scattering length
can be evaluated from Egs. (2.41) and (2.42) and the rms
radius from Eq. (2.49).

By letting ry be a running parameter, a graph of q,
versus r,, is obtained as shown in Fig. 4. A number of

5.60 - 1

5.55 - 1

a(fm)

5.35

-
=
L-

1 1 1 1 1
5.30 1.95 1.96 1.97 1.98 1.99 2.00

FIG. 4. Scattering length vs rms radius calculated with the
boundary-condition model, giving the correct deuteron binding.
Each curve corresponds to a particular D-state probability, as
indicated.

48+48(2ary) + 12(2ary >+ (2ary)?

] ‘ . 249

[

plots are made for different D-state probabilities. If one
considers ry to be a constant, but varies f,, then r,, has
a constant value and a, is remarkably insensitive to f .
This is due to the small binding energy of the deuteron.
In the limit as a approaches zero, the eigenvalue equa-
tion, Eq. (2.48), relating fm,fn,f(l”, is the same as the
equation obtained from Egs. (2.41) and (2.42) when the
scattering length is infinite.

2. Yamaguchi interaction with tensor component

In order to introduce coupling of the S to D state with
separable potentials, Yamaguchi and Yamaguchi'! con-
sider a separable potential which in momentum space has
the form

(pl¥lp')=—2rg(p)g(p’), (2.50)
where
1
g(p)=C(p)+7§~Slz(p)T(p) ) (2.51)
with
S,z(p)=iz(¢rl-p)(02-p)—al-a2 . (2.52)

p

The vector o; is the Pauli spin operator for the ith nu-
cleon. The deuteron wave function is

Pp)= |7(p)+ =S u(PID(p) [T (2.53)
where 1" is the triplet two-body spin function and
a(p=2c@) (2.54)
a“+p
w(p=2TL) 2.55)
a“+p

The constant N is fixed by normalizing ¥(p) to unity.
The expectation value of r2 can be written
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2
du
dp

do

2
13 B Ap)
dp

p?

The form factors are taken to be those of Ref. 11,
1 —p?

— > T'(p)=

p 2 +B2

- (p2+72)? :
The D-state probability is

(ry=[d’% (2.56)

C(p)= (2.57)

_ t*(5a+y)

2
S 1 42 (5a+7y)
rYlaTy

P
b aBla+B)?  8ylaty)’

b

(2.58)

where the explicit reference to A has been eliminated by
the eigenvalue equation for the energy.

In this calculation, values for a, B, ¥, and Pj, are as-
sumed and t is determined from Eq. (2.58). The scatter-
ing length is given by

1 _aBla+2p) 1 o’Bla’+4af+y?)
a  2a+p? 16 yiat+y)

and the rms radius is obtained by performing the integral
of Eq. (2.56). Figure 5 gives the a, vs r,, characteristics
for various D-state probabilities.

The pattern is the same as for the boundary-condition
model; an increase in D-state probability produces a line
parallel to the zero D-state probability but shifted in a
downward direction. Since the D-state wave function has
a maximum at larger distances than the S-state wave

, (2.59)

5.60

5.55

5.50

a(fm)

5.45

5.40

5.35

1
1.95 1.96 1.97 1.98 1.99 2.00

FIG. 5. Scattering length vs rms radius calculated with the
Yamaguchi potential with tensor force. The potentials all yield
the same deuteron binding energy. Each curve corresponds to
the D-state probability, as indicated.
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function, one expects that including a D-state component
increases the rms radius. In both cases of the boundary-
condition model and the Yamaguchi potential, including
a D-state component decreases the scattering length.
Similar behavior is expected when D-state components
are included using local potentials. Thus we conclude
that local potentials with D-state components and the
boundary-condition model as well as the class of realistic
potentials considered by Klarsfeld et al.,! all yield a,-r,,
relations which pass below the experimental region. In-
troducing strongly nonlocal potentials such as the separ-
able potentials of the Yamaguchi or effective range
variety gives curves which lie above the experimental re-
gion for pure S-state calculations, but as the D-state com-
ponent is increased the curves move down to and eventu-
ally below the experimental region.

III. EFFECT OF NONLOCALITY

In order to understand the effect of nonlocality, vari-
ous models in which the nonlocality is varied by changing
some potential parameter are considered. Since these are
model calculations to understand the features of the in-
teraction that will influence the a,-r,, relation, only 3S,
systems are studied. Inclusion of the D-state component
will bring about changes in the a,-r,, relation similar to
those obtained in Sec. II B.

A. Nonlocal square-well potential

The nonlocal square-well potential, defined as

sinhfBr sinhf3(b —r’) ,
AB c=r<r'<ob
sinhBb (sinhB(b —r)sinhBr’ ,

c<r'<r=<b

Virr')=

(3.1).

was first studied by Razavy and co-workers.!? The pa-
rameter 3 determines the “nonlocality.” As B— o, the
interaction approaches a local square-well potential, and
B=0 corresponds to a separable square-well potential.
Assuming a hard core for 0<r <¢, the nonlocal square
well for ¢ <~ < b, and no interaction for r > b, one obtains
the scattering length

L mtv -1
a,=b— [ocotvy(b —c)+vocothug(b —c)] 7!,
HoVo
(3.2)
where
w=Lipr-ay2, =Li-p+p-an'1.
(3.3)

In order to determine the rms radius, one needs the
bound-state wave function,!?
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u(r)=0, 0=r=<c

_ 22, sinv(r —c)
A | sinv(b —c)
2 sinhu(r —c)

+ (v +
(Vta sinhu(b —c)

c<r=<b

=Ee %, rzb, (3.4)

where A4 and E are integration constants and

2=1{B++[(BP—a®)—4p’L]'?}
B —a?+[(B—a?)?—4B"A]'2} .

(3.5)
(3.6)

V2 =1{-
The continuity of u and u' at » =b yields an eigenvalue
equation for a,

—a(u?+v)=v(u?—a?)cotv(b —c)

+u(v?+a?)cothulb —c) . (3.7

Rather than solving for a, a is assumed to be known.
Given also 3, ¢, and b, one determines A from Eq. (3.7).
When there is one bound state, A must satisfy the ine-
qualities

4 20 .2 2
> ™ 7 Trz(a +132) <A+a?
Bb—c)  Bb—c)
4 2 2+ 2
Tyt g
1683°(b —¢) 43“(b —c)
T T T T T
5.60 | h
5.55 | N
5.50 |
&
=
5.45 |-
5.40 = (c=0 fm, b=2.4 fm) |
-------- (.1, 2.25)
-—-(.2, 2.17)
5.35 | - = (.4, 1.945) T
5.30 L L L . .
1.95 1.96 1.97 1.98 1.99 2.00
r o, (fm)

FIG. 6. Scattering length vs rms radius for the class of nonlo-
cal square-well potentials. The quantities ¢ and b are constants
of the potentials (see text). In order to generate each curve, S is
varied and for each the binding energy is used to calculate the
potential strength A.
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The continuity of u at » =b is used to express E in terms
of A and A is determined from the normalization. Both
the normalization and the rms radius can be evaluated
analytically, resulting in a somewhat lengthy algebraic
expression for the rms radius. The results, graphed in
Fig. 6, show a characteristic a, vs r, behavior. The
curves for different sets of potential constants are similar
when the nonlocality parameter S is the running variable.
Curves generated for given values of the nonlocality pa-
rameter B by varying potential constant b (or c) are
grouped even closer together and are therefore not
presented here. This class of potentials, although in-
teresting since it gives analytic wave functions for poten-
tials with differing degrees of nonlocality, appears too res-
trictive to yield the differences in the results of separable
and local potentials of the magnitudes that are seen in
Fig. 1.

B. Scattering-length-equivalent potentials

Phase-equivalent potentials have been used in a num-
ber of contexts in order to delineate the off-shell behavior
of classes of potentials having the same on-shell proper-
ties.!> Here such a class of potentials, all of which yield
the same scattering length but different rms radii, is con-
sidered. They may be generated by applying a unitary
transformation of short range to a particular potential

model. Following Coester et al.,'* consider the transfor-
mation
(r|Ulr")=8%r—r1")—g(r)g(r'), (3.9)
with
[ grrrar=-1 . (3.10)
0 27

The wave function of the transformed interaction u(r) is
related to the untransformed wave function u (r) accord-
ing to the equation

uT(r)=u(r)——41'rrg(r)f0oo gru(r')r'dr’ (3.11)
The function g (r) is of short range so that the transfor-
mation does not affect the scattering phase shifts and the
scattering length, which are determined by the asymptot-
ic form of the wave function. The rms radius, however,
depends on the details of the wave function and hence is
affected by the transformation. The form of the transfor-
mation is taken from Sauer,

g(r)=C(1—er)e 7", (3.12)

where € and y are parameters [y is constrained so that
g(r) is a function of short range] and C is fixed by the
condition given in Eq. (3.10).

Two cases of untransformed potentials are considered,
namely, the Yamaguchi and Hulthén potentials, whose
parameters have been fixed by the deuteron binding ener-
gy and the triplet S-wave scattering length. Although the
bound-state wave function of the Yamaguchi and
Hulthén potentials have a similar form, the parameters in
the bound-state wave functions are different when the po-
tentials are forced to yield the same scattering lengths.
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The resulting rms radii as a function of € for the two
classes of interactions are shown in Fig. 7. These poten-
tials yield values of the rms radii ranging from r,, =1.89
to 1.97 fm for the transformed Hulthén potentials and
from r,,=1.86 to 1.94 fm for the transformed Yamagu-
chi potentials.

C. Bound-state-equivalent potentials.

Besides scattering-length-equivalent potentials one can
study a class of nonlocal potentials, all of which have the
same bound-state wave function (and rms radius) but
different scattering lengths. Consider the Schrodinger
equation for a given bound-state function uz(r), which is
generated by a local potential

dZuB
dr?

Alternatively this wave function could be generated by a
separable nonlocal potential — Vg and would satisfy the
equation

— Vi (Nug(r)=—a’ug(r) . (3.13)

dzuB ©
— —v(r)fo v(rug(r')dr'=—a*ug(r). (3.14)
The functions — ¥V (r) and — Vg(r,r')=—v(r)v(r') are

the local and separable potentials, respectively, with the
negative sign to make ¥V, and Vg positive when the in-
teractions are attractive. In either case the potential can
be determined from the Schrodinger equation when the
bound-state wave function is given. The class of bound-
state equivalent potentials studied here is obtained by

2.00 T T T T

— Yamaguchi

1.98 -

196 | .

r(fm)

e(fm'l)

FIG. 7. Root-mean-square radius as a function of € for
classes of phase-equivalent potentials. The parameter y is set
equal to 3.0 fm ! and the scattering length is fixed at 5.42 fm.
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taking a linear combination of the local potential V
satisfying Eq. (3.13) and a separable potential to be deter-
mined by insisting that the resulting interaction yields the
same bound state. Therefore
d 2u B 2

o2 —[AV,+(1—A)Vglug=—a‘ug(r), (3.15)

where Eq. (3.15) reduces to Egs. (3.13) or (3.14), depend-
ing on whether A=1 or A=0, respectively. Combining
Eqgs. (3.13) and (3.15), one obtains the integral equation
for v (r),

v'(r)fow v (r ug(r)dr' =V, (rug(r) , (3.16)
which can be solved to give
b (r)= Vitrhug() (3.17)
(L v ugornar
Thus the nonlocal potentials
Virr')=—AV,(r)(r —r')—(1—=A (r)v(r’) (3.18)

for different values of the parameter A yield the same
bound-state wave functions, but different scattering wave
functions. Consequently, all these potentials have the
same rms radius, but different scattering lengths. The
rms radius is straightforward to calculate once ug(r) is
specified. To obtain the scattering solutions of the com-
bined local and separable potential, Eq. (3.18), a method
similar to that employed to solve the separable plus
Coulomb force problem in coordinate space is used.!®
One needs to solve the integro-differential equation

d? 2
— +AV, (r)+k

) ul(k,r)

=== [ "ok rdr .

(3.19)
Define operator
dei:;+AV,_(r)+k2, (3.20)
and write the wave function u (k,7) as
ulk,r)=uy(r)+cug(r), (3.21)

where u; and ug are the regular solution of equations
Lu; (r)=0 (3.22)
and

Lug(r)=v(r) . (3.23)

The quantity c is a constant determined by inserting the
expression (3.21) for u (k,r) in Eq. (3.19). Thus c is found
to be

_ —U=A)up)
1+(1—A)(v,ug)

c= (3.24)

where
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@)= [ To(rurdr . (3.25)

Note that u;(r) is the solution of the local potential
— AV, (r). The regular and the irregular solutions of Eq.
(3.22) are written as y, (k,r) and z, (k,r) and have asymp-
totic behavior

yik,r)~V2/m sin(kr +8,) , (3.26)
z,(k,r)~V2/mwcos(kr +8,) , (3.27)

where &, is the scattering phase shift of the potential
— AV (r). From Eq. (3.23) it follows that

u(k,r)~yk(k,r)—;T—Iizk(k,r)fomyA(k,r')v(r’)dr’ ,
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us(k,)= [ % Ga(rnrkw (rdr’ (3.28)

where G,(r,r';k) is the Green’s function of the operator

L,
Gulrrk)=— —Z%yk(k,ﬁzx(k,r'), r<r

T ,
=— ?Ezk(k,r)yk(k,r ),

The scattering solution of the full potential is

u(k,r)=y,(k,r)+c fow Gi(rrk(r)dr’ ,  (3.30)

r<r. (3.29)

which behaves asymptotically as

172
2 . e ®© ' ’ ’
~ 1= ] sin(kr —I-SA)—EEcos(kr +8A)f0 yilk,r' o (r')dr (3.31)
[
o 5= 3 aiitd. (3.38)
- = arctan , .
tandg = —%fo ylk,r o (r)dr' (3.32) ne1 npu(n’y?—AVy+4k?)
and &g is obtained from Eq. (3.35). The integrals (v,y;,)
so that . ;
and (v,ug) are found numerically by expressing y, (k,r)
2 12 . and z, (k,r) in terms of hypergeometric series.
u(k,r)~ P cosd sin(kr +8, +65) , (3.33) In order to study the extent to which the scattering
S length can be varied when the rms radius is fixed, S is
and the overall scattering phase shift is
5=5,+5; , (3.34) 550 ' ' '
with 5.48 [ 4
(1=A)v,uy )?
tandg = — A (3.35) 5.46

2k 1+(1—A)v,ug)

It follows from Egs. (3.34) and (3.35) that the scattering
length is
a,=a,tas , (3.36)

where a, is the scattering length of the local potential
—AV,(r) and

o (1—M)(w,p,)?
2k2 1+(1=Mw,ug) |

ag=lim (3.37)

k—0

The specific case considered here involves a local po-
tential that has an analytic solution, namely, the Hulthén
potential, Eq. (2.19). The bound-state-equivalent separ-
able interaction is the Yamaguchi potential, Eq. (2.13),
with the appropriate relationship between potential con-
stants, Eq. (2.21). Since both potentials have the same
bound state they yield the same rms radius given by Eq.
(2.18); in fact, all potentials in the class of potentials gen-
erated from the Hulthén potential for ¥ yield this rms
radius. The phase shift §, is written as an infinite sum,

5.44

5.42

~ 5.40
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Q
«” 5.38
5.36
5.34
5.32
5.30 L L L
0.0 0.5 1.0 1.5 2.0
A

FIG. 8. Scattering length as a function of A, the parameter
that mixes a local and separable potential in the class of bound-
state-equivalent potentials.
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found from Eq. (2.18) when « is fixed and r,, is set equal
to 1.95 fm. This also fixes ¥, and pu according to Eq.
(2.21). With these parameters the scattering length as a
function of A is obtained and plotted in Fig. 8. In this
case the scattering length changes by more than 0.14 fm
when A is increased from O to 2.

IV. DISCUSSION OF RESULTS

From the study of simple analytical potential models it
can be concluded that local potentials will not yield a,-7,,
relations which pass through the experimental region.
Local potentials acting in the S state only have graphs
that pass through or below the experimental region. For
the nonlocal square well, which also acts in the S state
only, the curves cluster around the experimental region
as well. The inclusion of D-state components in the
deuteron wave function causes the curve to move down
and away from the experimental region. On the other
hand, S-wave nonlocal potentials of the separable kind
and those with more complex nonlocal behavior tend to
produce a,-r,, relations which lie on the other side of the
experimental point, so that inclusion of the D state moves
the curve closer to the experimental values. The nonlo-
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cality provides sufficient flexibility to simultaneously fit
the triplet scattering length and the rms radius. The fact
that local or nearly local potentials cannot fit both prop-
erties simultaneously may be an indication of a nonlocal
component in the nuclear interaction.

As is well known, nonlocal effective potentials result
when quark degrees of freedom are included in the
derivation of the nuclear interaction and all channels ex-
cept the nucleon-nucleon channel are eliminated.!” It
may be of interest to consider in the realistic nucleon-
nucleon interactions components derived from exotic
processes, such as six-quark and dibaryon components,'®
in order to determine whether their presence leads to
agreement with the experimental triplet scattering length
and the rms radius of the deuteron.
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