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We present a systematic study of single-particle and collective transverse current multipoles in
the ground-state band of odd- 4 axially symmetric deformed nuclei. We analyze the interplay be-
tween single-particle and collective contributions to the total transverse form factors for elastic and
inelastic scattering in a number of nuclei ('Tm, !"”"!'"Hf, 2**Pu), which exemplify different possibil-
ities of ground-state k™ bands (1*,27,27) and of 0dd-Z or odd-N character. We also discuss the
dependence of form factors and static moments on the mean field used to generate the ground-state
wave function. The dominant contribution is found to come from the odd nucleon, except in the
low momentum transfer region (g <1 fm~!) where the core is manifest through its interference with
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the single-particle amplitude.

I. INTRODUCTION

In a previous paper' we presented a detailed analysis of
transverse form factors of rotational even-even nuclei.
We discussed results of numerical calculations for
1549, 156, 158G g, 194Dy, 166 18E 174Yb based on both the
projected Hartree-Fock (PHF) approach and on the
cranking model, using HF+BCS wave functions ob-
tained with different effective interactions. We discussed
the dependence of the form factors on the mean field used
to generate the ground-state wave function, and on vari-
ous assumptions about the nature of the rotational mode.
In this paper we present a similar analysis for rotational
odd- 4 nuclei.

In the odd- A4 case, the transverse form factors receive
two types of contributions:>3 collective and single parti-
cle. The former come from the even-even core and are
similar to those of even-even nuclei; the latter come from
the odd particle and depend strongly on the single-
particle state occupied by the unpaired nucleon. The
analysis made in Ref. 1 applies as well to the collective
contributions in odd-A4 nuclei. Hence, in the present
work we place special emphasis on single-particle contri-
butions, on the interplay between the two types of contri-
butions, and their relative intensities in the entire g range
g <2.5 fm ! of experimental interest.

The single-particle form factors are sensitive to the
quantum number k of the band, to the character (neutron
or proton) of the odd nucleon, and to the mean field used
to generate the single-particle states. In Ref. 4 several
rare-earth odd-proton nuclei with k > 1 were studied. In
order to cover other possibilities, we analyze here !""Hf
and '’Hf as examples of odd-neutron k > nuclei with
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k=1 and k =3, respectively, and 169Tm, 2Py as exam-
ples of odd-proton and odd-neutron k =1 nuclei. Special
attention is paid to the k =1 bands, where the interplay
between core and single-particle aspects is much more in-
volved. To analyze the effect of the mean field we use
HF+BCS wave functions of the Sk-3 (Ref. 5) and Ska
(Ref. 6) effective interactions, as well as Nilsson single-
particle states.

The paper is organized as follows. The theory is sum-
marized in Sec. IT and details of the calculations are given
in Sec. III. Results of numerical calculations are present-
ed and discussed in Secs. IV and V for k =1 (°Pu,'®Tm)
and k > 1 ("""Hf,"°HIf) bands, respectively. Form factors
for elastic and inelastic scattering as well as intrinsic
form factors and static moments are considered in all
cases. The final remarks and conclusions are summarized
in Sec. V1.

II. SUMMARY OF THE THEORY

Following the notation of Ref. 2, we can write the
transverse electromagnetic form factors of axially sym-
metric deformed nuclei, in plane-wave Born approxima-
tion and for a transition within the ground-state band
Ik—I fk, as

IFr(@lier = =

4 A=even>0

(FEM@P

+ 3 [F™MP, (1)
A=odd

where the electric (E) and magnetic (M) multipole form
factors can be expressed in terms of intrinsic matrix ele-
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ments weighted by angular momentum dependent
coefficients. These expressions were developed in the
context of an expansion in powers of the total angular
momentum operator I,. To lowest order in this expan-
sion, the intrinsic multlpoles are independent of the par-
ticular transition considered and depend only on the in-
trinsic structure of the ground-state band.> Denoting by
F°* (0 =E,M) the g-dependent intrinsic multipoles, the
transition multipoles for the case I, > I; =k, can be writ-
ten as

=[I,(I;+1)—L(I,+1D{L;kAO|I k) FE*
H(= 1L — kA2 1k Y FE (2a)

F{M =Lk k) R +(=1) WTRCL — kea2k |1k ) A

Lk DHAMA+D LU+ D
V2MA+1)
X (kkAO|I ok Y FE .

(2b)

Here, F%" are the transverse multipoles of the collective
rotational current (rotational multipoles) that depend on
the nuclear rotational model used to describe the band.
Their explicit expressions can be found in Ref. 2.

The single-particle intrinsic multipoles FY*, FS* de-
pend only on the single-particle intrinsic wave functlon of
the odd nucleon if the even-even core is time-reversal in-
variant as we assume in this work. They are different
from zero only for k0 bands and are given by?

_‘/_4_1

MA —
Fih=

<Xk|?gl}”|Xk) , (3a)

o= “4”<ku? HXE) +8r e T, (b

,\/

For=— <xklf Mxp) =8k 1,,aVAAFNFE  (30)

where a factor V47 /Z has been included in all the
definitions of the intrinsic form factors for consistency
with our earlier paper. T 2* is the m component of the
o\ tensor operator,’ ¥, and X ¢ are the wave functions of
the odd nucleon and its time reverse, respectively, and
a={xelis+lx i3 ) is the decoupling parameter.

Finally, it is also useful to write the long wavelength
limit of the intrinsic form factors in order to relate them
to the static moments, as well as to check the internal
consistency of the calculations. These limits for the M1
intrinsic multipoles are given by

S oMl —¢

I I = ez (4a)
Ml —4q

‘}1_12)57 ez kg (4b)
Mi—_—q 1 _ -1

lxm F% ViZM V3 (gr—gr)b, (k=21 only). (40
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It is useful for later reference to write explicit expressions
for g, and b as well as for the rotational energy and mag-
netic moments:

g = {XxBolx ) (5)
(g —gr )b =agr — Xl + xg? =28 , ©)
E{m———[l(1+1) k?

+8p 10— FVAI+1/2)a] )

k2
#=8RI+_—I 1 [8x—8r + 81 ,(— 1) 172

XQI+1)V2g, 1, (8)

where the operator fi is

a= > (glili+gsisi)

and J is the moment of inertia, whose value will depend
on the particular model employed.

It is clear that the calculated form factors will depend
on the rotational model used to describe the band, and on
the interaction used to determine the mean field. If a
sufficiently extended basis of states is employed to express
the wave functions, results should be independent of the
basis. In Ref. 1 we discussed all of these aspects as they
apply to the rotational multipoles. Here, we complete
this analysis by studying the effect of the mean field on
the single-particle wave functions. We use for that pur-
pose HF+BCS wave functions of the Sk-3 and Ska
effective interactions, as well as Nilsson single-particle
states.

III. DETAILS OF THE CALCULATIONS

As mentioned earlier, in Ref. 1 we analyzed the predic-
tions of different rotational models for the collective
transverse form factors in even-even nuclei (projected
Hartree-Fock and cranking as microscopic models; rigid
rotor and irrotational flow as macroscopic models), com-
paring their predictions for different multipolarities and
nuclei. We also studied the dependence of these form
factors on the mean field and on the basis truncation pa-
rameter. As a result, in this work we take the value
E_,, =30 MeV for the cutoff parameter of the basis states,
because it provides good convergence for the form fac-
tors. In addition, the analysis of the model dependence
carried out there showed important differences among
the predictions of the rotational models for some mul-
tipolarities (i.e., E2). Comparison with the experimental
data available at low momentum transfer (see Table V of
Ref. 1) gave us confidence in the cranking model as a
description of the rotational band. Since we already
know what kind of behavior is expected for the different
rotational models considered, and since in this paper we
are mainly interested in the single-particle contributions
and in their relative importance as compared to the col-
lective ones, results for the collective form factors will be
shown here for the cranking model only. Finally, the
same kind of arguments for using the Sk-3 and Ska
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TABLE I. Input parameters for the Hartree-Fock (by,90,4,,4,) and Nilsson («x,u,8, ) calculations (see text).
by (fm™1) 90 A, (MeV) A, (MeV) bos. (fm) K u B
169Tm 0.492 1.200 0.910 0.766 2.35 0.0637 0.600 0.318
29py 0.485 1.275 0.740 0.590 2.50 0.0450 0.550 0.270
TTHE 0.490 1.200 0.884 0.698 2.34 0.0637 0.420 0.275
" Hf 0.490 1.200 0.884 0.698 2.37 0.0637 0.420 0.285

effective interactions to generate the mean field apply
here, in this case to study how sensitive the single-particle
wave functions are to the interaction.

For odd-A nuclei, the fields corresponding to the
different interactions were obtained by doing one itera-
tion from the corresponding self-consistent field of the
closest even-even nucleus, selecting the orbital occupied
by the odd nucleon according to the experimental k and
parity. We blocked this state from the BCS calculation,
and assigned a pair occupation probability of 0.5. Ten
major shells of the axially symmetric oscillator well in cy-
lindrical coordinates were used to define the basis states
in the Hartree-Fock case.® The Nilsson model states
were also used to compute the single-particle form fac-
tors.

The effect of doing several more iterations from the
even-even case, in order to see how the extra particle po-
larizes the core, was studied in Ref. 9 without observing
significant changes. We repeated these calculations look-
ing for some effect on the form factors, but again the
changes were negligible. All of the results presented are
then for one iteration.

We also point out that all the intrinsic form factors
shown in this paper contain the same center of mass and
finite nucleon size corrections as used in Ref. 1. Namely,
the dipole expression was used for the nucleon magnetic
form factors. For the proton electric form factors we
used the sum of monopoles fitted in Ref. 10 and for the
electric neutron form factors a difference of two Gauss-
ians!! was used.

Before entering into our discussion of the results, we
present in Table I the input values for the HF+BCS and
Nilsson calculations for the nuclei considered. In this
table, by, go, and A, , are HF parameters while «, u, S,
and b, pertain to the Nilsson calculations. In particu-
lar, b, is the inverse of the oscillator length, g, is the axis
ratio (,/®,) used in the deformed Hartree-Fock basis,?

and A, , stand for the gap parameters for protons and
neutrons determined from experimental mass differences.
k and u are the Nilsson potential parameters taken from
Refs. 12 and 13. However, for 2**Pu better results for g,
and u; were obtained by slightly altering the standard
values to those given in Table I. The adopted values fol-
low the general trend of reducing « in heavier nuclei.'*
The deformation B is fixed according to the experimental
value of the quadrupole moment!’ and is in good agree-
ment with the Hartree-Fock results. The oscillator
length is taken as b, = 4 /% fm. The difference between
the oscillator length b ! in the self-consistent calculation
and b, used in the Nilsson calculation is consistent with
the dependence of b, on the basis size, as studied in Ref.
16. In Table II the results for binding energies, radii, and
quadrupole moments obtained with Sk-3 and Ska are
shown.

IV. k =1 BANDS: *°Pu AND '“Tm

In this section we discuss '*Tm and 2*°Pu, examples of
k=1 rotational nuclei with an odd-proton and odd-
neutron, respectively. First of all we summarize the ex-
perimental data available at present from which one can
infer experimental values for the form factors at very low
momentum transfer [see Eq. (4)], and compare them with
the theoretical predictions. One can also use these ex-
pressions to check the internal consistency of the calcula-
tions by comparing the results obtained for the intrinsic
form factors at low g with the values of g;, (g, —gr )b, a,
and g obtained from their definitions in Eqgs. (5) and (6).
For momentum transfers ¢ <0.1 fm ™! we found agree-
ment in all the cases within 0.3%, which gives us
confidence in the calculations.

From the experimental energy spectra for these nu-
clei'”!® the moment of inertia (J) and the decoupling pa-
rameter can be extracted by using the expressions for the

TABLE II. Results obtained for binding energies, charge radii, proton and neutron radii, and quad-
rupole moments with the Sk-3 and Ska effective interactions.

(r¥)'2 (fm) Q, (fm?
B (MeV) c P n P n
19Tm Sk-3 1359.76 5.352 5.296 5.380 804.13 1146.7
Ska 1358.92 5.307 5.250 5.405 824.55 1173.7
2%py Sk-3 1787.71 5.949 5.898 5.989 1116.4 1709.9
Ska 1787.96 5.891 5.838 6.013 1170.6 1816.3
1THf Sk-3 1413.16 5.422 5.366 5.454 721.44 1064.1
Ska 1412.89 - 5.375 5.318 5.479 74391 1106.4
19Hf Sk-3 1427.26 5.422 5.366 5.464 721.44 1068.9
Ska 1427.00 5.375 5.318 5.493 743.91 1112.1
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TABLE III. Results obtained for (J}), Janking and gg (in PHF and cranking models) for Sk-3 and Ska forces. Experimental

values for J and gz are also shown.

gr
<J% )p <Jf >n (Ji )total jp jn jlotal PHF cranking

19Tm exp 40.36 0.41

Sk-3 58.55 89.41 148.0 10.70 20.16 30.86 0.391 0.341

Ska 62.28 92.98 155.3 10.70 21.37 32.08 0.395 0.304
39py exp 79.98 0.39

Sk-3 78.75 134.2 213.0 20.68 39.27 59.55 0.363 0.325

Ska 91.01 143.0 234.0 21.61 36.97 58.59 0.384 0.367
TTHE exp 39.84 0.265

Sk-3 48.18 82.04 130.2 8.854 20.28 29.13 0.362 0.283

Ska 51.41 85.32 136.7 8.817 20.36 29.18 0.365 0.268
9Hf exp 44.82 0.156

Sk-3 48.18 89.34 137.5 8.854 25.40 34.25 0.323 0.189

Ska 51.41 90.02 141.4 8.817 23.60 32.42 0.340 0.205

rotational energy [Eq. (7)]. The experimental values
quoted for a and J in Tables III and IV were obtained us-
ing the two first excited states of the band. With these
values good agreement for the remaining excitation ener-
gies was found up to spin of £, demonstrating the validi-
ty of the rotational model for these particular nuclei.

We also have experimental magnetic dipole moments'®
up to I =1 for 'Tm but only for I=1 in »°Pu. The
values of u (I =1,3,3) of 'Tm allow us to obtain experi-
mental values for g, gz, and b according to the general
expression for the magnetic moment given in Eq. (8).
This analysis leads to the following combinations:

8rR= "Mt i3t 27—0.“5/2 >
8k =8r T Ep1 T M2~ KMss2 >
(8x —8rRO= =311 nt $l3 2~ T5H5/2

from which the experimental values of g;, gz, and b
(magnetic decoupling parameter) quoted in Table IV for

19Tm were obtained. These results are in excellent
agreement with experimental values

gx=—157, gr=0.406, b=-—0.16
in Ref. 19 and

g =—1.65(+0.06), gr=0.419(+0.01)

in Ref. 20. For #*°Pu we took the experimental values of
Ref. 21 based on (a,3n) reactions.

Table III contains the moments of inertia and
gyromagnetic ratios computed with the Sk-3 and Ska in-
teractions. For completeness, the values of (J?) and
gr pur are included. We observe that the values obtained
for the moments of inertia are systematically smaller than
experiment. This can be related® to the fact that for HF
calculations with Skyrme-type forces, the single-particle
energies are too spread out near the Fermi surface
(effective mass less than unity).

TABLE IV. Values of a, gx, (gx —gr )b, and u; for different spins obtained with the HF (Sk-3 and Ska) and the Nilsson model for
the k =1 nuclei 'Tm and ***Pu. Also shown are the experimental values and (in brackets) the magnetic moments evaluated with

effective g, factors.

a 8k (8x —8r )b His2 M3/ Ms/2 M2 g’eﬁ/g’rree

19Tm exp —0.77 —1.67 0.27 —0.232 0.515 0.761 1.341
Sk-3 —0.66 —3.06 0.18 —0.455 0.241 0.533 1.081

(—0.253) (0.416) (0.594) (1.198) (0.719)
Ska —0.62 —3.13 0.21 —0.490 0.197 0.425 0.967

(—0.273) (0.374) (0.496) (1.083) (0.710)
Nilsson —0.88 —2.37 —0.08 —0.231 0.302 0.858 1.238

(—0.157) (0.421) (0.853) (1.332) (0.830)

29py exp —0.58 1.28 0.43 0.203

Sk-3 —0.93 2.04 0.59 0.253 0.894 0.685 1.494

(0.237) (0.626)
Ska —0.90 2.28 0.44 0.355 0.918 0.863 1.586

(0.301) (0.561)
Nilsson —1.29 1.44 0.68 0.144 0.966 0.766 1.736

(0.161) (0.888)
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In Table IV one finds g, the decoupling (@) and mag-
netic decoupling (b) parameters and the magnetic mo-
ments evaluated from them, for the Nilsson model and
for the Sk-3, Ska effective interactions. Equations (5) and
(6) were used for the HF calculations. For the Nilsson
model, more explicit expressions? can be found in terms
of the basis coeflicients:

G=v2j+1)

k_ 1,k

Hs — 381 L
G =gf+——"— % S CryChpjp(—1NHi=172

NjJj'
XVeW(L1jj’; 11){ jk 10’k )7
)
(8 —8r)b=(gr —8/a

'Hgsk_glk) > CII\(IIjCII\(/I’j'
Nj.j’
X(—1D)M3BW(LLjj; 1)

X (j—L11]70)] (10)
a=%(C1’6,j)2(—l)j_“2(j +4). (11)
J

These coefficients C]\‘,,j determine the expansion of the
single-particle state in the spherical n, 1, j basis

k)= Cf;INLjQ, ) . (12)
Nj ’

For the parameters «,u of Table I, and for the single-
particle states - *[411] for 'Tm and 1*[631] for ***Pu in
the asymptotic quantum number notation, these
coefficients take the following values:

'“Tm C,,,,=0.3059, C,;,,=0.7253,
C,5/,=0.4525, C,;,=0.3970,
Cio/,=0.1346 ;

29Pu Cp,/=—0.3083, C,;,=—0.5631,
C,5,,=0.0845, C,,,=0.3963 ,
Cy9/,=0.4294, Cq 11/, =0.4595 ,

Ce 13,2 =0.1679 .

By the use of reasonable effective g, factors in order to
take into account important effects not included in
present HF calculations such as first-order spin polariza-
tion of the core by the odd nucleon,? the agreement with
the experimental magnetic moments is improved in most
cases. In the bracketed entries of Table IV, one can see
these new values for u; evaluated with & o The g;,, were

determined by fitting the experimental g, to the expres-
sion
(kls,|k)

gk=gz+(gs—g1>——k (13)
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easily obtained from the definition in Eq. (5). We find
gseﬁ/gsme~0.7 in agreement with a similar analysis by

Bohr and Mottelson.?
The use of & . primarily affects the magnetic moments

of the I =1,3 states. For higher spin states the magnetic
moment is mainly determined by the gzl term, and
reasonable agreement is found in most cases. Since the
intrinsic form factors at low g are proportional to the
static parameters, in the region ¢ <0.1 fm ™!, the form
factors compare to experiment in a similar manner as the

corresponding parameters do.

A. Intrinsic form factors

Figure 1 gives the results for the single-particle intrin-
sic form factors for '*Tm (a) and 2**Pu (b). The multipo-
larities shown (M1,M3 and E2,E4) cover elastic scattering
+— + and inelastic processes up to the L— 1 transitions.
This figure shows the magnetic intrinsic multipoles F¥13
and the pure single-particle contribution to ¥} denoted

FgMs.p.). According to Eq. (3),
Vi
7§£(s.p.)=%<xk|?5’,§lx,;) . (14)

The contributions coming from the subscript k£ and 2k
pieces have been plotted separately because they enter
into the total form factor [Eq. (2)] with different spin-
dependent coefficients, and then their combination is no
longer “intrinsic.” In the particular case of the electric
multipoles, we only have 2k contributions and then the
total single-particle form factor is always proportional to
it. The solid, dotted, and dashed lines represent the Sk-3
interaction, the Ska interaction, and the Nilsson model,
respectively. The similarity between Sk-3 and Ska pre-
dictions is apparent for all multipoles in both nuclei. The
Nilsson model shows the same general trend in the peak
structure, but with some noticeable differences.

One reason for these differences is the fact that the
Nilsson wave functions contain only components of a sin-
gle major shell, while the HF wave functions have sizable
components from other shells. As an example for !®*Tm
the N =4 orbitals represent 63% of the HF wave-
function normalization while N =2 accounts for 13%
and N =6 for 22%, with small contributions from other
shells. For 2*°Pu only 51% is due to N =6 components,
with 16% from N =4 and 29% from N =8.

It is also interesting to look at the spin and convection
contributions to these intrinsic form factors. We have
not drawn these contributions separately but their exam-
ination reveals interesting interplay. It is evident for the
odd-neutron case (*Pu) that the magnetization of the
neutron is always dominant, and then the single-particle
contribution comes almost entirely from the magnetic
properties of the odd neutron. On the other hand, in the
odd-proton case both contributions are comparable and
their combination can produce different effects according
to their relative sign. The first #! peak in *Tm occurs
near ¢ =0.3 fm~!. Here, magnetization is dominant but
convection is also important and opposite in sign, reduc-
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FIG. 1. Intrinsic single-particle M1,3 and E2,4 form factors of Tm (a) and *Pu (b). Results are for Sk-3 (solid), Ska (dotted),

and Nilsson (dashed).

ing the magnitude of this peak by a factor 2. The F%!
multipole is dominated by convection at low g (g <0.3
fm~!) and by magnetization for 0.3<g <1 fm™!; in the
latter case the contributions add. As a result, a broad
and important first peak appears in F3! destroying the
double peak structure of the spin contribution. Similar
remarks apply to the F3 case with a dominant magneti-
zation contribution reduced by 50% by the convection
contribution in the first peak up to 0.6 fm !, and to F3{3
where there is almost a cancellation for ¢ <0.2 fm ™! and
magnetization dominates after that with corrections add-
ing constructively in a range of ¢ up to 2 fm ™!, The elec-
tric multipoles #5? and F% are dominated by the convec-
tion part for ¢ <0.1 fm ™! but magnetization is dominant
afterwards. Things are not very different in the Nilsson
model.

B. Transition form factors

Form factors are shown in Figs. 2—-5 for the corre-
sponding elastic process 1—1, and transitions 1-—2

E) 1T
+—3, and +—7.

>—>3 1. In all of these figures part (a) is for
19Tm and (b) for 2*°Pu. These figures show the interplay

of collective and single-particle contributions and the im-

portance of the contribution proportional to the decou-
pling parameter, for these k =4 nuclei. For each mul-
tipolarity we show the squared single-particle contribu-
tions (dotted lines) for the multipole and transition under
consideration

(a) (b)

T T T T T = = T T T T T =
E [Fzp? 1%9Tm 3 E IFz? 239py 3
F 1/2-1/2 ] F 122172
L i L ]
g 10°E E
E 10 E
3 3
_\\ ] i /\ /\ ]

10°?° 1 A\ 1010k | \
2 g (fm) o 2 q (fm)

FIG. 2. Total transverse form factor squared (solid) for the
elastic case: for !Tm (a) and **Pu (b). Also shown are the
core contribution (dash-dotted), the single-particle contribution
(dotted), and the change in the single particle due to addition of
the decoupling parameter term (dashed) (see text).
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|FP*(s.p ) P=[(I;k 0|1,k YT+
+ (L —kA2k Ik Y FSHs.p)]2
The dashed lines represent
[CLkAON k) FP+ (L — k A2k | Tk YFSL?

where F,, now contains the core contribution a Fz [Eq.
(3)]. In these expressions only the subscript-2k term sur-
vives for the electric case. The dash-dotted lines are the
core contributions proportional to [F%']* using the
cranking model. The solid line is the total result |Ff*|2
given by Eq. (1). Since we have seen the effect of the in-
teraction in the single-particle form factors and we know
how the core is affected by them, we present calculations
only for the Sk-3 force.

From Fig. 2 one can learn some basic features of the
interplay between the various contributions. For trans-

verse elastic scattering +—1 only the M1 multipole is

P. SARRIGUREN et al. 40

different from zero and the transition form factor has the
following explicit expression:

Fr=|F{j|*
=[( 0l 7!
F (L1111 FM+ (L1101 1) FHI
The dotted line is simply
HFA V27 s.p )T,

and from Fig. 1 one can understand its behavior. In the
range ¢ <1 fm~! where the main peak occurs, one sees
that for 'Tm there is a destructive combination between
k and 2k for 0.5<g <1 fm ™!, but the important 2k con-
tribution is clearly dominant. On the other hand, for
239py, k and 2k combine destructively in the whole range
considered and as a result the total single-particle (dot-
ted) contribution is one order of magnitude smaller than
the equivalent for '*Tm. This is interesting because the

(a)

E T T T T T 3 E T T T T T 3 T T T T T 3

F M1 JF E2 JE |Fep? 1%°Tm 3

_ 1F dE 1/2~3/2 ]
10”7 E ER = =
108 4 E = : =
107 1 L :

0 o

1 2 q (fm?) © ) © 1 2 q (fm™)

E T T T T T 3 E T T T T T 3 E T T T T T 3

= M1 JF E2 JF |Fa? #%Pu 3
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108 j\ E S H E =
10°° E i qE =N 3

F, JF N u =
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FIG. 3. Total transverse form factor squared for the transition +— 3 in 'Tm (a) and *°Pu (b). Each multipolarity (M1 and E2) is
divided into the same contributions as in Fig. 2. The total form factor in the rightmost panels (solid) is the sum of M1 (dotted) and

E?2 (dashed) multipoles.
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core contributions are comparable and very important
collective effects now appear in the total form factor.
The dashed lines correspond to the addition of the term
proportional to the decoupling parameter in the 2k part.
As seen in Fig. 2, this produces a reduction in the peak
for 'Tm and an enhancement for 2*Pu. The reason for
this is that in both cases the decoupling parameter and
the first peak of the M1 core contribution are negative,
while the single-particle contributions have opposite
signs. Finally, the core contribution is added to produce
the total form factor. The net effect of the core is to
reduce the pure single-particle contribution of *Tm by a
factor 2 and to increase it in 2>Pu by a factor 4.

It is also worth mentioning that in the range of ¢ be-

tween O and 1 fm™~! the k =% odd-neutron nuclei are

more sensitive to the a 74" term. In this case the convec-
tion part of #,, that was almost zero receives a contribu-
tion from the core that (due to a cancellation between
proton and neutron magnetizations') is almost entirely a
proton convection contribution. For this case, the pro-
portionality between the form factors and the static pa-
rameters at low momentum transfer extends to larger q.
One can see, for instance, how the relation between the
first peaks of the M1 multipole in 'Tm and 2**Pu is the
same as the relation between their theoretical magnetic

moments p;,, once the square in the form factor has
been removed.

In Fig. 3 the transition +— 2 is analyzed by the decom-
position of each multipole (M1,E2) into the same kind of
contributions as in Fig. 2. The last frame of the figure
shows the total form factor [Eq. (1)]. It is worthwhile to
compare how the same multipole (M1 in this case) ac-
quires very different shapes for different transitions. In
both nuclei there is a single first peak in I,=1 which
splits into two peaks for I,=3. This is the result of

different spin-dependent coefficients.  Because
(1110[231) =v2/3 and (1—111|21)=V"1/3, the com-

bination between F, and ¥,; is the opposite to what we
had earlier. The core effect is not so important in 23°Pu
in this case because the single-particle contributions add
constructively and then the core contribution is much
smaller in comparison.

The E2 multipole is very easily understood by looking
at the intrinsic single-particle multipole of Fig. 1. Since
now F%} is the only single-particle contribution, the dot-
ted line is simply the square of this intrinsic multipole
with a spin-dependent coefficient. The effect of the
decoupling parameter in the first peak is the same in both
cases because we have a positive pure single-particle (Fig.
1) form factor with a negative coefficient (—V'3/5), and

(a)
T T T 1 1 E 1 1 T T = T T T 1 =
M3 3 E2 3 F IFxl? 169m 3
- aC ] 1/2-5/2 ]
107 JE 4 E o
10 E JE = E
- — -
10°° ] I 1
0 ) 0 2 q (fm?) © 1 2 q (fm™)
(b)
T T T T T IE T T T T 3 T T T T 3
F M3 JF E2 I F F:P *%Pu 3
- 1F 1F 12~ 5/2
108 | qE 3 E / =
o JE IE [ 7
L 4L 4L/ 4
i\ R

10° £ E K\ 4 E
= = b I [ =
- 3 3 [ 3
C . . iy .
L u _ | . ' u

- — L

10°1° 1 L i ; S| ! Lll'
0 2 q(fm") 0 2 q(fm") 0 2 q (fm™)

FIG. 4. Same as Fig. 3 for the transition J— 2 involving the M3 and E2 multipoles.
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add to this a negative amount coming from a negative
decoupling parameter and a positive core contribution.!
Therefore we see an increase in the single-particle form
factors when the “a” contribution is added. When the
core is taken into account, the contrary effect is found in
both nuclei because now a positive core contribution
reduces the previous negative single-particle form factor.
Also remarkable is the near cancellation of the net core
contribution in this case. This is because of the particu-
lar values of the Clebsch-Gordan coefficients and of the
decoupling parameter that combine to give a negligible
addition to the pure single-particle value:

—V3/5F(s.p. )+ FEHaV'3/5V6+3V2/5) ,

wherein for a = —0.932, the factor multiplying the core
contribution is 0.129. In the final plots for the total form
factors squared, the contributions of the individual mul-
tipolarities are shown. The M1 dominance in the first
peaks is apparent.

For completeness, Figs. 4—5 contain similar results for
+—3 and {— 1 transitions, respectively. The same type
of analysis applies here for the combinations of all of the
various contributions. In both figures the behavior of the
electric single-particle multipoles E2 and E4 are again
easily understood from their intrinsic multipoles of Fig.
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1. They are simply proportional to the squares of the in-
trinsic multipoles with coefficients depending on the spin
and multipolarity. Nevertheless, the core contributions
for the E2 multipole in Fig. 4 as compared with the same
in Fig. 3 are remarkably important. This is due to the in-
crement in the factor [[,(I,+1)—1I;(I;+1)] for bigger
I,. In 239py, the total effect of the E2 core contribution is
to change the single-particle form factor by more than
one order of magnitude The total form factor for the
transition ;— 2 is the sum of the M3 and E2 multlpoles

and is also shown in Fig. 4. For the transition

Fig. 5, the collective effects on M3 and E4 are negligible
and the final multipoles are almost completely single-
particle. One can also see the different shapes acquired
by the M3 multipole comparing Fig. 4 and Fig. 5. This is
a result of the different spin coefﬁcients with which the
single- partlcle intrinsic multipoles i7k 7k are combined to
form F

—>7 in

V. k > 1 BANDS: """Hf AND '"Hf

We have selected two odd-neutron nuclei, !7"Hf,
k™=1" and "PHf, k"=27. The experimental values for
the parameters of the rotational model can be extracted
in a similar way as in the previous case. The moments of

(a)
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C 1E 1F .
10°° 1 ! 1 1 1 1 1 L 1 :

0 1 2 q (fm™) © 1 2 q (fm™) © 1 2 q (fm™)

(b)

E T T T T T JE T T T T T 3E T T T T T

E JE JE 239 3

= M3 JE E4 JFE F:P? Pu 3

C ar ar 1/2-7/2 ]

B 1C i i
10° 3E 3E 3

2 3E 3E E

- iE | 3

- o aE ]
107 g JE m 3E 3

C 1F 1rF ]
1010 i A 1 /\/\ FaY

2 q(fm?) O q (fm) 0 1 q (fm

FIG. 5. Same as Fig. 3 for + —

1 (M3 and E4 multipoles).
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TABLE V. Same as Table IV for the k > L nuclei '"’Hf and '"Hf.
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8k H1/2 Mo /2 Hi1/2 gseﬁ/g:fm
17THf exp 0.216 0.794 1.082 1.48
Sk-3 0.447 1.437 1.640 1.867
(0.808) (1.125) (1.432) (0.483)
Ska 0.454 1.444 1.621 1.825
(0.797) (1.091) (1.377) (0.476)
Nilsson 0.373 1.332 1.756 - 2.174
(0.904) (1.406) (1.878) (0.579)
1OHf exp —0.207 —0.641
Sk-3 —0.373 —1.218 —0.711
(—0.608) (0.555)
Ska —0.375 —1.213 —0.679
(—0.595) (0.552)
Nilsson —0.344 —0.938 —0.114
(—0.433) (0.601)
(a)
T T T ? T T T E T
FM3x100 E E
102 3 4 FE3x100
_ /]
10° e L
] FMs ]
10 5
10 |
q (fm™) 0
T T T E
FM3x100 ~
102 E
10-3 = 1
10
103 b -
0 0.5 1.0 1.5 q (fm‘l) 0 0

FIG. 6. Intrinsic single-particle form factors of '”’Hf (a) and ""’Hf (b). Only the most important multipoles are shown. As in Fig.
1, the results are for Sk-3 (solid), Ska (dotted), and Nilsson (dashed).
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inertia were inferred from the experimental rotational
spectra. In these examples, there is no decoupling pa-
rameter and the expression for the energy, Eq. (7), con-
tains only the parameter J, which was obtained from the
energy of the first excited state (Table III). From the ex-
perimental magnetic moments we can also obtain the pa-
rameters g, and gy by inverting Eq. (8). Since we have
experimental measurements'” for p, ,, and p, , for 7Hf,
we deduce

—_ 1 11
8rR="3M12 T Fles2 »

— 99 — 7
8k =8r T 1,2~ THo2 -

These values appear in Tables III and V. They are con-
sistent with the experimental value for u,, ,. They may
also be compared with the experimental values
g, =0.216(6),gr =0.249(8) of Ref. 24. In the case of
IHf, experimental values are available only for the
ground state (uy,,), and then we cannot extract the two
parameters needed. For this case we took the values of
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Ref. 24. Coming back to the calculations, Table III con-
tains the predicted HF moments of inertia and gyromag-
netic ratios for these nuclei. The same comments con-
cerning the moment of inertia can be repeated here.

In Table V we compare the experimental g, and pu;
with Nilsson and HF predictions. One sees again the
good agreement obtained when effective g, factors are

used.
For "7 !1Hf the Nilsson coefficients, obtained with the
parameters shown in Table I, are the following:

YTHf 17[514] Cs,,,=0.2873,
Cs.9,,=0.9473 ,
Cs11,,=0.1419 ;

PHf $%[624] C,,,,=—0.1273,
Ce.11,,=—0.0860 ,
Ce.13,,=0.9881 .

(a)
= T T T T T 3 E T T T T T 3 T T T T T 3
= JF 3 177 |
= M1 3 F m3,M7 3 F IFz? Hf 3
L 1LC x10 1F 7/2~7/2 ]
107 = q4 = =
108 } 4 E 3 3
107? L L m 1 1
0 ! 2 q(fm) O 2 q (fm?) 2 q (fm!)
(b)
E T T T T T 3E T T T T T 3 T T T T 5
- M1,M9 JF M3,M5 JE [Fef? TP Hf 3
C JF x10 JE 9/2—-9/2 ]
107 E 3E 3 ]‘
JE AM3 3 3
JE I~ ] =
Jd- [/ - .
JL [/ M3 .
[
M3
108 M9 3E E 3
ar M Ms M3 7] ]
ar ; *\ l/\ | /\\ 7] ]
10? JAW 1 7. N 1\ [\ 4 !
2 q(fm?) 0 1 2 q(fm") 0 1 2 q (fm™)

FIG. 7. Total transverse form factor squared of '"’Hf (a) and ""’Hf (b) in the elastic case (}— 7 and 3 — 2, respectively). The most
important multipolarities for each nucleus are decomposed into their core (dotted) and single-particle (dashed) contributions, to give
the total multipolar component of the form factor (solid). In the last panel for each nucleus all the multipolarities, magnetic (dashed)
and electric (dotted), are added to give the total transverse form factor (solid).
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A. Intrinsic form factors

The single-particle intrinsic form factors can be seen in
Fig. 6 for !"7Hf (a) and !"’Hf (b). Only the most relevant
multipoles have been drawn, and again the results corre-
spond to HF calculations with Sk-3 (solid lines) and Ska
(dotted) interactions as well as Nilsson (dashed). In order
to study the first three transitions for these nuclei, we
need the magnetic intrinsic multipoles M1,3,5,7,9 and the
electric E2,4,6,8 for ""Hf. Using them, the transitions
7—1, I1—%, and Z—1 can be constructed. Since in
this case k =1, only 57%" with A=17,9 are different from
zero and for the same reason, intrinsic single-particle
electric form factors start only at E8. Also, since there is
no decoupling parameter, the subscript 2k form factors
contain no core contribution. Similar comments apply to
7Hf with the difference that now k =2 and the analysis
of multipolarities has to be changed correspondingly.
Then, to study the transitions 2—3, 3— 1, and > 2
we need M1,3,5,7,9,11 and E2,4,6,8,10 and only M9,11
and E10 contain a 2k contribution.

The analysis of the convection and magnetization con-
tributions to the form factors is, in this case, very simple
because the magnetization of the odd neutron is dom-
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inant by orders of magnitude over its convection term.
The similarity in the predictions of the different fields is
clear from Fig. 6. For these two nuclei the odd-nucleon
wave functions have a much simpler structure than for
those considered in Sec. IV. In the Nilsson model one
spherical orbital is clearly dominant in each case, carry-
ing 90% of the wave-function normalization. In the
Hartree-Fock case the admixtures from N5 shells in
"THf and from N6 in !"’Hf are less than 10%.

B. Transition form factors

In Figs. 7-9, the elastic case and the transitions to the
first and second excited states, respectively, are con-
sidered for !""Hf (a) and ""°Hf (b).

Results are for the Sk-3 force with the cranking model,
and in each figure, the first two drawings are the decom-
position of the multipoles into the core (dotted) and
single-particle (dashed) contributions to give the total
|F9*|? as solid lines, while the third plot corresponds to

the sum of all of the multipolarities (dashed for magnetic
and dotted for electric) to give the total transverse form
factor of Eq. (1).
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FIG. 8. Same as Fig. 7 for the transition 7 — 2 and 2 — 1! in '"’Hf and '"°Hf, respectively.
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The analysis is much simpler than in the k =1 cases
discussed in Sec. IV. The single-particle contribution is
simply proportional to the square of the intrinsic form
factor for the multipolarities M1,M3,M5 in '""Hf and
M1,M3,M5,M7 in '"°Hf. For the higher multipolarities it
is a linear combination of the subscript k and 2k parts.
In Fig. 7 the elastic case is considered and then only mag-
netic multipoles contribute. For !”7Hf M5 is negligible in
the whole range of g. For M1 and M3 the result of com-
bining the single particle with the core has opposite
effects in the first peak: While they add in M1, they sub-
tract in M3. The total form factor is almost entirely M1
up to ¢ =1.5 fm~! and dominated by M7 afterwards. In
1Hf, the situation is very similar with a dominant M1 at
low g and in this case M9 at high q.

The reduction of the multipoles as compared to the
spherical case is a well-known characteristic of the de-
formed model.> This reduction can well be analyzed in
terms of the Nilsson model, for which expressions for the
quenching factors can be explicitly written.?*> Especially
important is the suppression of the M5 multipole in 7"Hf
as well as M7 in 'Hf. This is due to the Clebsch-
Gordan coefficient of Eq. (2) for these multipolarities. In
particular, for '""Hf one can obtain, from the correspond-
ing values of the Clebsch-Gordan coefficients squared,
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reduction factors of 0.016 for the intrinsic M5 multipole
but only of 0.212 for M3 and 0.818 for M1.

In general, for both nuclei, the core contribution is re-
sponsible for a change of the first peak by a factor 1.5 rel-
ative to the single particle, but in opposite directions.
The single-particle and collective contributions add con-
structively in '"7Hf and destructively in 'Hf. The
reason for this different behavior in the two nuclei is the
opposite sign of their single-particle form factors (Fig. 6).

In Fig. 8, transitions to the first excited state are con-
sidered. The most remarkable feature is the strong
suppression of the M1 first peak in !”’Hf and the opposite
situation for !Hf. In 7"Hf the core almost cancels the
single-particle contribution (reducing the peak by a factor
10), while in !"’Hf it produces an enhancement of a factor
2.5. The reason for this is that now the spin-dependent
coefficient of the core term is large, and this makes it
comparable to the single-particle term. This coefficient
has a different sign than in the elastic case where the core
acts in the opposite direction. One can see from the total
form factor the importance of the core contribution in
this case. In "7Hf, due to the cancellation in the M1
multipole at low g, the form factor is almost solely the
core E2 contribution, up to ¢ =0.4 fm~!. On the other
hand, ""’Hf has a big peak formed by M1 and to a lesser
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FIG. 9. Same as Fig. 7 for 7 —

L in '"Hf and $— 1 in "’Hf.
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extent by the collective E2. In the figures for the total
form factor, only the main peaks have been plotted.

Finally, in Fig. 9, we can see the form factors for the
transition to the second excited state. In this case no M1
contribution exists and then the total form factor is pure-
ly the E2 collective contribution in the low g range
0<g <0.7 fm~! in both nuclei. This produces a total
form factor at low g quite similar for the two isotopes.
However, at higher g the total form factors exhibit quite
different structure for 7"Hf and for "’Hf. This is due to
the different multipolarities and single-particle wave
functions that enter in each case.

VI. CONCLUSIONS AND FINAL REMARKS

We have presented a detailed analysis of the transverse
form factors for several representative odd- A nuclei for
elastic and inelastic electron scattering within the
ground-state rotational band. The form factors have
been decomposed into their collective and single-particle
contributions for each multipolarity, stressing their rela-
tive importance in the different g ranges with special at-
tention to the k =1 nuclei for which the core contribu-
tion is particularly involved. We have also studied the
mean field dependence of the single-particle form factors
by comparing the predictions of HF+BCS with two
different effective interactions as well as with the Nilsson
model. :

From the results obtained, we can conclude that the
single-particle form factors are not very sensitive to the
mean field used in the generation of the wave functions.
In particular Sk-3 and Ska predict almost the same result.
Even the Nilsson model, in most instances, produces a
structure similar to that of the Skyrme interactions.

Concerning core and single-particle interplay, we can
say as a general result that the core manifests itself only
in the low-q region (g <1 fm™!) where it interferes with
the single-particle contribution. In this region the in-
terference can be constructive or destructive depending
on the nucleus and on the specific transition, leading in
some cases to very large effects. For larger g, the dom-
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inant role is played by the single-particle aspect and the
form factors reflect the properties of the odd nucleon, in
contrast to what happens in longitudinal form factors?®
where all the nucleons contribute to the charge density.

Combining these results with the rotational model
dependence analysis of Ref. 1 and for the lower mul-
tipoles M1 and E2 (for which the single-particle and core
interference is most significant) we can conclude that
since the rotational M1 multipole is not very sensitive to
the model employed to describe the band, we expect for
this multipole the same results even for the macroscopic
models. On the other hand, the collective E2 is strongly
model dependent and we expect important changes in the
g <1 fm™! region for this multipole if a different rota-
tional model is used.

A comparison of the form factors for these nuclei
shows the rich variety of shapes expected for the trans-
verse form factors of odd-A rotators. Besides the core
influence at low g, the changes are mainly due to the
different k values for the ground-state rotational band
which dictate the strength of the Clebsch-Gordan
coeflicients.

At the present time the only extensive set of data for an
odd-Z rotational nucleus is for ¥!Ta.?’ We believe it
would be interesting to study other odd- 4 rotational nu-
clei, particularly k = cases such as those discussed in
this paper. Such data would allow a searching test of the
applicability of the rotational model.
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