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Ground-state properties of odd-A nuclei near closed shells are calculated using self-consistent,
relativistic mean-field models of baryon-meson dynamics. Contributions from o, co, and p mesons
and the photon are included. Comparisons are made between linear and nonlinear mean-field mod-
els, and with calculations including vacuum polarization in a local density approximation. Results
are given for (intrinsic) binding energies, rms radii, magnetic and quadrupole moments, currents,
and elastic magnetic scattering form factors, with comparisons to other calculations and to experi-
ment. Bulk systematics are well reproduced by the nonlinear model and, as expected, isoscalar mag-
netic moments in light nuclei are close to Schmidt predictions for all models. At higher momentum
transfer, currents are enhanced compared to nonrelativistic single-particle predictions, in disagree-
ment with experiment. Extensions to include pions and derivative corrections to the vacuum polar-
ization current are discussed.

I. INTRODUCTION

Relativistic mean-field models have been successfully
apphed to a variety of problems in nuclear structure and
nuclear reactions. ' Early calculations showed that
ground-state properties of spherical nuclei are well de-
scribed in a mean-field model that is adjusted to repro-
duce empirical nuclear saturation properties. '

Specifically, these models naturally generate the spin-
orbit splitting that creates the nuclear shell structure, and
make quantitatively accurate predictions of rms radii and
charge densities. Furthermore, if nonlinear scalar meson
couplings are included, the resulting "best fit" to spheri-
cal nuclei is comparable to that achieved with nonrela-
tivistic Skyrme models. Finally, the ground-state densi-
ties provided by these structure calculations can be used
as input to relativistic impulse-approximation calcula-
tions of polarized proton-nucleus scattering. The predic-
tions for the spin observables from these simple calcula-
tions are in striking agreement with experimental re-
sults. '

Thus, relativistic mean-field models provide a simple
and compelling phenomenology for nuclear structure
physics. Although the Hartree (mean-field) approxima-
tion is best motivated for closed-shell nuclei, the models
have been applied more widely, testing the mean-field
phenomenology. Recent calculations show that models
with nonlinear couplings can describe the deformation
properties of even-even nuclei throughout the Periodic
Table. " In this paper, we extend the deformed nucleus
calculations further, to odd- 3 nuclei. ' ' We em-
phasize the simplicity of the mean-field description; in
this spirit, we proceed as far as possible without consider-
ing angular momentum projection, pairing, or higher-

order corrections.
One early failure of relativistic mean-field models was

the calculation of isoscalar magnetic moments for nuclei
one particle or hole away from a closed shell. These cal-
culations used the simplest shell-model picture, in which
the closed-shell core remains spherical and the valence
nucleon determines the magnetic moment. With nonrela-
tivistic wave functions, this approximation produces the
well-known Schmidt lines. " In relativistic models, how-
ever, the reduced nucleon effective mass M* in the nu-
clear medium (due to the large scalar field) results in a
single-particle convection current enhanced by M/M'
compared to the nonrelativistic current, leading to sharp
deviations from the isoscalar Schmidt predictions.

Experimentally, the isoscalar magnetic moments of I.S
closed-shell +1 nuclei are in reasonable agreement with
the Schmidt values. ' The disagreement between relativ-
istic predictions and the experimental moments, in con-
trast to the successful nonrelativistic predictions, ap-
peared to be an unwelcome signature of the large relativ-
istic potentials. This magnetic moment problem" of rel-
ativistic models has been the subject of much study dur-
ing the past few years. The resolution of the problem is
that the simple shell-model picture (or "impulse approxi-
mation") provides a poor approximation to the current of
the self-consistent Hartree ground state for the odd-A
system. The valence nucleon is a source of new meson
fields, and the response of the core nucleons to these new
fields cannot be neglected when computing the current.
In nuclear matter calculations, the core wave functions
are mixed with negative-energy states and the enhance-
ment of the convection current is essentially can-
celed. ' When this core response is applied to finite
nuclei using a local density approximation, the result is a
return to the isoscalar Schmidt moments.
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There are two paths to self-consistency in a full finite-
nucleus calculation. One approach is to start with the
basis of the spherical core nucleus (which is easily calcu-
lated) and to include the core response to the valence nu-
cleon in a linear response approximation [random-phase
approximation (RPA) ring sum]. Alternatively, one
can consider the core plus valence system as a whole,
treating all nucleons democratically, and then solve the
Hartree equations for the (deformed) odd- A system
directly. This is the approach we adopt in this paper.
Note that the RPA is only an approximation to the fully
self-consistent solution; the valence nucleon is treated as
an external source of meson fields so that the core
response does not act back on the valence wave function.
This additional self-consistency is essentially a 1/3
correction; in nuclear matter the RPA and self-consistent
approaches are equivalent. The relationship between the
two is discussed in detail in Refs. 23 and 26.

RPA calculations for finite nuclei in mean-field models
have explicitly demonstrated that the convection current
in a finite nucleus is constrained at low momentum
transfer q to be close to nonrelativistic predictions (at
least in LS closed shell +1 nuclei). However, the
current at higher q remains sensitive to the relativistic
dynamics and becomes further enhanced by the core
response. In this paper, self-consistent odd-3 calcula-
tions verify the RPA results obtained in Refs. 25 —28 for
magnetic moments and currents, and extend them to ad-
ditional nuclei.

Most of the calculations in this paper (and those in
Refs. 25 —27) are for the mean-field theory (MFT), which
neglects contributions to the nucleon self-energy from the
negative-energy Dirac sea (although negative-energy
states contribute to the MFT/RPA response, as discussed
above). RPA calculations have also been performed in
the relativistic Hartree approximation (or RHA), which
includes the effects of mean fields on the states in the
Dirac sea. Vacuum effects in the RHA dramatically
change the nature of the core response at moderate
momentum transfers (compared to the mean-field approx-
imation) and may provide a more consistent treatment of
convection currents. In this paper, we consider part of
the RHA physics through self-consistent calculations of
odd-A nuclei that include vacuum polarization contribu-
tions in a local density approximation. A complete
description would include the screening of the valence
current from XX excitations, which appears as a nonzero
vacuum polarization current in our self-consistent ap-
proach. This current can be calculated using a derivative
expansion (as indicated in Sec. II C).

The outline of the paper is as follows. In Sec. II, we
briefly review the relativistic Hartree formalism, em-
phasizing the new features in calculations of odd-A nu-
clei. In Sec. III, we present results for a wide range of
nuclei, both in the O. -co model, to compare to previous
RPA calculations, and in models including the p meson
and the photon (both linear and nonlinear). Calculated
binding energies, rms radii, magnetic and quadrupole mo-
ments, and elastic magnetic scattering form factors are
given. These results are discussed further in Sec. IV and
our conclusions are summarized in Sec. V. Additional

details of the calculated procedure are summarized in the
Appendix.

II. FORMALISM

A. Walecka model

+—'m V V"—V(P)+5K (2.1)

where

V(4)= —0 +—4
K 3 k 4

3t 41

and 6X is a counterterm Lagrangian. For phenomeno-
logical purposes, we allow A, to be negative, even though
this leads to a classical potential unbounded from below, '

the rationale for permitting negative A, is discussed in Sec.
IV and in Ref. 10. In cases of interest, the energy func-
tional has a well-defined minimum, which is nonetheless
only a local minimum. We' note that, even in the absence
of V(P), the one-loop (RHA) effective potential is un-
bounded from below.

We consider the mean-field (Hartree) approximation to
this theory, in which the meson field operators are re-
placed by their expectation values, which are classical
fields. (Alternatively, it follows from the self-consistent
sum of tadpole contributions to the baryon propagator. )
This approximation is often motivated as a high-density
limit of the field theory; at normal nuclear densities, the
mean-field theory provides a nonperturbative starting
point for describing the nuclear many-body system.
Mean-Geld models have had many phenomenological
successes, but it is still not clear whether the simple phys-
ical picture described by the mean-field theory (or the
RHA) is an accurate representation of the underlying
quantum field theory. Corrections to the self-consistent
Hartree approximation (e.g., Hartree-Fock) can be inves-
tigated systematically in quantum hadrodynamics.

To realistically describe finite nuclei, the o.-~ model is
extended to include rho mesons, pions, and photons. We
follow Ref. 3 to derive the mean-field equations, extend-
ing the results obtained there by relaxing the assumption
of spherical symmetry. The nuclear ground state is still
assumed to have good parity and well-defined charge. In-
itially, we neglect contributions from the negative-energy
Dirac sea; the extension to the relativistic Hartree ap-
proximation (RHA) is discussed below.

The equations for the neutral meson fields are

(V —m, )Q(x)= —g, g U (x)U (x)

—:—g, [p, ( )x+Ap, (x)], (2.2)

We begin with the Walecka (o-co) model including sca-
lar meson self-couplings. The Lagrangian density is'

Z =q[) „(ia~ g. V—~) (M—g, y—)]y

+-,'(B„PB"P m—, P ) —,'(—8~V —8 V„)
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OCC

(V —rn, )VO(x)= —g, g Ut(x)U (x)

(2.3)

and

OCC

(V —m, )V(x)= —g„g U (x)aU (x)

—= —g, Jii(x), (2.4)

where the sums run over occupied positive-energy states,
and we have defined the contributions from the scalar
self-couplings in Eq. (2.2) to be —g, b,p, (a is the usual
Dirac matrix. ) There are equations analogous to (2.3)
and (2.4) for the other vector mesons, with appropriate
isospin factors. Each single-particle spinor U (x)
satisfies a Dirac equation

hU (x)=e U (x), (2.5)

where the single-particle Dirac Hamiltonian h is

h =—
I a [—i V —g, V(x)]+P[M —g, (to(x)]

+g„v,(x)I, (2.6)

and where we have suppressed the contributions from the
rho and photon fields. Equations (2.2) —(2.6) are non-
linear, coupled partial differential equations, which must
be solved self-consistently.

For closed-shell nuclei, the equations are greatly
simplified by the assumption of spherical symmetry. In
this case, the three-vector field V and the baryon current
Jz vanish and the other meson fields depend only on ~x~.

Recent calculations have relaxed this assumption, and
the Hartree equations for deformed even-even nuclei
have been solved assuming only axial symmetry. " (A
triaxial calculation is discussed in Ref. 30.) In these cal-
culations, single-nucleon levels are no longer eigenstates
of total angular momentum j, but j, and parity are still
good quantum numbers. Nucleons are paired in degen-
erate j,=+m states so that the three-vector field and the
baryon current still vanish. In Refs. 9 and 10, on which
we base the present work, the angular dependence of the
remaining fields and sources are expanded in even Legen-
dre polynomials and the nucleon wave functions are ex-
panded in spherical basis functions, resulting in coupled,
ordinary differential equations that are solved iteratively.

The further extension to odd-A nuclei near closed
shells is straightforward if we make certain assumptions
about the self-consistent ground state. Take as the start-
ing point the extreme shell-model picture of a spherical
core (solved self-consistently) to which a valence particle
or hole is added in a definite m state. The system is no
longer self-consistent because of the new meson fields
generated by the valence particle, which include a three-
vector field. These additional fields modify the single-
particle Hamiltonian h so that the core wave functions
are altered. These changes are the source of new meson
fields that modify all of the wave functions further, and
so on, until self-consistency is restored.

The self-consistent solution will be a deformed intrinsic

max

P(x) = g P (r )P~(cos8),
L even

(2.7)

max

Vo(x) = g Vo (r)PI (cos8) .
L even

(2.8)

The three-vector fields are expanded in vector spherical
harmonics; only the YLL& terms are needed and only
odd L contribute, so the three-vector field is purely az-
imuthal:

max

V(x)= g /'V (r)Y 11, (Qx )
L odd

1/2
max 2L +1=g g V (r) Pl'(cos8),

L odd
(2 9)

where PL is an associated Legendre polynomial. We
truncate the expansions at L =I

The nucleon orbitals are expanded in terms of spheri-
cal spin-angle functions:

state without definite total angular momentum. Howev-
er, the nucleon orbitals will still have good j, and parity.
The degeneracy of +m and —m states will be broken
(they will no longer appear in time-reversed pairs), but
otherwise the equations are very similar to those already
solved for deformed even-even nuclei. The only new ad-
dition is V(x) and its form is simplified by the surviving
symmetries. In particular, if this field is expanded in vec-
tor spherical harmonics, Y JL&,

' only the YLI=, terms
with odd L will be nonzero. Thus the generalization
from even-even nuclei involves only one additional radial
function for each L [the V (r) in Eq. (2.9)]. We also note
that an extended model will have a nonvanishing pion
field.

Equation (2.4) gives the convection (baryon) current
J~(x) directly as a sum over contributions from the occu-
pied states and the Dirac equation can be used to show
that this current is divergenceless (V J~ =0). This ex-
pression for the current is simple because it is written in
terms of the self-consistent basis. Contributions from the
core states can be compared with the core response calcu-
lated in linear response (RPA) treatments given else-
where. The contribution from the valence nucleon
will still exhibit the familiar M /M' enhancement, but we
expect that nonzero contributions from the core will can-
cel the enhancement at low q, as found in nuclear
matter. '4

The mean-field equations for deformed nuclei have
been solved using several different methods. Here we
follow Ref. 9 and expand each of the mean fields and the
source densities in an angular basis. As noted above, the
assumed nuclear symmetries significantly restrict the ex-
pansions. The scalar field and the time components of
the vector fields are expanded in (even) Legendre polyno-
mials. For example,
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U (x)—= U, (x)=g

iG„, , (r)
r

F—, ,(r)
r

(2.10)

transfer. The transverse magnetic multipole operators
are defined in terms of the Schrodinger picture nuclear
current density operator J "(x)by

f'zg~(q)= Jd3xj&(qx)Y&&i(Q) J(x), (2.15)

where g, is an isospinor and ~ is the usual relativistic an-
gular quantum number. ' The allowed values of ~' are
limited by the symmetries and L „.In particular, only
terms with the same parity are included in the sum. For
nuclei near closed shells, the sum for a particular occu-
pied level is dominated by the term that would survive in
the spherical limit (no core deformation). We designate
the quantum numbers of this term by ~, h and j, h. Then
the sum in (2.10) includes all ~' (and corresponding j')
such that

l jsph L max l

~J' ~ Jsph+L max (2.11)

B. Elastic magnetic scattering

Note that the total angular momentum j of an individual
orbital is no longer a good quantum number but m is still
good. If we perform calculations with L „=0,the wave
functions do not mix, the core does not deform, and the
spherical-limit quantum numbers are restored.

If the expansions (2.7)—(2.10) are substituted into
(2.2) —(2.5), equations with different I.'s decouple and the
problem is reduced to a system of coupled ordinary
differential equations. These equations are solved by an
iterative procedure similar to that described in Ref. 9.
The only new feature is the addition of hp, to the scalar
field equation. This new term is expanded in I.egendre
polynomials numerically and, since bp, depends on P,
Eq. (2.2) is solved iteratively. More details on the solu-
tion method are given in the Appendix.

where jJ is a spherical Bessel function, Y J» is a standard
vector spherical harmonic, ' and J"(x)—:[p(x),J(x)].
Once elastic magnetic form factors have been computed,
the ground-state magnetic dipole moment p follows from
the q —+0 limit

2Mp= lirn —i
q~0 q

6';
(J, +1)(2J;+1)

1/2

(2.16)

Only the MI multipole contributes to the magnetic rno-
ment.

For elastic transitions, the three-vector current opera-
tor in the Schrodinger picture reduces to

J(x)=P (x)Qug(x)+ V X [g"(x)APXQ(x)] .
2M

(2.17)

Here a and P are the usual Dirac matrices and

o. 0X=

In the Hartree approximation to the nuclear ground
state, the elastic matrix element of this current is given
by

We will use elastic magnetic scattering of electrons
from nuclei, which probes ground-state nuclear currents,
to compare Hartree predictions to experiment. Follow-
ing the discussion in Ref. 32, we introduce an effective
electromagnetic current operator

OCC

& J;lJ(x)IJ; & =y U'. (x)Qt U (x)

1 OCC

+ V Xg Ut(x)APXU (x),
2M

(2.18)

J "(x)='P(x)y"Qg(x)+ 8 [ij'j(x)Ao~ g(x)],2M
(2.12)

I

where the field operators are in the Heisenberg represen-
tation, and

Q:——,'(1+~3),
A,

=—Ap —,'(1+F3)+A, „—,'(1 —r3),
(2.13)

where q denotes the magnitude of the three-momentum

are the charge and anomalous magnetic moment opera-
tors.

The transverse elastic form factor for a nuclear state
lJ,. ) is given by

,'„(q) ,'(q)
F (q)= '"

2J+ J=1,3, . . .

(2.14)

where the U (x) are the self-consistent (positive-energy)
single-particle solutions for the finite nucleus. Thus, the
calculation of nuclear matrix elements reduces to a sum
of single-particle matrix elements. [The first term in
(2.18) is the Dirac convection current and the second
term is the anomalous current. ] Expressions for matrix
elements of the corresponding single-particle operator

are given in the Appendix. Additional details on
calculating the form factors (single-nucleon form factors,
center-of-mass correction, etc.) can be found in Refs. 1

and 32.
In some RPA discussions (e.g., Ref. 28), core-

polarization effects are discussed as a modification of the
vertex for the valence nucleon (i.e., a renormalization of
the nucleon form factor). We emphasize that by using
self consistent Hartre-e wave functions in Eq. (2.18), we in-
corporate the same physics. In a full self-consistent
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RHA calculation, the renormalization due to the Dirac
sea appears as the contribution to the current from the
deformed Dirac sea, which can be calculated in a finite
nucleus in a derivative expansion, as in (2.23). A com-
plete and consistent treatment of the single-nucleon form
factors is beyond the scope of the Hartree approximation,
which does not have contributions from charged mesons.
Note, however, that when (isoscalar) vacuum polarization
is included (i.e., the RHA), the experimental form factor
should be adjusted for the screening at zero density by
the Dirac sea. This issue will be addressed in a forthcom-
ing paper, which includes RHA deri. vative corrections.

As indicated by the notation, we assume that the
ground states are approximately eigenstates of total J,
despite the deformation. Because we do not project
states of good J, we restrict ourselves to elastic magnetic
scattering from nuclei near closed shells that do not ex-
hibit large core deformations. The approximation can be
checked by computing the ratio of currents obtained
when the valence nucleon is placed in different m states.

C. Relativistic Hartree approximation

The equations given earlier are easily modified to in-
clude nucleon one-loop contributions; this approximation
is conventionally called the relativistic Hartree approxi-
mation. Originally, the vacuum corrections in the RHA
for finite spherical nuclei were included only in a local
density approximation. ' Perry and Wasson have re-
cently considered derivative corrections to the nuclear
matter results, which are nonnegligible in finite nuclei. In
particular, we expect that the correction to the baryon
current from the deformed Dirac sea will be significant.
However, in the present work we will only give results for
corrections included in the local density approximation.

To extend Eqs. (2.2)—(2.6) to the RHA, the only
changes are additional densities g, hp", "(x), g, hpii"(x),
and g, b,J ii"(x), which are added to the right-hand sides
of the meson equations (2.2) —(2.4), respectively. If we in-
clude the leading derivative corrections, these are given
explicitly by

1 M*
hp""(x) = — M* ln +—'M ——'M M*+3MM* ——"M*

S
7T M 6

V ( rh) — (V k) — FM* 12
(2.19)

1(EJii")"(x)= 8 ln g,F" (2.20)

where

(hJ s")"(x)—= [bp2i"(x), b J ii"(x)] .

The meson fields and M*—:M —g, P are functions of x, and F„=B„V,—8 V„can be simplified since V„(x) is indepen-
dent of time. For the meson fields of Eqs. (2.7)—(2.9), these expressions reduce to

1 M*Qpvac(x)Ma31n+~M3&M2Ma+3MMa2&~Ma3
S M 6

f

21n V'(g, p) — (Vg, p)' +, , [(Vg, Vo)' —(Vg, V~@)'],4~
(2.21)

1 M*
b pii"(x) = — V. ln Vg, Vo (2.22)

b,J2i"(x)=— V ln Vg„V g)
1 M*

(2.23)

where the fields are functions of r and 0 only and we have
defined V through V(x)—:V~(r, B)p. (Note that Vqr&0. )

In spherical nuclei, for which V =0, Eqs. (2.21) and
(2.22) agree with those used by Wasson. "

In the local density approximation used in this paper,
a11 derivative terms are neglected, leaving only the first
term in brackets in Eq. (2.21). [In particular, the vacuum
current (2.23) is not included. ] The derivative corrections
wiH be included in a forthcoming investigation.

III. RESULTS

In this section, we present results from self-consistent
Hartree calculations of odd-A nuclei. First, we consider
the bulk systematics of light nuclei (binding energies, rms
radii, and quadrupole moments), and then turn to mag-
netic moments and currents. Angular momentum projec-
tion is not included; all results are for intrinsic states.
Since we are considering nonspherical nuclei, the
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ground-state solutions are mixtures of states with
different total angular momentum, and the true ground
state should be obtained from the intrinsic solution by
projection. Instead, we relate quadrupole moments to ex-
periment by assuming the nonrelativistic collective model
is applicable. Magnetic moments and currents are dis-
cussed only for nuclei near closed shells, with small core
deformations. A measure of the importance of the defor-
mations is obtained by considering the relative sizes of
the various components of Eq. (2.10). As long as each
nuclear orbital is predominately made up of a single com-
ponent in the expansion, the intrinsic ground state should
be an approximate eigenstate of the total angular momen-
tum. Except when noted explicitly, we do not believe
that the lack of angular momentum projection affects our
discussion.

All results reported here were generated using two in-
dependent codes that used the expansion techniques de-
scribed in Sec. II and the Appendix. For odd-A nuclei,
the expansions were truncated at L,„=3, with selected
runs at L,„=4to check convergence. (Even-even nuclei
in Figs. 1 —4 were calculated with L,„=4.) This pro-
vides adequate convergence for the observables presented
here. The significant figures given in the tables refIect the
numerical precision of the calculations.

We start by examining the systematics of bulk proper-
ties of nuclei, including results for even-even nuclei dis-
cussed in more detail in Ref. 10. In that work, a wide
variety of mean-field parameter sets were considered,
with each adjusted to reproduce "empirical" nuclear
matter saturation properties, taken to be a binding energy
of 15.75 MeV at an equilibrium density corresponding to
k+=1.3 fm ', and the rms charge radius of Ca. For
the present survey, we have selected three sets, as given
in Table I. The linear set (L) is essentially the same as
the standard parametrization of Horowitz and Serot,
while the nonlinear set (NL) is similar to the set obtained
in Ref. 5, as providing the best fit to properties of spheri-
cal nuclei. Later, we consider a one-loop (RHA) model,
using parameters very similar to those given in Ref. 1.

Sc

experimet~t

NL

I

38
A

I

40
I

42

FIG. 2. Binding energy per nucleon of nuclei near Ca for
the linear (dot-dashed) and nonlinear (dashed) parameter sets
from Table I, compared with experimental data (solid).

Binding energies per nucleon of nuclei from boron to
neon are plotted in Fig. 1 for the linear and nonlinear pa-
rameter sets, and compared to experiment. Figure 2
shows results for nuclei near Ca. The binding energies
include a correction for the center-of-mass energy as in
Ref. 5, but no correction for angular momentum projec-
tion, which would tend to increase binding somewhat.
Binding-energy systematics are well reproduced by the
mean-field calculations using the nonlinear parameter set,
including the pattern of even and odd nuclei with the
same Z. The self-consistent ground states exhibit a
preference for pairs of approximately time-reversed states
to be filled, despite the explicit lack of pairing; similar re-
sults have been noted in nonrelativistic Hartree-Fock cal-
culations.

The linear and nonlinear models show similar trends,
but the linear nuclei are systematically underbound. As
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FICx. 1. Binding energy per nucleon of light nuclei for the
linear (dot-dashed) and nonlinear (dashed) parameter sets from
Table I, compared with experimental data (solid).

FICi. 3. Rms charge radii of s-d shell nuclei for the nonlinear
( } parameter set from Table I and a nonrelativistic Hartree-
Fock calculation with the Skyrrne II interaction (0 ) from Ref.
39, compared with experimental data ( X ) from Ref. 40.
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FIG. 4. Intrinsic charge quadrupole moments (mb) of s-d nu-
clei for the linear (o) and nonlinear ( ) parameter sets from
Table I. Moments derived from experimental measurements
( X ) are taken from Refs. 42 and 43.

shown in Ref. 10, this is directly attributable to the large
surface energy that is characteristic of linear mean-field
models. We note that only parameter sets with negative
values of A, [see Eq. (2.1)] have sufficiently reduced sur-
face energies to quantitatively reproduce experimental
binding energies.

Calculated rms charge radii from boron to calcium are
plotted in Fig. 3 for the nonlinear parameter set, and
compared to experiment. To compare to nonrelativistic
models, rms radii for the Skyrme interaction from Ref. 39
are also included. Predictions for the radii are reason-
able, and generally similar to the Skyrme predictions.
Once again, the radii are for intrinsic states; projection
should improve the agreement for light nuclei.

Intrinsic quadrupole moments for selected nuclei in the
s-d shell are shown in Fig. 4. We compare to "experi-
mental" intrinsic quadrupole moments that are extracted
from B(E2) data (even-even nuclei) or spectroscopic data
(odd-A nuclei) using model-dependent assumptions. (For
example, a rotational model is assumed. See Refs. 40 and
41 for details on the assumptions made in extracting in-
trinsic moments. ) Because of the approximations in-
volved, quantitative comparisons to experiment must be
viewed with some caution, so we focus on systematic
trends.

As noted in Ref. 10, the systematics of even-even nu-
clei are well reproduced by the nonlinear set, including
the pattern of oblate and prolate deformations. This suc-
cess continues for odd-A nuclei (for which data are avail-

able). In addition, the systematics are similar to those
found in nonrelativistic Hartree-Fock calculations, al-
though for Al the relativistic calculation predicts the
opposite (and experimentally correct) deformation. The
linear model predicts smaller deformations in general and
no deformations for closed subshell nuclei. This
difference between the models is closely related to the
strength of the spin-orbit splitting, which is somewhat
too large in the linear model. '

Next we turn to magnetic moments, starting with iso-
scalar moments for X=Z nuclei. Table II shows isoscal-
ar moments from the self-consistent calculations, using
the three models from Table I. The column labeled "Or-
bital" gives the quantum numbers of the dominant com-
ponent of the valence wave function. The moments in
the "valence" coIumn are calculated using I. „=0in the
angular expansions (see Sec. II). In this case, the core
wave functions do not mix and the moment is entirely
due to the valence contribution. As a result, the mo-
ments refIect the M/M* enhancement of the valence
current that is the source of the "magnetic moment prob-
lem. " (The valence moments are given for the linear
model; moments for the nonlinear model of the RHA
would be somewhat less enhanced because M*/M is
close to one. )

The self-consistent moments show a remarkable con-
sistency and all are close to the Schmidt values. Thus,
isoscalar moments are not only insensitive to relativistic
effects, they are insensitive to details of the models. Ex-
perimental moments are also close to the Schmidt values.
We note that corrections to nonrelativistic Schmidt pre-
dictions, which have been studied extensively, ' should
also be relevant in the relativistic calculations.

In Table III, self-consistent isoscalar moments for
linear and nonlinear models are compared to moments
obtained using linear response theory (RPA). In this
case, the linear parameters are from Ref. 3, the nonlinear
parameters are from Ref. S, and the rho and Coulomb in-
teractions are turned off. Moments predicted by the two
methods. are essentially equivalent, showing that the iso-
scalar moments are not sensitive to the differences be-
tween the approximations.

Further insight into the nature of the core response to
the valence nucleon (particle or hole) can be found from
Table IV, where individual contributions from single-
nucleon states to the isoscalar Dirac moment in an
A =39 nucleus are given. Results for L,„=O (no wave-
function mixing) are compared to L,„=3 (maximal mix-
ing of' wave functions). The levels are labeled by the
quantum numbers of the I. „=0calculations; the dom-
inant components of the mixed wave functions when

TABLE I. Parameters for mean-field models used in the self-consistent calculations. Linear (L),
nonlinear (NL), and one-loop (RHA) sets are from Ref. 10.

Model

L
NL
RHA

109.73
95.11
54.04

190.59
148.93
102.58

2
gp

65.37
74.99
83.30

m,

520.1

500.8
457.3

0
5000

0

0
—200

0

M /M

0.54
0.63
0.73
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TABLE II. Isoscalar magnetic moments using linear, nonlinear, and RHA self-consistent models
(see Table I) for N=Z nuclei. Valence only moments are for the linear model.

11
13
15

17
39
41

Orbital

1p—3

lp2
1

1d-
1d&

lf 7

Schmidt

0.940
0.187
0.187

1.440
0.636
1.940

Valence

1.13
0.307
0.343

1.57
1.01
2.26

0.96
0.182
0.199
1.43
0.66
1.94

NL

0.96
0.180
0.195

1.44
0.66
1.94

RHA

0.96
0.172
0.191
1.44
0.65
1.95

Expt.

0.892
0.190
0.218
1.414
0.706
1.918

L,„=3 retain these quantum numbers. Contributions
from levels that are exact time-reversed pairs in the
L,„=O case are grouped together.

When no core polarization is allowed (1. ,„=0),con-
tributions to the current from time-reversed states cancel
exactly, leaving the contribution from the valence nu-
cleon (a hole in this case) uncanceled and providing the
entire moment. %"hen the core wave functions are al-
lowed to mix, the valence moment is essentially un-
changed, but the states that previously canceled are no
longer exact time-reversed pairs and the cancellation of
Dirac moment contributions is incomplete. The net con-
tribution from each pair adds coherently to the isoscalar
moment, as predicted from nuclear matter results. The
final result is that the "core response" restores the pre-
dicted Dirac moment to the Schmidt value. RPA calcu-
lations of finite nuclei in Ref. 27 showed that, in terms of
the spherical basis states, it is the mixing of negative-
energy wave functions into the spherical core wave func-
tions that is responsible for these contributions to the mo-
ment. The three-vector field V is also clearly essential for
these contributions, since it breaks the time-reversal sym-
metry of the core states. The entire effect is mediated by
this field in the linear response calculations.

In Figs. 5 and 6, the isoscalar J= I convection (Dirac)
current is shown for A =15, in coordinate space and
momentum space, respectively. [The definitions of the
functions bz(r) and bz(q) are given in the Appendix. ]
The dot-dashed curve is the contribution from the
valence wave function only (L,„=O), and it can be com-
pared to the dotted curve, labeled "nonrelativistic. " The
latter curve is obtained from the valence Dirac spinor by
fixing the upper component and generating a new lower
component using the free-space Dirac equation (with
M*=M). This curve simulates the Dirac convection
current due to a nonrelativistic wave function for the

valence nucleon, and serves to quantify M* effects. The
M jM* enhancement of the valence current is apparent
in both coordinate and momentum space.

The solid and dashed curves are from self-consistent
and RPA calculations of the current, respectively. Evi-
dently, these approximations predict similar currents, iri
both coordinate and momentum space. The small
differences between the curves primarily reAect
differences in the contributions of the valence nucleon.
In the linear response calculation, the valence wave func-
tion is unchanged and is determined by the meson fields
of the core alone, while in the self-consistent calculation
it participates fully in the mixing of wave functions.

In momentum space, the self-consistent current (and
RPA current) is close to the "nonrelativistic" curve at
low q and is suppressed relative to the valence current.
This is consistent with the magnetic moment results of
Table II, since the slope of bJ(q) at low q is proportional
to the magnetic moment. At higher q, the self-consistent
current is enhanced; this effect is universal in mean-field
models (but not RHA models) and is consistent with the
nuclear matter response predicted by these models.

Isoscalar contributions to the anomalous current in
momentum space are shown in Fig. 7. The dominant
feature here is the enhancement of the self-consistent
current relative to the valence current from an L,„=O
calculation. Such differences have little effect on predic-
tions for isoscalar moments, because of the small isoscal-
ar anomalous moment of the nucleon. However, much of
the difference comes from changes in the valence wave
function, as opposed to the core response, which can
have important effects on predictions for isovector mo-
ments and elastic magnetic form factors. In addition, the
amount of wave-function mixing can depend strongly on
L,„,particularly for J) 1.

In general, isovector moments and currents are far

TABLE III. Isoscalar moments for linear (L') and nonlinear (NL') models calculated using di6'erent

approximations: valence only, RPA, and self-consistent. The calculations were performed using pa-
rameter sets from Refs. 3 and 5.

A =17
NL'

A =39
L' NL'

A =41
L' NL'

Valence only
RPA
Self-consistent

0.350
0.204
0.195

0.321
0.202
0.195

1.57
1.44
1.45

1.56
1.44
1.44

1.03
0.66
0.66

0.96
0.66
0.66

2.28
1.95
1.96

2.22
1.95
1.94
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TABLE IV. Contributions'to the isoscalar Dirac magnetic moment from single-particle levels in an
A =39 nucleus, using the linear parameter set from Ref. 3, as in Table III. Calculations with L,„=O
and 3 are compared.

LeveE

1s—'
2

]p 3

1p—3

1d—,
'

1d—'
1d—'

2s2

1d2

1d2

/mf

1

2
1

2
3
2
1

2
1

2
3
2
5
2
1

2
1

2
3
2

+[m/

+ 1.58
+0.94
+2.83

+0.80
+0.77
+2.30
+3.83
+ 1.14
+0.66
+ 1.97

I D Lmax—/m)

—1.58
—0.94
—2.83
—0.80
—0.77
—2.30
—3.83
—1.14
—0.66
—1.97

Net

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

+[mf

+ 1.55

+0.96
+2.80
+0.73
+0.76
+2.30
+3.82
+1~ 16
+0.61
+ 1.94

I D& Lmax—[m/

—1.61
—1.10
—2.85
—0.79
—0.80
—2.34
—3.84
—1.18
—0.62
—1.96

Net

—0.06
—0.04
—0.05
—0.06
—0.04
—0.04
—0.02
—0.02
—0.01
—0.02

Core
Valence

0.0
+0.99

—0.36
+0.97

Total +0.99 +0.61

inore sensitive to details of the model and the approxima-
tioii used. Magnetic moments for a range of nuclei near
closed shells are given in Table V for the linear and non-
linear models of Table I. Given the uniform predictions
for isoscalar moments cited above, the discrepancies be-
tween predictions reQect dift'erences in the isovector mo-
ments. Table VI includes a decomposition of the mo-
ments for the heavier nuclei into Dirac and anomalous
moments for L,„=O and 3 linear model calculations, in-
dicating core and valence contributions separately. As
seen for the light nuclei, core polarization plays an im-
portant role in determining the Dirac moment. The
anomalous moments are strongly affected by core defor-
mations, both through the contribution of the valence

state and the direct contributions from the core. The nu-
clei with valence holes in Table VI are particularly sus-
ceptible to wave-function mixing because the valence nu-
cleon starts out as a p —,

' state. Because of other well-
known many-body and exchange-current contributions to
isovector magnetic moments, comparisons to experiment
are not very meaningful at this point. We simply present
the results and note that further study of the isovector
moments, including contributions from pions, is needed.

Finally, we consider elastic magnetic scattering as a
probe of ground-state currents at finite q. Transverse
magnetic form factors are shown for ' N in Figs. 8 and 9,
for ' 0 in Fig. 10, and for Bi in Figs. 11 and 12.
Curves labeled "valence only" are from self-consistent

0.08
j

' & m &

j
««j

0.06

0.05

0.04

A=15 —Valence only

Nonrelativistic

0.04 0.03

0.02

0.00 0.01

—0.02
0

r (fm)

0.00
0

q (fm ')

FIG. 5. The isoscalar, J = 1 convection current for A = 15, in
coordinate space, calculated for the linear model with no
Coulomb interaction. The curves are valence only (dot-dashed),
nonrelativistic (dotted), fully self-consistent (solid), and RPA
(dashed).

FIG. 6. The isoscalar, J=1 convection current for A =15, in
momentum space, calculated for the linear model with no
Coulomb interaction. The curves are valence only (dot-dashed),
nonrelativistic (dotted), fully self-consistent (solid), and RPA
(dashed).
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15O

17O

17F

—0.264
+0.638
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+4.793

+0.020
+0.667
—1.91
+5.05

—0.250
+0.648
—2.03
+4.89

—0.285
+0.674
—2.00
+4.87

—0.283
+0.179
—1.894
+4.722

39K

Ca
'Ca

41S

+0.124
+ 1.148
—1.913
+5.793
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+ 1.17
—1.91
+6.41

+0.380
+0.94
—2.20
+6.08
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—2.10
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+5.430

89Y
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—0.264
—1.913
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—1.99
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209B1
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+3.45
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valence
total
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0.0
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0.0
—1.90
—1.90

+0.06
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—1.84

207Pb core
valence
total
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0.0
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0.0
+0.674
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+0.341
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+0.836

209Bi core
valence
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:——g p(x),
and modifying the Dirac Hamiltonian h to h ',

h~h'=h+P[g r3y5m. (x)] .

(4.1)

(4.2)

The pion field expansion analogous to Eq. (2.7) is a sum
over odd Legendre polynomials.

Preliminary calculations with, pseudoscalar ~-X cou-
pling indicate very large effects on magnetic moments in
Table V. However, relativistic RPA calculations and
other bits of Dirac phenomenology suggest that pseu-
dovector ~-X coupling should be used. These considera-
tions for odd-A nuclei have yet to be studied.

While the apparent failure of the relativistic mean-field
phenomenology in predicting isoscalar magnetic mo-
ments is removed by restoring full self-consistency, prob-
lems remain at higher momentum transfers. Unless fur-
ther corrections generate large cancellations, the
enhancements predicted in the mean-field models are not
refiected in the elastic magnetic scattering data. The ori-
gin of the enhancement is the transverse vector particle-
hole interaction (mediated by V), which becomes increas-
ingly attractive as M decreases, and even causes an in-
stability of nuclear matter at higher density and inter-
mediate q. In the finite odd-A nucleus, the valence nu-
cleon becomes the source of a vector interaction that
causes, through self-consistency, a particle-hole core po-
larization, which increases the convection current at
finite q.

As discussed in Ref. 29, vacuum polarization has major
efFects on the nuclear response at intermediate q, where
the RHA response is very different from the mean-field
theory. As a result, the RHA may provide a better phe-
nomenology for currents. RHA models have not been
able to reproduce quantitatively all of the nuclear struc-
ture successes of the nonlinear mean-field model
however, negative quartic couplings have not been con-
sidered and may be essential.

We have emphasized the simplicity of the physical pic-
ture presented by the relativistic mean-Geld models but
we have pushed their application into regions where they
may be diFicult to justify. In addition, we have avoided
angular momentum projection, pairing, and have includ-
ed center-of-mass corrections in only the crudest fashion.

tionable. Some implications of negative A, for the nuclear
matter equation of state are discussed in Ref. 47.

We have explicitly verified that isoscalar Inagnetic mo-
ments are returned to the Schmidt lines when full self-
consistency is restored. All models give the same result
and there appears to be no room for signatures of relativ-
istic dynamics. On the other hand, many features of iso-
vector magnetic moments in the mean-field framework
remain unexplored. For example, with the assumptions
we have made in the present work on the symmetry of
the nuclear ground state, the contributions of a neutral
pion mean field would not vanish. We could include a
pion field with pseudoscalar pion-nucleon coupling by
adding the field equation

OCC

(P' —m„)m (x)= —g g U (x)r3y~U (x)

However, the results are offered without apology. By
comparing theoretical and experimental systematics we
can evaluate the mean-field physics over a wide range of
nuclei without burying the simplicity of the mean-field
description. Since an ultimate goal is to provide reliable
wave functions and densities for scattering calculations,
further evaluations of the approximations are necessary
and more sophisticated calculations are likely to be need-
ed.

V. SUMMARY

In this paper, we study the ground-state properties of
odd-A nuclei near closed shells in relativistic mean-field
models, including both linear and nonlinear parametriza-
tions. The relativistic Hartree equations for the de-
formed intrinsic ground state are solved using an iterative
method based on expanding meson fields and source den-
sities in an angular basis. Pairing correlations are not ex-
plicitly included.

For bulk properties (binding energies, rms radii, and
quadrupole moments), the extension to odd- A nuclei con-
tinues the success found in spherical and even-even nu-
clei. That is to say, a linear parametrization is deficient
in some respects but a nonlinear parametrization can
reproduce experimental systematics at the level of the
best nonrelativistic Skyrme calculations.

Calculations of convection currents verify the results
obtained using a linear response approximation (RPA),
including the suppression of the impulse approximation
current at low q and enhancement at higher q. The M*
and core response enhancement of the current push pre-
dictions for elastic magnetic scattering further from ex-
perimental data than predictions from simple nonrela-
tivistic models. Thus, at least for now, this is a failure of
the mean-field phenomenology. Hartree calculations in-
cluding vacuum corrections (RHA) are not expected to
exhibit this enhancement and may provide a more con-
sistent model of the current. However, the present calcu-
lations only include vacuum effects in a local density ap-
proximation and enhancement is still seen.

For all models, isoscalar magnetic moments are found
to be close to the Schmidt moments, as expected. Isovec-
tor currents and magnetic moments are sensitive to the
details of the models and require additional investigation
before definite statements can be made. In addition,
some nuclei are particularly affected by full self-
consistency, possibly highlighting the need for some sort
of projection.

Extensions of the present investigations could include
the following.

(1) A detailed investigation of the isovector interaction
in the Hartree approximation and mean-field phenome-
nology. This means looking at pseudoscalar versus pseu-
dovector pion-nucleon coupling, tensor-coupled rho
mesons, the issue of contact terms, and so on.

(2) An improved treatment of the vacuum corrections
in a finite nucleus. In particular, this means incorporat-
ing the derivative expansion corrections of Eqs. (2.21)
and (2.23).

(3) Extending existing Hartree-Fock calculations of
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spherical nuclei to odd-3 nuclei.
(4) Exploring the consequences of angular momentum

projection and pairing correlations.
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APPENDIX

1. Solving the mean-field equations

In this appendix, we provide details for solving the
mean-field equations described in Sec. II. We will discuss
the o.-cu model only, ' extensions to include other mesons
are straightforward.

For given source densities, the meson equations
(2.2) —(2.4) are solved by integrating over an appropriate
Green s function, which is simply a Yukawa function. (If
the source density depends on the fields, the procedure is
iterated. ) For example, the field Vo is given by

2 m„ Ix —x'I

(Al)

with

g fx(x)x') YxM„(Q» ) YxM~(Q» ) (A2)
K =0M~

g, P (x ) =f x' dx' fr'(x, x')p, (x'),

g„VO (x)=f x' dx' fi'(x, x')pz(x'),
0

g&V (x)=f x' dx'fi(x, x')J~(x') .

(A4)

In practice, the numerical integrals are evaluated using
Simpson's rule.

Expressions for the radial functions in Eq. (A4) are
compactly written after defining the coefficients AL and
BL, which are simply angular matrix elements

IK+1/2(mix ( )KK +1 2/( mi x) )fr(x, x') =g; (A3)(xx')'

and i = t s, v J. After expanding the fields and source den-
sities, the angular integrals can be performed using stan-
dard angular momentum algebra, and then the meson
fields are obtained from radial integrals over the ap-
propriate radial source densities

A 1 ( ~', a, m )—:(( ( '
—,
'

)j ' m
2L +1

' 1/2

L j
0 1

2

BL (~', a., m )—:( ( l' ,' )j 'm
i
Y I—L,.o i ( l—,

'
)jm )

j' L j
—m 0 m (A5)

I L
1

2

j L
—m 0 m

l' L l

0 0 0 (A6)

where l =2j —l is the orbital angular momentum for the lower component and [j]=&2j + 1. Then the source densities
are given by sums over radial wave functions and the A and 8 coefficients,

max

p, (x):—g Pl (cos8)p, (r)
L even

Lmax 2L +1 occ
PL(cos8) g [G,.(r)G, (r) —F,.(r)F „(r)]AL(a',~,m),

L even 4~r a~'I~
(A7)

max

p~(x) —= g PL (cos8)p~(r)
L even

Lmax 2L+1 occ
PI(cos8) — g [G „.(r)G „(r)+F „(r)F (r)]AI (v', sc, m),

L even aa'a
(A8)
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max

JB(x) i y Y LL1
L odd

max OCC

=i g LLi (Q„) 2 g [2G „.(r)F,(r)]BL(x',v, m) .
L odd aa'v

(A9)

The m label on the radial wave functions has been suppressed in Eqs. (A7) —(A9).
The Dirac equations for the radial wave functions are obtained by substituting the relevant expansions into the full

Dirac equation (2.5) and projecting

d K
Lmax

+—G, (r) (M+—e~)F, (r)+g g AL(a, a'', m)[g, P (r)+g, Vo(r)]F,. (r)
L even

max

L odd
BL(a,v', m)[g„V (r)]G~, (r)=0, (A 10)

d IC
Lmax

(r) (M e—)G,—(r)+g g AL(a, )c', m )[g,PL(r) —g, VOL(r)]G, . (r)
L even

max

+g g BL(a,z', m)[g., V (r)]F,. (r)=0 .
L odd

(Al 1)

The assumption that the valence nucleon is placed in a definite m state restricts the expansion of the current (by parity)
to Y LLi terms with odd L. This also ensures current conservation since V $(r)Y LL. i(Q) =0 for any radial function

P(r).
The mean-field equations are solved by an iterative procedure similar to that described in Ref. 9. Specifically, the ra-

dial equations for the orbitals [Eqs. (A10) and (Al 1)] are solved as coupled-channels equations, by repeatedly integrat-
ing the differential equations with appropriate boundary conditions in each component. An inward-outward integra-
tion is performed with a fourth-order Runge-Kutta method, and the eigenvalue is obtained by insisting that the full

solution (obtained from the superposition of the solutions with boundary conditions imposed on the individual com-
ponents) be continuous at a prescribed matching radius. Once new wave functions are determined, the boson equations
are solved by integrating the source terms over the corresponding Green s functions, as described above. The pro-
cedure is continued until self-consistency is achieved, as measured by the change in energy and moments of the density
and current with each iteration. Two codes, based on the same approach but written independently, were used to mini-

mize programming and input errors and to ensure that the lowest energy solutions were found.

2. Reduced matrix elements

To facilitate comparisons with Ref. 27, we write the ex-
pansion of the baryon current JB [Eq. (A9)] as

J j
JB(x)= g ( —1)"

J odd
—I 0 I

Xbq(x)Y JJ,(Q„), (A12)

which defines the radial function bz(x) that is plotted in

Fig. 6. Here j and I refer to the quantum numbers of
the valence nucleon, which is assumed to be dominated
by a single component in the expansion of the single-
particle wave function. %'e have included the factor in
brackets so that bJ will correspond to an (approximate)
reduced matrix element of the current.

The reduced matrix element of f'~gj(q) [Eq. (2.15)],
with the isoscalar baryon current only, is given by

I

&Jill Jd'xjJ(qx)Y Jii(f)) JB(»ll~; &

=i f dx j~(qx)b&(x )=ib&(q),
0

(A13)

which defines the function bJ(q) plotted in Fig. 6. The
function cJ(q) for the isoscalar anomalous current, plot-
ted in Fig. 7, is defined analogously starting from Eq.
(2.18).

Note that JB(x) is only approximately the matrix ele-
ment of the current in a state of definite J; since the self-
consistent odd-A solution is a deformed intrinsic state.
In principle, one should project out states of good J to
calculate the matrix elements for electron scattering, al-
though consistent and unambiguous angular momentum
projection techniques for relativistic models have yet to
be developed. Approximate projection methods used in
nonrelativistic calculations should be applied to the rela-
tivistic problem to estimate the size of corrections.
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