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The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the
(2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy
nucleon-nucleon potentials in the 'So and 'S

&

-'D
&

channels. The resulting j~= —,
' + and —,

' + three-

body subamplitudes are represented in a separable form using the energy-dependent pole expansion.
Converged bound-state results are calculated for the first time using the full interaction, and are
compared with those obtained from a simplified treatment of the tensor force. The Tjon line that
correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon
potentials. In all calculations the Coulomb force has been neglected.

I. INTRODUCTION

Over the years considerable progress has been made on
the solution of the quantum-mechanical four-body prob-
lem through integral equations. After the pioneering
work of Yakubovsky' and Alt, Grassberger, and
Sandhas (AGS), a number of calculations were per-
forrned on the four-nucleon system. Extensive review ar-
ticles have been written on the subject, covering not only
the most recent work at the time, but also explaining
in great detail the equations, the different versions used in
the calculations, the numerical techniques and the ap-
proximation methods. '

Although there are already many calculations of the
He binding energy using integral equations, together

with local or nonlocal separable potentials between pairs,
no attempts have been made to include the Coulomb
force between protons, three-nucleon three-body forces,
realistic one-boson exchange potential (OBEP) interac-
tions or even full tensor-force effects. The most that has
been achieved involves the use of a local potential be-
tween pairs in the 'So and S

&

- D] channels, but neglect-
ing the t-matrix d-wave components already at the two-
body level. Since the tensor effects are included only
through the s-wave two-nucleon t-matrix too, and the
(3)+1 and (2)+(2) subsystem amplitudes are taken ex-
clusively in the s wave, the resulting four-body equations
conserve channel spin and channel angular rnomenturn.
The corresponding four-nucleon wave function has a very
simple structure with only s-wave components between
pairs, as well as zero relative orbital angular momentum
between a nucleon and a pair, two pairs, and a nucleon
and the remaining three nucleons.

Another major development involved the use of one-
term separable interactions in the 'So and S&- D& chan-
nels which as mentioned above are also treated in the
"too" approximation, while taking into account p-wave
(3)+ 1 subsystem amplitudes, in addition to the dominant
s-wave ones, to conclude that negative parity (3)+ 1 states
contribute less than 0.05% to the four-nucleon binding
energy. The corresponding four-nucleon wave function

now has a richer structure since p-wave states between a
nucleon and a pair may subsist together with a p-wave
relative orbital angular momentum between the extra
fourth particle and the center of mass of the remaining
three nucleons.

In the present work we attempt to include for the first
time the full effect of the nucleon-nucleon tensor force
through the exact treatment of all d-wave components at
the two-, three-, and four-body levels. As a consequence,
our calculations are at least 1 order of magnitude more
time consuming than the simplest ones involving s-waves
components at all levels. Although the potentials we use
are relatively simple, the results constitute new bench
marks that may also shed light on the effects of the tensor
force on the binding energy of He, and allow for a better
understanding of the use of approximation methods in
the solution of four-body equations. The four-nucleon
wave function we now obtain has a considerably richer
structure that results from all different two-, three-, and
four-body channel components that couple to zero total
angular momentum, zero total isospin and positive pari-
ty. This work also serves the purpose of setting up a very
general framework, where improvements on the potential
or number of (3)+ 1 or (2)+(2) subamplitudes that are in-
cluded may be added at a later stage, making the calcula-
tion more realistic.

As mentioned in Ref. 6 most of the four-nucleon work
that has been done in the past, uses three difFerent, but
equivalent formulations, all based on Yakubovsky or
AGS original equations. They are: (a) a set of two-
variable [2V) integral equations that couple 3+1 and
2+2 wave-function components (b) a set of N XN one-
variable [1V] integral equations that also couple 3+ 1 and
2+2 wave-function components, " and where N is the to-
tal number of terms used in the separable representation
of all (3)+1 and (2)+(2) subamplitudes; and (c) a set of
N'XN' one-variable integral equations that only couple
3+1 wave-function components, and use the convolution
method [1V+C]' to treat the (2)+(2) subamplitudes ex-
actly, together with a number N' of terms to represent all
(3)+ 1 subamplitudes in a separable form.
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In the present work we use the later formulation which
is the one we And more useful to extend our calculations
into the scattering region. In Sec. II we write the equa-
tions and in Sec. III we present the results. Finally in
Sec. IV we draw some conclusions.

II. THE EQUATIONS

In the present work we use the Alt, Grassberger, and
Sandhas (AGS) formalism in the form where the (2)+(2)
subamplitudes are treated exactly by convolution. ' A
one-term separable two-nucleon interaction in the 'So
and S&- D& channels is used together with the energy-
dependent pole expansion' (EDPE), to set up a mul-
titerm separable representation of the resulting three-
nucleon subamplitudes. The four-nucleon equations we
solve are, therefore, single-variable integral equations '

for the 3+ 1 spectator function q„(k;SLjip), where J, I,
and P are respectively, the total four-nucleon spin, iso-
spin, and parity, k(L) is the linear momentum (orbital
angular momentum) of a single nucleon relative to the
center of mass of the remaining three-nucleons which
carry spin j, isospin i, and parity p. The channel spin is S
and u denotes the separable terms of the corresponding
(3)+1 subamplitude j ~i. Since in He I=O, J =0+, and
as shown in a previous work, negative-parity (3)+1
subamplitudes have little effect on four-nucleon binding
energies, the (3)+ 1 subamplitudes of interest have isospin
i =

—,', and j =
—,
'+ and —,

'+. The integral equation we
solve reads (2m =A'= 1; m =nucleon mass)

k' dk'
q„(k;SLj )= g g f %„,(E;kk';SLj;S'L'j ')

vv' S'L'j '

XDi, (E —4k' )

Xq„(k', S'Lj''),
where the driving term % is the sum of three terms

(2)

X~ is the number of separable terms in the EDPE expan-
sion of the j'+(3)+1 subamplitude and Dj, is the corre-
sponding EDPE three-nucleon propagator given by Eq.
(4) in Ref. 9. To simplify the notation we have dropped
the indices J, I, P, and i which, as mentioned above, are
fixed. As shown in Refs. 6 and 7, Eqs. (1) and (2) have a
graphical representation which is depicted in Fig. 1. The
first term in Fig. 1(b) is the Born term B, which involves
the exchange of an interacting pair of nucleons between
two 3+ 1 states, while the remaining three terms in Fig.
l(b) involve the exchange of two uncorrelated nucleons
and the propagation of two noninteracting pairs; X corre-
sponds to the first box diagram, and Y to the last two.
Given our choice of two-nucleon channels, only identical
(2)+(2) pairs can couple to 0+. Therefore the resulting
3+ 1 and 2+2 four-body channels are shown in Table I,
where b, (1 ) is the pair spin (isospin).

Using the notation of Ref. 9, whenever possible, we
now write explicit expressions for all terms in X. The
Born term is given by

B„„,(E;kk';SLj;S'Lj'')= g g y&(sjlSL;s'lj''S'L')B~(E; kk'; usjl;u's'l'j'),
vX sls'1'

(3)

where, v is a triplet or singlet pair with spin 6 and isospin I,
k

B&(E;kk', uslj;u's'1'j ')= —
—,
' f dx I'~(x), g„(Ek; Ip I;s l j )r.(T)g„(Et„lpl;slJ)—1

(4)

Ek =E —4k

B 0

j )P' Q' Q
Ui DZJlf'Jl8

(b)

7i&DI/ DA.
V

FIG. 1. (a) Graphical representation of the integral equation for the 3+1 spectator function. (b) Graphical representation of the
driving term %.
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TABLE I. Four-nucleon, four-body channels that couple to J =0+, I=O.

jP
(3)+ 1

S L

]+
2
3+
2

E k~ —(k+k
2

kp= —+k',
3
k'p'= +k,
3

x =(k k )ylkl fk I
.

(8)

(9)

The P& is a Legendre polinomial of order X and r is the triplet or singlet two-nucleon propagator shown in Eq. (2)
of Ref. 9. The spin-isospin coefficient g may be written as

X~(sijSL;s'I'j 'S'L')= g gX X' I I'EL'(I —
A, )(I' —A, ')

el+1
X

1/2 ' 1/2 . .
A. +A'2l'+ I L' A,

' X' X' A,

0 0 0 000
XSS'ss'jj 'ii 'W( ,'I I,';i'i )——

D L D I —
A, I' —A,

'

X g A B C D W(CL'I' A, 'A, ';I'X')—
ABCD

s A I I B S' I C L X D L
S j . , s'

2

I' j' . S' I.' J -- k I —A. I

S —,
' B I' S X' I' —A,

' C

where X=&RE+ 1, W is a Racah coeKcient,

1 )s' —8 +x'+ 2s +6—s'+ I /2+ I —i'+ I + I"+ I

i =i'=
—,
' and I =J=O. The quantum numbers s and l denote the channel spin and particle-pair relative orbital angular

momentum of the three-body subsystem at each vertex. The g„are EDPE three-nucleon effective form factors as
defined in Eqs. (3)—(7) of Ref. 9, but generalized to aHow for a larger number of three-nucleon channels (three for
j =

—,
'+ and four with j =—', + ).

Likewise the box-amplitude X is given by

2d
X» (E;kk', SLj;S'Lj'')= g g 5 f 2

A„(E;k'q;S'L'j', SLvv')G (E;k'qk)A„(E;kq;SLj;SLvv'), (12)
I vv' 27T

where

A„.(E;k'q;S'Lj'';SLvv')= g g X~(s'Ij''S'L';cr'8'6'SL)A~(E;k'q;u's'Ij '';cr'8'v'),
s'I'o'8'

(13)

A (E;k'q;u's'I'j ', o Y"'v') =( —1)' —' dx P (x)
g&'(Ek'i lp'lls'I'j')f &''p'( Ipl ) 1 q
E +E —k ' —(k'+ q) —

q /2 2
I p I

(14)

p'= —', k'+q,
p=k'+ —,'q,
x =(k' q)&lk'I lql,
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and cr( 8 ) is the pair channel spin (angular momentum). The spin-isospin coefficient Q reads

y&(s'I'j'S'L';o '8'b, 'SL ) = g g X X' l'P"'L'L (8' —A, )(l' —A, ')

X

.
A, +A, '2l +1 k 2'+'3 '

L' A,
'

X 0 O 0 0 O 0 S S& s ZL J' f /' W(I &I2y/' I )

D L D 8' —A. 1' —A,
'

X g A B C 8 W(CL'1' A, 'A, ';—1'X')
ABCD

Xn
S r' B S' r' C L

S
S b, ' . . s' I' j'. S' L' J.

S —,
' B l' 1' —A,

' C
(18)

1
)o'+s' —B +x'+I + I (19)

The Y'term in (2) may be obtained from (12) by changing 6 ~ ~6
A„(E;kq;SLj;SLvv')~ A„(E;kq;SLj;SLv'v)

and multiplying by a phase

1 )s+X+I+a+ a'+ r+ r'
7 (2O)

which, for identical pairs, reduces down to the usual factor of ( —1) +

Although the intermediate (2)+ (2) propagators are identical to those in Ref. 9 they are written here for completeness,
and coherence of notation:

( W —Q)( W —Q') ~ 1m[7~(x)]7~( W e~ E~ x)
G„(E;k'qk) =r, ( W —e, )5,— dx

7T

G„(E;k'qk)= „r ( W —s, )5„+ „r,(Q"—e,)r, ( W —Q"—c,. )
W —Q" (W —Q)(W —Q")

( W Q)( W Q ) „ 1m[i (x)]r, ( W —e —e, —x)
dx

o (x +s —Q")( W —Q —s,—x)

(21)

(22)

where

W=E+c +c. —
q

W —Q =E+e —
q /2 —(k+q) —k

W Q'=E +e,—q
~—/2 —(k'+ q) —k',

W —Q"=E +s .—q /2 —(k'+q) —k'

(23)

(25)

(26)

and 5, is zero unless v is a triplet pair. Likewise c is the
deuteron binding energy if v= t and zero otherwise.

Since (1) is a set of coupled homogeneous integral equa-
tions that satisfy the Fredholrn alternative, a solution
only exists for discrete values of E & —c.„where c, is the
underlying three-nucleon binding energy. A note of care
should be added concerning the calculation of the box
amplitudes X and Y. Since k, k', and q appear in Eqs.
(21) and (22), the integrals in the angles between k and q
and between k' and q are performed simultaneously with
the integration in q dq shown in (12); in other words, the

integration in Eq. (14) cannot be done independently of
the rest.

III. RESULTS

Given the parameters of the nucleon-nucleon interac-
tion shown in Table II one proceeds to find the values of
E for which the Fredholm determinant in Eq. (1) van-
ishes. Since these calculations a,re, as far as CPU time is
concerned wise, very time consuming, it is worth study-
ing first the convergence of the calculation with respect
to the number of terms in the separable representation of
(3)+1 subamplitudes, the number of d-state vertices in-
cluded in the calculation of B, I, and Y amplitudes, and
the importance of j =—', + three-nucleon subamplitudes.
For that we start by using a small number of mesh points
M in the momentum variables k, q, and k', such as
M=14, which, from previous experience, ' is sufficient
to obtain binding energies that are at least 99% con-
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TABLE II. Parameters of the NN interaction using Yamaguchy form factors taken from Ref. 6.

Interaction

Y1
Y2
Y4
Y5
Y6

1.45
1.406
1.3134
1.2766
1.2412

pt( j—1)

1.5283
1.7610
1.9476

0
0

—1.689
—2.950
—4.4949

Percent D

0
0
4.0
5.5
7.0

ps( j—1)

1.165
1 ~ 13
1.13
1.13
1.13

Ao(f ')

73.92
65.63
65.63
65.63
65.63

verged.
Since the calculation of B in Eq. (3) involves the sum-

mation over all channels of the underlying three-nucleon
system (s, l, s', I') and the calculation of X and F involves
the summation over all channels of the three- and two-
nucleon systems (s, l, s', l', o, l, o.', I'), we show in Tables
III and IV all two- and three-nucleon channels for the
chosen two-nucleon interaction. Given that I and 8 only
take the values zero or two, one may define
LT(LT=I+l' in B and LT=8+8'+l+1' in X or I') as
the sum of all angular momentum quantum numbers at
each vertex in the amplitudes shown diagrammatically in
Fig. 1(b). In an exact calculation LT takes all possible
values between zero and 8 in X or Y, but only up to 4 in
8. Nevertheless, because d-wave vertices are weaker than
s-wave vertices, one expects that terms with LT = 8
should contribute less to the binding energy than terms
with Lz-=4, and these less than L,T=0 ones. Therefore
we study first how the four-nucleon binding energy
changes as we allow the upper limit on LT to increase
from zero to 8. The results are shown, in Table V for the
interaction Y4 and using a single term in the separable
representation of the j~= —,

'+ (3)+1 subamplitude. We
find that by including all terms up to LT=4 one gets
99.9% of the total binding energy. As expected
max[LT]=0 and max[LT]=2 results are identical be-
cause in 8 one needs I =k' to couple the initial —,

' 3+1
state in channel S =L=O to the same final state with
S'=I '=0. In addition in X and Y one needs at least
max[LT] =4 to couple both S =L=O and 5'=L'=0 —,

'+
3+1 states to an intermediate S=L=2 2+2 state. The
net effect of adding the d-wave vertices in the kernel,
while increasing the upper limit on LT from zero to 4 is
an increased repulsion. Although the additional l =I'=2
term in 8 is attractive, much like the already existing
/ =I'=0 one, the new contributions coming from X and
Y that result from 8=1=0 and 8'=l'=2, coupling
S =L,=O and S'=L'=0 3+1 states through an S=L=O
2+2 intermediate state, are repulsive relative the dom-

TABLE III. Two-nucleon channels for 'So and S&- D&
nucleon-nucleon interactions.

inant P=l =8'=I'=0 box amplitude. In addition to
these terms there are those that involve, in intermediate
states, two triplet pairs in channel S=L=2. These give
rise to an attractive contribution as may be shown by
switching off the S=L =2 channel. Keeping
max[LT]=4, the resulting four-nucleon binding energy
changes from 31.943 to 31.820 MeV which is O.S5 MeV
smaller than the original max[LT]=0 result shown in
Table V. Finally, by increasing max[LT] from 4 to g one
adds attraction leading to 0.1% extra binding.

Next in Table VI we show how the binding energy
changes as we increase the number of terms in the separ-
able representation of the j~= —,

'+ subamplitude. For
simplicity we take max[LT) =0, and increase N'~ from 1

to 4; while the first and third terms are attractive, the
second and fourth terms are repulsive. Previous calcula-
tions where the tensor force was either neglected or in-
cluded in some approximate form '" indicate that four
terms in the expansion of the subamplitudes is sufficient
to calculate binding energies which are at least 99.9%
converged. Since the convergence pattern with X' is
no different here from what we found elsewhere, we take
N' =4 as the optimum value.

Although one expects the —,
'+ three-nucleon subampli-

tude that carries the quantum numbers of the triton to be
dominant, there is no a priori .reason to neglect the —,

'+
subamplitude which couples to J =0+ through S =L,=2
(see Table I). The j~=—', + subamplitude is predominantly
made up of the s =—', , I=O three-nucleon subchannel
which is Pauli repulsive (all nucleons have their spins
aligned and are in relative s states). Therefore its contri-
bution to c. is mainly repulsive. This is shown in Table

TABLE IV. Three-nucleon channels for 'So and 'S&-'D&
nucleon-nucleon interactions.

1

2
1

2
3
2

3+
2
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TABLE V. Four-nucleon binding energy c, (MeV) vs

max[Lr] for the interaction Y4. Only the j~= —'+ (3}+1

subamplitude is included with N' = 1.

TABLE VII. Four-nucleon binding energy c. (MeV) vs
max[LT] for N'~ =1 and N'~~=1 and 4. The latter energies
were calculated only for max[Le ]=2.4 to save CPU time. The
interaction is F4.

max[Lr ] &. (MeV)

32.370
32.370
31.943
31.962
31.978

max[Lr]

32.369
31.943
31.961
31.977

32.368
31.942

~. (MeV)
=1 N =4

VII where we display s vs max[Le. ] for N' =1 and
equals 1 and 4. Comparing Tables V and VII one

finds that the —,
'+ subarnplitude only changes the a-

particle binding energy by less than 0.01% which is 2 or
3 times less than what we have estimated in Ref. 9 to be
the contribution of the negative-parity subarnplitudes we
have neglected already here. Therefore, from now on, we
consider only the j~= —,

'+ (3)+ 1 subamplitude. A note of
care should nevertheless be added, concerning the effect
of —,', —,', and —,

'+ three-nucleon states in the n-particle
wave function. Although our findings seem to indicate
that the contribution of these states to the binding energy
is negligible, one cannot conclude that they may be dis-
carded from the resulting a-particle wave function prior
to a careful study of the weight of each component state.
In particular we find that the contribution of the —,

'+
subamplitude is bigger in the absence of all 2+2 chan-
nels, than in their presence. This indicates that some
cancellations may take place between terms, resulting
from different components in the wave function which,
though small, are not necessarily negligible. These
findings are shown in Table VIII, where all calculations
involve max[LT]=4 and N' =4 terms in the separable
representation of the —,

' + (3)+ 1 subamplitude. By switch-

ing off all (2)+(2) states in the calculation, the driving
term X in Eq. (2) becomes the Born term B. In the pres-
ence of all (2)+(2) states, introducing the —,

'+ (3)+1
subamplitude hardly changes the four-nucleon binding
energy, while in their absence its contribution rises to
0.4%. As for the (2)+(2) states they contribute roughly
45% to the ground-state binding energy independently of
the presence or absence of the —,

'+ subamplitude.
Finally, keeping max[LT]=4 and N' =4, we increase

M to 21 mesh points and calculate the ground-state ener-
gies of the a particle for the interactions shown in Table
II. The energies corresponding to Y1 and Y2 interac-

tions, which have no tensor force, have been reported pre-
viously, ' and agree with the values obtained by Gibson
and Lehman' or Sofianos et al. "' The new "exact" E

results for Y4, Y5, and Y6 potentials are given in Table
IX, together with the old ones for Y1 and Y2 interac-
tions. The corresponding triton binding energies c, are
given for comparison. In addition we also give the ener-
gy of the excited 0+ state in the a particle, which exists
for all potentials we have used, but whose value ap-
proaches the corresponding c, threshold as the d-state
component of the XX interaction increases. In the last
two columns we also display c and c* energies for
max[LT]=0. The difference between the third and fifth
(or fourth and sixth) columns shows the contribution re-
sulting from including d-state components in the kernel
of Eq. (1). As mentioned before the net effect is an addi-
tional repulsion which increases slightly with the strength
of the tensor component of the XX force.

Since Table V indicates that max[LT]=4 results are
99.9% converged, we show in Table X the extrapolated
ground-state energy for max[LT)=8, and compare with
the values obtained by previous calculations where the
tensor force was included in some approximate way. As
mentioned in the Introduction, four-body equations have
been solved in the past using three different, but
equivalent formulations. The work previously mentioned
was done either through the solution of two-variable
[2V] integral equations' that couple 3+ 1 and 2+2 com-
ponents in the wave function, or by making use of cou-
pled one-variable integral equations for the 3+1 com-
ponents, together with convolution [1V+C] (Ref. 6) to
include the (2)+(2) subamplitudes in the form of an in-
tegral over independent pair t matrices. These two for-
mulations yield the same results when used in the context
of an exact calculation, but differ' even when the same
type of approximation is used to simplify their respective

N 1/2 c (MeV)

TABLE VI. Four-nucleon binding energy c, (MeV) vs N'
for the interaction Y4, and max[Le ]=0.

TABLE VIII. Four-nucleon binding energy c (MeV) for
max[Le]=4, N'~ =4, and the Y'4 interaction. The 3+ sub-

amplitude is included with N =2 in the presence and absence
of all (2)+(2) states.

32.370
32.368
32.675
32.666 (MeV)

N'"=0
32.206

N =2
32.204

All (2)+(2) states

N =0
18.779

N3n 2
18.709

No (2)+(2) states
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TABLE IX. Three-nucleon binding energy c„and four-nucleon ground state and excited 0+ energies
for different potentials parameters with max[Lr] equals zero and 4.

max[Lr ]=4 max[Lr ]=0

Y1
Y2
Y4
Y5
Y6

11.013
10.206
8.573
8.040
7.588

8.752
8.150
7.654

32.305
29.066
26.535

11.438
10.622
8.775
8.176
7.680

45.666
42.398
32.775
29.587
27.046

kernels. As discussed in Ref. 6 the two major approxima-
tions that have been used in the past to include tensor
effects in the four-body problem, without including e-
state components, are "too" and "truncated —,

'+ subampli-
tude. " In "too" one reduces the triplet NX t matrix to its
dominant s-wave component, which accounts to remov-
ing the third channel in Table III, and consequently, all
d-wave channels in Tables IV aqd I. Unlike "too", the
"truncated —,

'+ subamplitude" keeps all three channels of
the two-nucleon system but truncates the —,

'+ (3)+1 sub-
system to the two dominant s-wave channels, In this
truncated space the three-nucleon kernel is identical to
the full kernel. As for the (2)+ (2) subamplitudes they are
treated as in "too". Therefore, from the practical point of
view, both methods are identical, except on the way they
treat the (3)+1 subamplitudes. Table X clearly shows
that "too" tends to overbind while "truncated —,

'+ subarn-
plitude" tends to underbinding. In addition, approximate
calculations using [1V +C] lead to energy results that
are more bound than those obtained with [2V] formula-
tions. ' Similar effects regarding "too" vs "truncated —,

'+
subamplitude" are seen in the three-nucleon problem as
shown in Table XI.

In Fig. 2 we plot the exact results for E vs c,, (crosses)
and draw a solid line through the crosses corresponding
to the potentials that have the same singlet parameters
( Y2 —Y6). The cross corresponding to Yl lies outside
such a line. This strong correlation between c and g,
was first suggested by Tjon, ' and remains valid even in
the presence of tensor force. Our calculation seems to in-
dicate that potentials that share the same singlet interac-
tion, but different triplet potentials, all fitted to the same
triplet scattering length, deuteron binding energy, and
quadrupole moment, may lead to He and He binding
energies that correlate almost exactly through a straight
line. We also find that approximate [2V] results using ei-

ther "too" (open circles) or "truncated —,
'+ subamplitude"

(open triangles) also lie nearly on the same solid line
defined by the crosses. As for (1V+C) approximate re-
sults they define a new straight line (dashed) which goes
through the cross corresponding to Y2.

IV. CONCLUSIONS

Using one-term separable potentials between pairs in
the 'So and S,- D

&
channels, we have calculated for the

first time the binding energy of He, taking into account
all d-wave components of the two-, three-, and four-
nucleon channels. On a Vax 8550 computer it takes
about 8 h of CPU time to calculate all matrix elements of
the kernel at a given energy E, using 21 mesh points in
the momentum variable, four terms in the separable rep-
resentation of the —,

' + (3)+ 1 subamplitude, and
max[Le ]=4. The same calculation in the "too" approxi-
mation takes 1.5 h of CPU time. Given the computer
limitations we had to face, we limited ourselves to a few
simple potential models, and kept an optimum balance
between the number of mesh points, the number of separ-
able terms per subarnplitude, and the number of d-wave
components in the driving term S. Nevertheless we ex-
pect our energy results to be at least 99.9%%uo converged.

If one concentrates on Tables IX—XI one may draw
the following conclusions. (a) Raising the percent D-state
probability in the deuteron from 4 to 7%, introduces a 1-
MeV change in the binding energy of He but a 5.8 MeV
shift in the binding energy of He. Although the effective
change is not linear with percent D due to saturation, as
expected, He is much more sensitive to changes in the
XX tensor force than He, (b) Although the agreement is
not perfect and changes with percent D, we find that the
[2V] results in the "trN" approximation, shown in the
third column of Table X, are the ones that come closer to

TABLE X. Four-nucleon binding energies resulting from different integral equation formulas and
taking different approximation methods used to include the tensor force. The exact result is extrapolat-
ed to max[Le. ]=8 from the value obtained in Table IX for max[Lr] =4.

Potential

Y4
Y5
Y6

[1V+C]
34.02
30.82
28.04

ccrc
j$

00

[2V]

32.87
29.25
26.17

Exact

32.34
29.10
26.56

"Truncated —'

[1V+ C]

31.68
28 ~ 15
25.41

[2V]

30.42
26.58
23.65
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TABLE XI. Three-nucleon binding energies for -different po-
tential models and approximation methods used to include
tensor-force effects.

Potential

Y4
Y5
Y6

too

8.657
8.078
7.560

Exact

8.573
8.040
7.588

"Truncated 2+

8.191
7.560
7.051

40—

30— & EXACT CALGUL.

the energies obtained with max[LT] =0, and presented in
the sixth column of Table IX. (c) Adding the d-wave
components to the four-nucleon kernel decreases the
ground-state binding energy by roughly 1.5 —2% as may
be seen by comparing columns four and six in Table IX.
In He a similar change only results in at most 1% less
binding. (d) The S=L=2 2+2 channel gives an attrac-
tive contribution of about 0.5%, while the —,

'+ three-
nucleon subamplitude in channel S =L=2 contributes
less than 0.01% to the ground-state energy. (e) Approxi-
mate methods of treating the tensor force are not as reli-
able in "He as in He for the reason pointed out in (a),
and strongly, depend on the type of equations used, ap-
proximation method, and percent D in the deuteron.
Nevertheless one may expect exact results to fall between
[2V]—"too" calculations and [1V+ C]—"truncated
subamplitude" for percent D-state probabilities around
4%%uo and approach [2V]—"too" at 7%%uo. A similar effect
takes place in He as shown in Table XI. (f) As reported
previously" 2+2 channels account for about 45% of He
binding energy. (g) The Tjon line shows an almost per-
fect linear correlation between c and c, , for interactions
that share the same singlet potential. Although [1V+ C]
approximate results do not fall on the exact Tjon line,
they are the ones that show a similar variation with per-

'

cent D as the exact calculation.
As mentioned before one should not assume that a

20—

FIG. 2. Four-nucleon binding c. (MeV) vs the corresponding
three-nucleon energy c,, (MeV) for different potentials, approxi-
mation methods used to include the tensor force, and integral
equation formulations. The crosses correspond to exact results
for c, and c, . The circles correspond to "t«" while the trian-
gles correspond to "truncated 2+ subamplitude. " Open sym-

bols are from [2V] equations while full symbols are from
[1V+ C].

small change in the binding energy resulting from includ-
ing a given 2+ 2 or 3+ 1 state, implies a zero or negligible
contribution of that same state to the wave function.
Careful study of the wave function and its structure in
terms of components and their respective weights or per-
centages is needed before one may reach any conclusion.
Work in this direction is underway.

The author would like to thank B. F. Gibson for mak-
ing available the energies in the third column of Table X,
and for providing new corrected results for the energies
in the sixth column.
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