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We investigate the scaling function in the asymptotic limit of inclusive scattering for cases where
the interactions contain a hard core. For a particle bound in a potential we give an analytic expres-
sion for the correction to the standard impulse approximation result. For the response of a many-
body system the same correction is obtained as a finite multiple-scattering series. The approach to
the asymptotic limit is studied numerically in a simple model.

I. INTRODUCTION

In recent years there have been extensive discussions
on the concept and application of y scaling to the
response S(q, co) of various systems. The first study for
nonrelativistic systems is due to West. ' Since then many
data on inclusive electron scattering from nuclei have
been analyzed using this tool. ' There exists further a
rich literature on inclusive scattering of neutrons on
quantum liquids. In fact, y scaling is implicit in publica-
tions by Gersch and co-workers on the response for quan-
tum auids. 4

For nonrelativistic systems y scaling addresses the re-
duced response F =(q jm)S with m the mass of the con-
stituents. It is then convenient to introduce a specific
scaling variable y in terms of the momentum and energy
transfers q, m

y= q
2m

In the so-called scaling limit

q~~, co~~, while y is fixed, (1.2)

F, when written as function of y, q satisfies

S(q, co) =F(y, q)~Fo(y) =2~ f dp pn (p) .
lyl

(1.3)

Fo(y) is called the scaling function and depends only on
n (p), the momentum distribution of the constituents in-
side the target. If Eq. (1.3) holds, n (p) can be directly ex-
tracted from the data by differentiation of Fo(y) with
respect to y.

For sufficiently regular interactions one shows ' that
F(y, q) Fo(y) =0( V/q) w—here V describes final-state in-
teractions (FSI) between the knocked-on particle and the
remaining core constituents. The FSI due to regular in-
teractions thus vanishes in the scaling limit. However, it
was pointed out by Weinstein and Negele that for in-

teractions containing a hard core, i.e., when for r & a the
interaction V(r)~ ~, FSI interactions do contribute to
F(y, q) in the scaling limit and Eq. (1.3) has to be
modified. Using a diagrammatic approach for the evalu-
ation of the scaling function at large y the aforemen-
tioned authors obtained up to 60% corrections to the im-
pulse approximation result (1.3).

Short-range repulsions are characteristic for many
physical systems: Examples are given by effective
nucleon-nucleon potentials in nuclei and the atom-atom
interaction in liquids or gases. In fact, any finite repul-
sion in V(r) acts like a hard core of radius a, if the in-
coming energy E ( V(r) for r (a. In view of the preced-
ing it seems appropriate to analyze hard-core FSI effects
on the response in detail ~ This we propose to do in a non-
relativistic context.

This paper is organized as follows: In Sec. II we con-
sider the model of a single particle moving in a potential
which contains a hard core. Using methods of geometri-
cal optics we find the correct formula for the response in
the scaling limit, replacing the standard impulse approxi-
mation expression (1.3). An alternative derivation of the
same result using scattering theory is given in Appendix
A. In Sec. III we generalize the results of Sec. II to
many-body systems, which have interactions containing a
hard core. In Sec. IV we investigate a simple solvable
model where the potential contains an attractive as well
as a repulsive component. This model is evaluated nu-
merically in order to study the convergence to the scaling
limit (details of these calculations are given in Appendix
B). In Sec. V we summarize our results.

II. SCALING LIMIT FOR
HARD-CORK POTENTIALS

Consider the inclusive scattering of a projectile weakly
interacting with a particle of mass m. The latter is bound
in a potential V which contains a hard core with radius
r =a. The longitudinal structure function (response) is in
general
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S(q, co)= g 5[co—(E„E—o)]1~(n ~e' '~0)
~

n=0

= ——Im f d r d r'4O*(r)e
'jT

(2.1a) //;~
/

/ /// ///
/ Q

eik.r+ @sh+@re
k
—e k k (2.2a)

For high momenta the shadow-forming wave cancels
completely the incident wave in the region behind the il-
luminated object

—e'"' if rEsh—:Iz)O, b &aI
0 else . (2.2b)

Here the z direction is parallel to the incident momentum
k and b is the coordinate perpendicular to that direction.
The reflected wave is, in general, a spherical wave. How-
ever, near the scatterer it can be approximated by

e 1[25(b)—k.r] if r &I—:tz & 0, b & a IcI1'k'(r) =
0 else, (2.2c)

where

5(b) = —k (a b)'— (2.2d)

Xg (co+Eo, r, r')e'q'cI10(r'), (2. lb)

where the sum extends over all states jn ) with energy E„
(Ref. 8) and g is the full Green's function. Evaluating Eq.
(2.1) in the scaling limit we can make use of some
simplifications: First, we know from previous work"'
that to leading order, the regular part of the potential
does not contribute to the final states ~n ). The final
states n ) in Eq. (2.1a) are therefore just the scattering
states 4&k) for a pure hard-core potential. Second, at
short wavelengths one may exploit the concepts of
geometrical optics: ' The scattering wave function con-
sists of an incident wave, a shadow-forming wave, and a
refiected wave (see Fig. 1):

FIG. 1. Scattering wave function Nz (for k~ ~) for a pure
hard-core potential of the radius a. The incident plane wave is
drawn by solid lines and the rejected wave by dashed lines.

is the phase needed to satisfy the boundary condition
Nk =—0 at r =a in the illuminated region I, i.e., for

(
2 b2)1/2 11

Substituting Eqs. (2.2) into the expression (2.1a) one
obtains several terms for the structure function which
will be evaluated separately. The first comes exclusively
from the plane wave in Eq. (2.2a) and produces the usual
impulse approximation (IA)

2

S, (q, co)= f ~4 (p)~ 5 co-
(2ir ) 2m m

+ED—,(2.3)
2m

where p=k —q is the struck nucleon momentum and

No(p ) = f d r 4O(r )e '~' (2.4)

is the bound-state wave function in momentum space.
Introducing the scaling variable y according to Eq. (1.1)
and neglecting terms 0(1/q) in the 5 function, we obtain
Eq. (1.3) with n (p)= ~cPo(p)~ /(2~) .

Consider next the interference term between plane and
shadow-forming waves

d—2 Re f 5(y —
p q) f d r f d r'C&0(r)cI1o(r')e' "

q (21r) sh

where, in general, the shadow region (sh) also depends on p since it is defined with respect to k=p+q. However, the
momentum p is bounded and for large momentum transfers the direction of k practically coincides with that of q. One
can then perform the p integration which gives for the interference term

—2 Re f d b f dz f dz'No(b, z)40(b, z')e'~'
2K b &a 0

(2.5a)

Similarly, for the term involving only the shadow-forming wave we get

d b f dz f dz'No(b, z)40(b, z')e'~'
2& b&a 0 0

(2.5b)

Note that the lower limit of the z integrations can be replaced by

~ —(a 2 b 2)1/2 (2.6)

since the bound-state wave function vanishes identically inside the hard core. There is no contribution from interfer-
ence terms involving the reflected wave since the phase 5 in Eq. (2.2d) grows with increasing momentum transfer and
leads to rapid oscillations in the integrand. However, there remains the terms coming exclusively from the rejected
wave where 6 is canceled:
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(y +p q ) f d 3r f d 3r t+e
( r )+ ( r t

)e i P( z —z '
)e 2i [5( b ) —5( b

'
) 1

q (2~)3 I I

Note that in the scaling limit k =q +y +0(p) /q), i.e., 6 becomes independent of p~. As before, the dependence of the
illuminated region I on p may be neglected and the integration over p~ can be performed to yield b =O'. Thus the
phase 6 drops out and the contribution from the reAected wave is identical with the one from the shadow-forming wave,
Eq. (2.5b).

Combining the leading hard-core FSI contributions to the scaling function gives

bFo(y)= ——Re f d b f dz f dz'p, (b, z;b, z')e')'
b &a oo 0

(2.7)

where g(E =k /2m, r, r')= i —8(z —z'). fall

p, (r;r') =4() (r)c)o(r') (2.8) Xg(2)(b b~) ik(z —z')

X exp —i f V(b, z" )dz"
k z'

is the one-body density matrix. If, for simplicity, we as-
sume an s-wave bound state and introduce (2.11)

C&(y)+iSb(y) = f dz C&o(b, z)e'~',
0

we can write

(2.9)
By postulating that V(r) ~ i ~—inside the hard-core ra-
dius one finds that g is zero if the straight line connecting
z and z' goes through the hard core. Since the contribu-
tion from the regular part of V(r) vanishes in the high-
energy limit, Eq. (2.11) can be rewritten as

bFo(y)= —f db b[Cb(y) —Sb(y)] . (2.10)
g (E,r, r') = i 8(z ——z')5( '(b —b' )

X [1—O(a —b)O(z +w)8(w —z')]

For later use we notice that the preceding results can
also be obtained directly from the eikonal Green's func-
tion of the interacting system

X exp[ik(z —z')] . (2.12)

Indeed, substituting Eq. (2.12) into Eq. (2.1b) we obtain in
the limit q —+ Oo

S(q, co)= Re f d b f dz f dz'O(z —z')4& o(b, z)@ o(b, z')e' ' ')[1—O(a —b)8(z)8( —z')] .
mq oo oo

(2.13)

Here we again used the fact that the bound-state wave
function vanishes inside the hard core to replace the in-
tegration limits +m by 0. The "1" inside the square
bracket gives the impulse approximation result (by ex-
changing z~z' the remaining 8 function can be replaced
by —,') and one immediately arrives at Eq. (2.7) for the
correction terms b,Fo=q(S —S,A)/m. An alternative
derivation, using the t matrix for hard-core scattering, is
given in Appendix A.

Let us discuss some of the properties of the additional
contribution (2.10) to the scaling function. First, it is evi-

dent that b,Fo(y) is even in the variable y as is Fo(y).
Second, it does not change the sum rule

f dcoS(q, co)= f dy F(y, q)=1
0 —q/2

(2.14)

Indeed, from Eq. (2.7) we find

which follows directly from Eq. (2.1a) and must hold for
all values of q. In particular, for q ~ ~ one should have

f dy UFO(y)=1 —f dy Fo(y)=0 .

f dy b Fo(y) = —2 Re f d b f dz f dz'C 0 (b, z)@o(b,z')Biz —z') =0 .
oo b(a QO 0

The last identity holds because only the point z =z'=0, b =a, where the hard-core wave function is zero, can contrib-
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ute to the integral. An immediate consequence of these properties is that also the energy-weighted sum rule is un-
changed because

2

f dy bI'0(y) + y =0 .

Finally, we expand b,I'o(y) for small y and find

bro(y)= —2 J db b ~ Cb(0) —y f dzz 40(b, z) f dz'@o(b, z')+ f dzz4o(b, z)
0 0 0 0

2
+o(y ) . . (2.15)

Since an s state does not have a node, the coefficient of y in Eq. (2.15) is positive. Therefore, at y =0, corresponding to
the quasielastic peak co=q /2m, the scaling function is decreased compared to the impulse approximation result (1.3)
whereas on both sides it gets enhanced in such a way that the sum rule (2.14) is conserved.

III. MANY-BC)DY CASE

In the many-body case the response function per particle is given by

CO+E0 —H +I.e
l, J

(3.1a)

Here H is the full 3-body Hamiltonian containing the hard-core interaction between the particles. Note that due to the
explicit 1/A factor Eq. (3.1a) is also well defined for an infinite system.

In the high-energy limit only the incoherent part contributes and assuming 3 identical particles we have

Ir
S(q, co)= ——Im f d r, d r', . . .d r~d r~@o(r, . . .r~)e 'g(co+Eo, r, . . .r~;r', . . . r'~)e '4o(r', . . . r'~ )

7T
(3.1b)

which is the generalization of Eq. (2.1b). The geometrical
approach to hard-core final-state interaction effects,
which has been given in Sec. III for a particle in a poten-
tial, may be generalized straightforwardly to the case of
many-body systems. This is because in the high-energy

/ /
///I y

2

FIG. 2. Scattering wave function for the many-body case.
The knocked-out particle (1) scatters from fixed spectator parti-
cles (2,3,4) via pure hard-core potentials. The incident plane
wave is drawn by solid lines and the reflected waves by dashed
lines. The shadows from the particles (2) and (3) are overlap-
ping. The multiple reflection wave generated by particles (2)
and (4) is also shown.

limit one can use the fixed scatterer approximation.
There the knocked-out particle (1) scatters from (A-1)
fixed spectator particles via a many-body potential

V= g v, (r, —r).
J —2

(3.2)

Using the same arguments as in the Sec. II we find that
the correction term to the IA arises from shadows and
refiections generated by spectators (see Fig. 1). The only
difference from the single-particle model of Sec. II is that
different constituents may form overlapping shadows and
produce multiple refiections (Fig. 2).

Instead of using this geometrical picture it is easier to
generalize the result (2.7) by employing the appropriate
many-body eikonal Green's function. One merely has to
replace the single-particle potential in Eq. (2.11) by the
many-body interaction (3.2) and postulate that
Vi ~ i oo for —~ri —r

~
&a. Then in the high-energy

limit the Green's function g is zero whenever
~bi —b

~

& a, z, —z ) —w, and z', —z & w. Elsewhere it is
the free eikonal Green's function. Substituting this
Green's function into Eq. (3.1b) and subtracting S,A we
find the following correction term to the scaling function
per particle for the many-body case:
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1bFo(y)= —Re f d b)dz)dz )O(z —z') f d r2d r3. . .d r&4O(b(, z„r2. . .r„)
]y(z) —z l )

X @o(b„z'),r2. . .r„)e
A

X g [1—O(a —Ib, —b. l)O(z, —z. +w)O(w —z', +z. )]—1 . .
J =2

(3.3)

Note that we can again omit the m in the step functions because the many-body wave function vanishes exactly for rela-
tive distances smaller than the hard core. Expanding the product in the usual way we obtain

A —1

AFO= g b,F(')"),
n=1

where n is the number of spectator nucleons with overlapping shadows. For n = 1 we have

z2
UFO("(y)= ——(A —1)Re f d r2. . d3r~ .f d b) f dz) f dz)e'

Ibl —b, l «

(3.4)

X Co(b„z„r2, . . . , r„}Co(b„z'), rz, . . . , r„)
1 3 2

'2 iy(z& —z
&

)
Re d r2

~

d b) dz) dz')e pz(b), z), rz', b), z'), rz),
Ibl —b2I « (X) z2

(3.5)

where p2 is the standard two-particle density matrix. Obviously b, FO( ' is the analogue of Eq. (2.7) for the single-particle
model. In general, we have

( —1)"
~F()"'(y)=

k
Re f d r2. . . d rk+)wAk!

Xp(), +))(b„z)r~, . . . , rk+)', b„z),r~, . . . , rk+, ),
(3,6a)

where the integration region 8 is given by

B =
t lb) —b~l & a, . . . , Ib, —b), +) I

& a ] (3.6b)

and p(z+) ) is the (k + 1)-body density matrix.
Further discussions of the 3-body case and applica-

tioris to quantum liquids can be found in Ref. 12. See
also Ref. 13 for a different approach to the hard-core
problem.

mination of the momentum distribution at intermediate
momentum transfers by means of Eq. (1.3).

In principle, an analytical study of the approach to the
different scaling regimes similar to the one in Ref. 5 could
answer this question. This is outside the scope of the
present paper. Instead we investigate this problem nu-
merically in the simplest soluble model which has two
ranges: The particle feels a hard-core potential for r &a
and an attractive 5 function at r = ro which only acts in
the s wave,

IV. HARD-CGRE AND ATTRACTIVE PART:
A NUMERICAL EXAMPLE

(x), r &a
y5(r ro)5(o, —r )—a ' (4.1)

In the preceding sections we have found the asymptot-
ic limit Fo(y)+AF(y) of the reduced structure function
F(y, q)—= (q/m)S(q, (o) when the interaction between the
constituents has a hard-core repulsive part. However, an
intriguing question is how F(y, q) does approach the
asymptotic limit. One would like to know, for instance,
whether Fo(y) alone is the approximate scaling function
[i.e., F (y, q) =Fo(y)] for intermediate momentum
transfers 1/ro «q «1/a and scaling to Fo(y)+UFO(y)
occurs only for q ))1/a where ro is a typical interparti-
cle distance. This would still allow an approximate deter-

In Appendix 8 we give analytic expressions for bound
and scattering states and details of the numerical evalua-
tion of the response function. Our results for F (y, q } are
shown in Figs. 3—6. In these graphs we take as a param-
eter, the binding energy of the particle instead of the
strength y.

Figure 3 gives for a few parameter sets UFO(y)/Fo(y).
In the range y =—ya &0.7, b,Fo/Fo changes sign and its
maximum for g & 0.9 does not exceed 20%%uo. This result is
somewhat at variance with the one by Weinstein and
Negele who obtain for infinite matter a negative correc-
tion of 40% for y -0.9. Extrapolation of their results to
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smaller y indicates a sign change for AFo/Fo at a smaller

y than we found. The difference may be due to the short
range of the attractive potential in our. simple model:
The momentum distribution of the bound state is quite
soft and aside from some oscillations decreases like p
[cf. Eq. (BS)].

Figure 4 shows the reduced structure function F(y, q)
for a particular set of parameters together with the ex-
pected scaling function Fo(y)+bFo(y). For large ~y ~

the
convergence to the asymptotic limit is slow. This is made
more visible in Figs. 5(a)—5(e) which show a cut through
the graph of Fig. 4 at constant (negative) y. For low
values of ~y~ the convergence to the asymptotic limit is
rapid but there is practically no distinction between Fo(y)
and Fo(y)+AFo(y). Although the effects of the addition- y

—=y o
= —

q ++2m co+ Eo (4.2)

al hard-core scaling function b,Fo(y) show up at larger
values of ~y ~

the approach to the asymptotic function is
slow for these kinematical conditions. In neither case is
there any clear sign of an intermediate range of momen-
tum transfers where scaling to Fo(y) only occurs. This 1s

corroborated by Figs. 6(a) —6(e) where the particle is as-
sumed to more strongly bound (Eo= —25 MeV) than in
the previous figure. We now observe some oscillatory be-
havior as function of the momentum transfer.

It is known' that the convergence of F(y, q) to the
asymptotic limit depends on the choice of the scaling
variable y. For instance, in the nonasymptotic region the
scaling variable

«o[V~/Fo[V)

0.20—

0.15—

0.10

-R=1,2 fm
Eo =-1OMeV

005—

100
I

1
~ l I

y (MeV/c)
I

500

-0.05—

-0.10—

-0.15—

R =1.5fm
Eo= 1OM ~ ~

~ ~
~ ~ ~

-0 20—

-0.25—

-0.50—
FIG. 3. Effect of the additional hard-core scaling function AFp(y) relative to the impulse approximation result Fp{y) for the hard-

core +5-function potential model. Results are shown for different ground-state energies Ep and radii rp where the attractive 5 func-
tion acts. In all cases the hard-core radius was taken as a =0.4 fm.
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obtained in the plane-wave impulse approximation, and
y

—=yw„, defined by Eq. (1.1), are quite different [although
yo~yw„, in the scaling limit (1.2)]. The optimal choice
of the scaling variable y which provides the best conver-
gence of F(y, q) to its asymptotic limit depends on the
dynamical model (see Refs. 5 and 14). In Fig. 6 we have
investigated only two choices, (1)y =yw„, and (2) y =yo.
It is seen that in most cases yo gives a much more rapid
convergence to the asymptotic limit than y~„,. In fact,
already in the region of q = 1000 MeV/e, F(yo, q) reaches
its asymptotic limit for small values of ~yo ~

&200 MeV/c.
For larger values of ~yo~ (200 Me V/c

& ~yo~(400 MeV/c), F(yo, q) deviates only by about
15% from its asymptotic limit. For a short-range poten-
tial the superiority of yo as a scaling variable may be ex-

pected as the ejected particle spends only a very short
time inside the potential range whereas the bound parti-
cle always "feels" the attraction. For a long-range poten-
tial the time scales are comparable and we have a near
cancellation of bound- and final-state interaction effects.
Consequently, in this case yves, is expected to be the su-

perior scaling variable. Figure 6 also demonstrates that
for large ~yo~ the approach to the scaling limit is from
aboue —a feature also seen in the data.

q (MeY/c)

—~— 40Q

x— 6QQ

2
F (y, q) (Me@ )

-5

I I I—400 —300 —200 —100 0
I

200 400
y MeV/c

FIG. 4. Reduced structure function F(y, q) at different momentum transfer q as a function of the scaling variable y (a =0.4 fm,

r p
= 1.5 fm, Ep = —10 MeV). Also shown is the asymptotic limit k p(g)+ 4+p(p).
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FDIC&. 5. Approach to scaling for a fj.xed value of the scaling
variable y and for the same parameter set as in Fig. 4. The dot-
ted line is the scaling limit Fo(y ), the dashed line

(y)+ gg (y) (a) y =0 (b) y = —]00 Me@' (c) y
——2{3O

M V, (d}y'=3MM V, ()y=-4MM V

(e) y =-400 MeV/c

J j I J I J I j I J I j I J I

200 400 600 8QO 'lOOO 1200 1400 1600
q(MeV/c)

FIG. 6. Same as in Fig. 5 but for the parameter set a =0.4
fm, ro = 1.5 fm, Eo = —25 Me V. The numerical results are plot-
ted by using tvvo (asymptotically equivalent) definitions of the
scaling variable y =y~„, (dots) and y =yo (crosses).
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V. SUMMARY

In this work we have studied the scaling function as
the scaling limit (1.2) of the reduced response F(y, q )

measured in inclusive scattering. For nonrelativistic
Hamiltonian systems, where the particles interact via a
regular interaction, that limit is the well-known expres-
sion (1.3) in terms of the single-particle momentum distri-
bution n(p). If, however, that interaction contains a
hard core, additional terms contribute to the standard
scaling function, subsequently complicating the extrac-
tion of n (p) from inclusive scattering data.

Our starting point was a model with a particle, bound
in a potential. The final-state interaction (FSI) due to the
regular part of the potential is known not to contribute in
the scaling limit. This is not the case for the repulsive
component which need not be a strict hard core, but any
strongly repulsive interaction. Since in the scaling limit
the energy of the outgoing particle tends to infinity, we
applied concepts of geometrical optics to describe the FSI
between the knocked-on particle and the potential. An
exact expression in closed form, Eq. (2.7), has been given
for the correction to the "standard" scaling function
(1.3). This result was also obtained by algebraic methods.

Next we generalized the result to the response of a
many-body system interacting through potentials with a
hard-core component. In the language of optics there are
now contributions of multiple reflections and overlapping
shadows from different constituents, not unlike those ap-
pearing in Glauber theory. The formal expression, Eqs.
(3.4) —(3.6), corresponds to those contributions and pro-
vides the sought corrections to the impulse approxima-
tion result. It is of interest to note that the truly asyrnp-
totic is the sum of impulse approximation and correction
terms. In particular, it defies a representation as a convo-
lution of the former with a (sharply) peaked smearing
function —a form advocated by Silver. '

In order to investigate the approach of the structure
function to the asymptotic hard-core limit, we finally
considered a simple, exactly solvable model where a par-
ticle moves in a potential composed of an attractive 6
function and a hard core. For increasing momentum
transfer q the numerical results showed good convergence
to the correct scaling function for relatively low y, but for
increasing y the convergence becomes poorer. Use of a
variable yo [Eq. (4.2)], which is equivalent to y [Eq. (1.1)]
in the asymptotic limit but differs from y for finite q, con-
siderably improves the convergence at medium y, but is
still not satisfactory for large y.

Concerning actual applications for nuclei, the scaling
behavior of the reduced response will, in addition, be
modified by relativity, pion production, nucleon excita-
tion, etc. Ultimately, also, new subnucleonic degrees of
freedom will have to enter the description. Yet we be-
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APPENDIX A: AN AI.TERNATIVE DERIVATION
OF THK HARD-CORK SCALING RESULT

Here we present another derivation of the additional
contribution b.Fo [Eq. (2.7)] to the scaling function for
hard-core potentials. It is based on Eq. (2.1b) and the
following decomposition of the exact Green's function of
the target:

g (z) =go(z)+go(z)t (z)go(z) . (Al)

If Eq. (Al} is inserted into Eq. (2.1b), the first term —the
free Green's function go —yields the impulse approxima-
tion whereas the second one —involving the t matrix—
gives rise to

1 dpdp' @o(p)
AS = ——Im

2w 6 m+Eo —p+q 2m +i@

X (p+q~ t (co+Eo)~p'+q)

4o(p')
X

~+Fo —(p'+q) 12m +i@
(A2)

In the scaling limit (1.2), we find

lieve that our study is relevant, even for nuclei. First, the
results may be generalized for relativistic kinematics, al-
though one has to take into account that the direct rela-,
tion between the momentum distribution and the scaling
function as used in Eq. (1.3) has to be modified for
2 ~ 3. ' Second, specific e6'ects due to a hard core (i.e.,
the impenetrability of nucleons) may show up at large
momentum transfer and at energy transfers, small
enough to allow a description solely in terms of nucleons.
Indeed, it would be of interest to detect the predicted
hard-core effects in inclusive scattering data, since these
would speak in favor of nucleonic degrees of freedom in
the relevant q, co region.

d'p d'p' @o(p) @o(p') . m 2
AFo(y)= ——Im f P lim P+q t + y P'+q(2') y —p p+ie y p' q+ie e-— 2m m

(A3)
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q
2m

1=V+V + ~ ~ ~

q /2m —Ho+I'. &
(A4)

For local bounded potentials the last factor would be
mV(p —p')/q and AF(y) would become identical with
mF, (y)/q, the next-to-leading-order term studied in Ref.
5. This is because the higher-order terms in

b.2=, iK —— g (2l +1)1 . 1

kk' 2 Ba
1 o

j&(kaj)i(k'a) j—
&
(Ka)

I'I (Ka)+ 8&(Ka')

XP((k k'), (A8b)

&k'Ir (z)lk& =(4ma) —z—
2m 4mQ1, ag j((ka )jl (k 'a )

1, m Ba

X inhl(v'2mza )

X Fi (k) Y'i* (k')

are suppressed at high q. However, hard-core potentials
can never be considered "small" compared to the in-
cident energy: As is well known, the scattering phase
shifts in such a potential grow linearly with momentum,
as does the imaginary part of the forward amplitude. As
a consequence, the dominant final-state interaction in the
scaling limit is of the same order as the leading term
Fo(y).

It is tempting to use the on-shell forward scattering
amplitude in Eq. (A3) but one has to be more careful
since the off-shell terms are also linear in q. We thus use
the explicit form of the fully off-shell hard-core t matrix'

where ni(x) is the spherical Neumann function' and
jI(x)=xj&(x), etc. Now we substitute Eq. (A6) into Eq.
(A3) by taking K =(q +2qy)' =q+y and k=q+p,
k'=q+p', so that Q = lp

—p'I. Taking into account that
partial- waves up to I,„=qa contribute, we see that 6& is
linear in q,

j,(Qa)
~i =a'I:2qy —(p+p'). q] (A9)

&Fo (y)= —a'f, 4;(p)@,(p )
d p d p

j,(aQ)
X[5(y —p.q)+5(y —p' q)j

(A10)

whereas b, z is at most 0 (1) (since the leading term in the
numerator is canceled).

We first demonstrate that 5& does not contribute to the
scaling function. Indeed using Im(y —p q+i e)
= —m.5(y —p q) we obtain

(A5) Transforming into r space by means of

Here j1 &(+& are the spherical Bessel and Hankel func-
1

tions, respectively, and Q =k —k'. lt is convenient to
split up Eq. (A5) into on- and off-shell parts,

&k'lr(z)lk& =—,f '" (z;k'k')+5 +5,

(A6)

where K =v'2mz, and

f '"'(z;k k') = . g (2l +1)(e ' —1)P~(k k')
2iX 1=0

(A7a)

is the on-shell scattering amplitude with hard-core phase
shifts

1
d x e'"'

4~@ x &a
(A 1 1)

and using the fact that the bound-state wave function
40(x) is identically zero inside the hard core, we have

b,FO (y)= — f ds cossy f d x 4o(x)
27K x~a

X@o(x+sq)=0 .

Thus we only have to consider the on-shell contribu-
tion in Eqs. (A3) and (A6). The high-energy on-shell am-
plitude for small scattering angles is given by

Jl(a I pl —pll )f (O) = ,'ia cot——J,(aq sinO) = iaq
Ip~

—p,'I

(A12)

5I(K)= —argh&+'(Ka) .

The o6'-shell parts may be written as
T

k~+k'2 A Qa
(A8a)

where we used

lpga

—
pal0= arccos(k k') = +0

q q

Using the two-dimensional analogue of Eq. (A11)

(A13)
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Jl(agi) 1 d2b e
ib (p —p')

Ql 21ra b ~a

we obtain from Eq. (A4)

(A14) sinha(r —a)
C a &r &r0

r)= —O(r —a) . sinha(ro —a )
0

exp[ —u(r —ro)] r & ro,
(86)

dpdp o P oP3 3 I +'( )@ ( ')

(2lr ) (y p—q.+i e)(y p—' q+. i e)

d 26 ib (pj.—px)X f (A15)

If the denominators in Eq. (A15) are written as

y —p q+ie
QO

ds e"'
0

the p, p' integrations can be performed and we obtain

where the normalization C is determined from
4' I,"dr r @o(r)=1. We find

2C2-
2vr[A —(ro —a)B ]

(87)

where A =2my and B =a/sinha(ro —a). Note that
from Eq. (85) these constants are related by
B = A —2A a. The momentum distribution of the
bound particle is

bFo(y) = ——Re f f ds ds'e'~'+' '
b~a 0

X@o(b—sq)@o(1+s'q),

T

p 0 B sin@a
n (p)=

my a +p

'2

(88)

(A16)

which is Eq. (2.7) if we replace s ~—s.
The foregoing derivation of AFo(y) showed that the

o6'-shell hard-core t matrix does not contribute for a sin-
gle particle moving in a potential. An analogous ap-
proach to the many-body case would be much more in-
volved since the ofF-shell contribution does not vanish in
those multiple-scattering terms which arise from overlap-
ping shadows.

APPENDIX B: INCLUSIVE SCATTERING FOR
THE HARD-CORE +5-FUNCTION POTENTIAL

Since the 6 function is assumed to act only in the s
state, the scattering wave functions for 1 )0 are just pure
hard-core scattering states,

yl(k, r) =8(r —a)[ cos5i(k) jl(kr)+ sin5l(k)R'l(kr )],
(89)

where the phase shifts are defined in Eq. (A7b). For 1 =0
we find

sin(kro+ 5o)
sink(r —a) a ~ r ~ ro

y (k r)=O~(r —a) ~ slllk(ro a)
(810)

sin(kr +5o) r ~ ro

with
We calculate the structure function for the model (4.1)

by using the partial-wave expansion' tan(kro+5o) =
cotk (ro —a) —2my/k

(811)

S(q, co)=8mO(co+Eo)k g (21+1)R~~ .
1=0

Here the radial integral is given by

y&(k, r)
Ri = f "

dr r eo(")jI(qr)
0 kr

(81)

(82)

We evaluate the radial integral (82) by using the in-
tegral relation

0,'+'(kr)jI(qr)= ,'r ds e'"'P—l
k —

q
' 2kq

where the scattering wave function obeys the boundary
condition

(812)

where P&(x) is the Ith-order Legendre poynomial and
'= ii&+ij

&
For 1%0. we obtain

y&(k, r)~ sin kr 1 +5&(k)——for r~oo . (83)

The momentum k of the scattered wave is

k =+2m (co+Eo ) .

We first discuss the bound-state problem in our model:
The dimensionless strength y & 0 determines the binding
energy of the s state from the eigenvalue equation

R, = — Re f dsP,e s

where

eo(s) =Co(s)+iSo(s)

i 6I (k)
e ' eo(s),

(813)

(814)

coth[o. (ro —a )]= —1+ 2m+ (85)
and Co(s), So(s) are defined in Eq. (2.9). For the bound-
state wave function (86) we find

where a=+ —2mEo. There exists only a solution if
2m y ) (ro —a) '. The bound-state function is

eo(s) =—
I —,'Bg~ ~(a,s)+ae OE& [ro(a is )]I, —(815)
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where E, (z) is the exponential integral. ' In addition, we
have defined

g' —'(a, s)=e '[E, [—a(a+is)]
E—, [ r(a—+is )]]

+e 'IE, [a(a —is)] E,—[rp(a —is)]] . (B16)

For l =0 the radial integral is

sin(krp+5p)
R0 = —Re —B e

—Ika

2kq a 2 sink (rp —a)

X[g' '(a, k —q) —g' '(a, k+q)]

+ae ' '(Ei Irp[a —i(k —q)]}

E, [rp—[a i (k—+q)] I )

(B17)

To speed up convergence the partial-wave sum is evalu-
ated in the following way: We write

F(y, q)=8kq g (2l +1)R,2
1=0

=2~ f dssn(s) .
lk —

q
(B20)

This just the IA result and approaches (1.3) in the scaling
limit.

We have numerically evaluated the radial integrals
(B13) and (B19) as well as Eq. (B20). The exponential in-
tegral was calculated either by its power-series expansion
for small z or by its representation as continued fraction
for large z (Ref. 19, p. 229). As a check of the numerical
procedure we evaluated the sum rule Eq. (2.11) which
also requires the elastic form factor

f (q)= ImPB [g'+'(2a, q) —g'+'(O, q)]
4m C

+a e Ei[rp(2a —iq)]I . (B21)

is obtained from Eq. (B13) by setting 5t(k) =0. The first
term in Eq. (B18) may be summed by the completeness
relation of the Legendre polynomials, and gives

8kq g (2l + 1)R(' ' =4 I ds —C'p(s)
1=0 Ik —ql s

where

=8kq g (2l + 1)RI '

1=0

+8kq g (21+1)[Rt R(' ' ], —
I=O

(B18)

When adding f (q) we obtained, for instance, for the pa-
rameter set a =0.4 fm, r0=1.5 fm, E0= —10 MeV, and
a fixed upper limit Y = 1200 MeV/c,

F y, q dy =0.9965,0.9924,0.9935,—q/2

0.9964,0.9978,0.9984 .
2 2 2

R(p~ 1 Jk+qd q +k s
2kq k —

q
' 2kq

(B19) The numbers on the right correspond to q = 100,
(100),600 MeV/c.
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