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An electromagnetic current operator is deduced from the most general form of the extended
pion-nucleon vertex function using the minimal substitution prescription. It is proved that the sum
of the obtained current operator and the isolated-pole contribution satisfies the Ward-Takahashi
identity derived for the pion photoproduction. The minimal-coupling interaction is applied to the
calculation of the one-pion exchange current regularized by the pion-nucleon form factors. It is
found that the one-pion exchange current operator including hadronic and electromagnetic form
factors satisfies the Ward-Takahashi equation for the nucleon-nucleon interaction.

I. INTRODUCTION

The nuclear constituents, nucleon, pion, 6, and so
forth, are particles which possess finite space-time exten-
sion. The strong, electromagnetic, and weak interactions
of these particles are characterized by the form factors
which are the consequences of all detailed contributions
from the processes that take place inside these particles.
If a form factor is inserted, for example, in the pion-
nucleon vertex, one must inevitably presume that some
current Aows within the pion-nucleon interaction range
delimited by the form factor. The existence of such a
current, which is called the interaction current, has been
recognized for a long time, ' but the general prescription
of evaluating the interaction current is yet to be estab-
lished. Recently, the present author has proposed a
method of constructing an electromagnetic current
operator for a static, extended meson-nucleon vertex
function. The method is extended to the nucleon-nucleon
interaction, and it is found that when applied to the one-
pion-exchange potential corrected by the pion-nucleon
form factors, our method reproduces the static limit of
the result of Gross and Riska. Since they derived
exchange-current operators for a more general, relativis-
tic interaction with electromagnetic form factors of nu-
cleon and pion, the coincidence of the two approaches in
the static limit makes it intriguing to expand our method
developed in the nonrelativistic theory into the relativis-
tic one. The primary purpose of this paper is to derive an
electromagnetic current operator from the pion-nucleon
vertex function using a fully relativistic formalism.

The Ward-Takahashi (WT) identity is the key to the
development made by Gross and Riska. " In investigating

I

the electromagnetic interactions of extended particles,
the WT equation plays an essential role. As is em-
phasized by Nishijima, ' the WT equations are valid for
composite particles as well as for elementary particles.
The presence of hadronic and electromagnetic form fac-
tors of interacting hadrons should not violate the WT
equation that is a direct manifestation of gauge invari-
ance. The electromagnetic current operator associated
with the hadronic form factors should arise in such a way
that the WT equation is satisfied.

In Sec. II we develop a method of extracting the elec-
tromagnetic current operator from the most general form
of the pion-nucleon vertex function on the basis of the
minimal-substitution prescription. In Sec. III we derive
the WT equation for the pion photoproduction process,
and show that the sum of the isolated-pole term and the
minimal-coupling interaction satisfies the WT equation.
In Sec. IV we derive the WT equation for nucleon-
nucleon interaction and prove that our current operator
is essentially required for the WT equation to be valid.
We apply our method to the calculation of the one-pion
exchange current and compare the result with that of
Gross and Riska. We also present the most general form
of the one-pion exchange current and show that it
satisfies the WT equation rigorously. Finally in Sec. V we
give a brief summary.

II. GAUGE INVARIANCE IN EXTENDED VERTICES

A. Pion-nucleon vertex function

The vertex function for the interaction between nu-
cleon and pion is defined by the vacuum expectation
value

(T[g(x')g(x)P;(y)]) = —I d g'd gd r)SF(x' —g')r;I'(g'g:g)S+(g —x)bp(y —g), (2.1)

where g, P, and P; refer to the nucleon and pion field
operators, the subscript i denotes the pion isospin index,
and SF and EF are the Feynman propagation functions
for the nucleon and the pion, respectively. The vertex

function in momentum space is defined by

I d4+ id 4 iP' (x' —y)+iP. (y —x)f (pl p)
(2m )

(2.2)
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In Eq. (2.2), we replace p' and p by i—a/ax' and ia/ax
acting on the exponential, and take I out of the in-
tegrand to obtain

As a consequence, the (p —p') in the form factors can be
converted to —8 . To mike this fact explicit, we write
the local vertex function as

r(x x:y)= —ir( —ia/ax', ia/ax)5(x' —y)5(y —x) . I"(x:y)= I"(ia„,p', p)5(y —x), (2.14)

(2.3)

Integrating by parts, we can make the gradient operators
act on the nucleon field operators,

p„g(x ) = —i ( a /ax„) g(x ),
p(x)p„' =i{a/ax„)g{x)

(2.5)

(we use the same notations p' and p both for c numbers in
momentum space and for gradient operators in position
space), and write the Lagrangian in a local form

The gradient operators now act on the 5 functions. The
I agrangian density for the pion-nucleon interaction can
be expressed as

X(x'x:y) =Q(x')r; I (x'x;y)$(x)$; (y)

iq(x )r, [r( ia/—ax, ia/ax)
X5(x' —y)5(y —x)]g(x)P;(y) .

(2.4)
and retracing our steps to restore p' and p to c numbers
in momentum space, we can regard Eq. (2.12) as a func-
tion of q, p', and p.

Electrodynamics is made invariant by introducing the
photon field A„(x) such that a gradient of the nucleon
field is allowed to appear only in conjunction with the
photon field in the combination

p„g(x )~[p„ezA „(x—)]f(x ),
hatt(x)p„'~g(x)[p„' —e~ A„(x)],

where e~ is the nucleon charge operator

(2.16)

(2.17)

in which i 8 acts on the 5 function, while p and p' act on
the nucleon field operators. I'(p', p) in Eq. (2.9) and
I (ia,p,p) in Eq. (2.14) are the identical quantities in
different representations. Utilizing

I (ia„p',p)5(y —x)= I d qe' '~ 'I (q,p', p),1

(2m )

(2.15)

X(x'x:y) = i5(x—' x)X—(x:y) . (2.7) e~= —,'e(1+r3) . (2.18)

Here

and

I (x:y)= r(p', p)5(y —x),

X(x:y)=p(x)~; r( xy)g( )xp;(y) (2.8)

(2.9)

Since the pion-nucleon vertex contains ~;, we have to be
careful about the ordering of the isospin matrices. In Eq.
(2.16) ez should be placed to the right-hand side of ~;
while in Eq. (2.17) ez should be placed to its left-hand
side. We distinguish ez as ez or eL depending on where
it appears. The minimal substitution is expressed as

I (x'x:y) = i5(x' x)—r{x:y)—. (2.10)

in which p' and p differentiate the nucleon fields only.
The nonlocal vertex function thus takes the form p„~p„~ez A„(x),

p„' —+p„' —
eL A„(x) .

(2.19)

(2.20)

This examples illustrates that an arbitrary nonlocal
operator (nonlocal with respect to the nucleon position)
can be expressed in the form of a momentum-dependent
local operator,

8(x'x:yz . ) = i 5(x' —x)8—(x:yz . . ), (2.11)

where y, z, . are positions of fields other than the nu-
cleon field.

The most general form of the pion-nucleon vertex func-
tion is given by

I (p', p) =iy5g, +i y5(iy p +m)gz

The 8, on the other hand, is subject to the minimal sub-
stitution

a/ax ~a/ax I (el eg )A (x) (2.21)

5bM„'(x:yz) =~, I (x:y)
5A „'(z) —+0

(2.22)

In the presence of an external electromagnetic field A ',
the vertex function I undergoes a modification and it be-
comes a functional of A '. We denote this with a tilde, I .
The electromagnetic interaction is given by the functional
deri. vative

+(iy p'+m)iy5g3

+(iy p'+m)iy5(iy. p+m)g~, (2.12)
The purpose of this section is to derive this interaction
explicitly.

with m being the nucleon mass. The form factors g„g2,
g3, and g4 are functions of p, p', and (p —p') . In-
tegrating by parts, we can prove that

g(x)(p' —p)„g(x)5(y —x)

B. Minimal coupling in extended vertices

To make the argument transparent, let us start with
the first term in Eq. (2.12),

i g(x)g(x)(a/ax—„)5(y —x) . (2.13) r (q p' p) =&ye (q' p' p') . (2.23)
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Equation (2.23) as it stands is not convenient for minimal
substitution. %e make use of a formal Taylor expansion

The minimal substitution leads to the modified vertex
function

r (op'p}=is g Cl .q"p' p'".
Imn

In the position space,

(2.24) 1,(x:y)=iy,g C, „(—1)'[(}„i—(eL —el()A'] '
lmn

&&(p' —eL A') (p —e„A')2"5(y —x) .

I'1(x:y)=iysg, (
—B„,p', p )5(y —x)

=i), y. C,.„(—1)'a2)p™p2"5(y—x) . (2.25)
1mn

(2.26)
The interaction (2.22) can be obtained by expanding the
modified vertex function in terms of A'. Consider the
factor

[g 1(e e }Ae]2I g21 ~ (e e )[g2(l —1)(g .A e+ A e.g )+g2(l —2)(g . A e+ A e 5 @2+
+(8 A'+A'. B„)B" "]+

Since the 8„'s lying on the right of A ' can be replaced with —8„'s, the terms of order e become

(2.27)

(2.28)

The second factor in (2.26) is expanded in the form

(p' —e A') =p' —e [p' ' "(p' A'+A'. p')+p' ' '(p' A'+A'p')p' + .

+ (p
~ A e + A e.p

i
)p

i2( m —1 ) ]+ (2.29)

Here it should be noted that the p' appearing on the left
of A ' acts on A ' as well as on (t)(x), i.e.,

fA ' p' =i 8„(Q A') =gp' A '+i gB„~A ', (2.30)

where the last differentiation does not act on the 5 func-
tion but acts only on A'. In order to distinguish the
differentiation of the 5 function and that of A ', we intro-
duce ihe integration

A„'(x)= f d z A'„(z)5(z —x), (2.31)

and replace the differentiation of A ' with that of
5(z —x). The repeated use of this procedure converts all
the p' on the right of A ' into p' i r), and leads—to

—e (2p' —iB ) [p' ' "+p'" "(p' —i& )

+ +(p —ia, )2(--"]5(z—x) .

(2.32)

In the third factor in (2.26), (p —e„A') ", on the other
hand, the p appearing on the left of A' becomes p+iB,

I

and we obtain

—e (l2(p+iB, )„[(p+iB,) '" "+(p+iB,)
'" 'p

+ . +p'("-')]5(z —x). (2.33)

ar„(x:yz)= 5 I,(x:y)
5A„'(z)

(2.35)

Introducing the function of two arbitrary operators a and
b,

(g b) gl —1+g I —2b+. . . +g1 —
1

I (2.36)

we can write the electromagnetic interaction in the form

The pion-nucleon vertex function modified by the
minimal substitution is now of the form of a series expan-
sion,

r, (x:y)=I",(x:y)+f d z b, r„(x:yz)A„'(z)+

(2.34)
and all terms linear in e are collected in

br„(x:yz)=i@5 i ( ele„)(B„——() )„g Cl „(—1)'&bl(B„,B )p' p
"

lmn

e(2p' iB—, ) g Cl—„(—1}'8„'@ (p', (p' —iB, ) )p
"

lmn

—el'(2p+iB, ) g C, „(—1)'8 'p' 4„((p+iB,),p ) 5(y —x)5(z —x) .
Imn

(2.37)

In the last two terms in the brackets, we have replaced 8„'with 8 ' because it does not operate on the external field A '.
In the same way as in Eq. (2.1S), we introduce the representation

bM'(x:yz)=v;b, r (x:yz}= d q d ke'~'~ "'+'"'" 'bM'1
P ' ' P '

(2 )s p (2.38)
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thereby 8„,8, and 8, becoming i—(q —k), iq, and ik, respectively, and restore p' and p to e numbers to find the elec-
tromagnetic interaction in momentum space (momentum variables q, k, p, and p are suppressed). The result is

bM„'=iy, iee"'r, (2q —k)„g C, „4,(q', (q —k)')p'2 pi" —e r;(2P' —k)„g C, „q"@ (p', (p' —k)')p "
1mn 1mn

~;ejv(2p+k)„g CI „q 'p' C&„((p+k),p ) (2.39)

We have used the definitions of el and ez,

L +i eN+i

eR v +'e

(eL —e~ )~; = [e~,~; ]=ie e"'~

Since two arguments of the functions 41, 4, and +„become c numbers, we can simplify them using

a —b1 1

NI(a b)=
a —b

With this form, the summation over I, m, and n can be performed with the result

(2q —k)„
hM„'=iy5 iee" r " [g, (q,p', p ) g, ((q ——k),p', p )]'q' —

q
—k'

(2.40)

(2.41)

Z,» 2, 2Z",[g (q',p' p') g(q' (p—' k)' p')]-I2 I k2

(2p +k)„
2 lgl(q p (p+k) ) gl(q» p )] (2.42)

Next consider the second term in Eq. (2.12),

I 2(q p' p') =&y5(&y p+m)g~(q' p' p'»
which defines the operator in position space,

12(x:y)=iy, (iy p+m)g2( —B,p', p )6(y —x) .

(2.43)

(2.44)

The only di6'erence from the g, term is the presence of the factor I, y.p+m, which produces the minimal coupling—ie„y A '. Following exactly the same procedure as above, we find the interaction

(2q —k)„
bM„'=iy5(iy"p+m) iee'j 7."2 [gz(q, p', p ) —gz((q —k),p', p )]'q' —

q
—k'

P 2 i2 2 2 i 2 2, [g2(q p"' p ) —g2('q (p k) p

rieN [g2(q' p' (p +k)') —g~(q' p' p')l +r;eNg2(q', p', (p +k)')y5y„.
(p +k) —p

(2.45)

We can rearrange terms to get

(2q —k)„(2p
' —k )„~M p ie ~ rj i 2 [I 2( q p

'
p ) I 2( q k,p

'
p ) ] —e~'r;—, ,

"—, [I &( q p
'

p )
—I 2( q p

' —k p ) 1'
q

—(q —k) ' p' —(p' —k)

(2p+k)„(2p+k)„
, ",[12(q p', p+k) I 2(q, p', p»)]+~;e~—g~(q', p', (p+k)')y5 y„(p+k) —p

' " (p+k) —p

(2.46)

We are now in the position to present the result of the minimal replacement applied to the most general form of I as
given by Eq. (2.12). It is straightforward to get
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(2q —k)„(2p'—k)„
hM„'=ice'~ " [I (q,p', p) —I (q k—,p', p)] e—z&; z z [I (q,p' p} I'(q p' k p}]q' —(q —k)z ' ' ' p' —(p' —k)

(2p +k)„
e~ . " [I (q,p', p +k) —I (q,p', p)](p+k) —p

+e&r, y„.— y k yz[g3(q, (p' —k),p )+(iy p+rn)g4(q, (p' —k),p )]
(2p' —k)8 2 & 2 2 '

~ 2 & 2 2
P I2

(
i k)2

(2p +k)„
+'r;e~[g2(q, p', (p +k) )+(iy p'+m)g4(q, p', (p +k) )]ys y„— " y.k

(p +k) —p
(2.47)

For later application it is important to note that the four
divergence of the AM„' becomes

define the electromagnetic vertex functions of nucleon
and pion, respectively,

k„bM' =ice'& r [1 (q,p', p) I (q——k,p', p)]

r[r(qp p) r(qp kp)]

r'eNK(q p' p +k} ~(q p' p}] (2.48)

S,'(x' —x) = —f d'g'd'g S,'(x —g')
5A„'(z)

X I „(g'g:z)SF(g—x),

The three terms containing I (q,p', p) cancel each other
and drop out from the divergence. Consequently, and

(3 5)

k„hM„'= iee—'~ r I(q . k,p',—p)+ezra; I (q,p' k,p)—
—r, e~l (q,p', p+k) . (2.49)

III. PION PHOTOPRODUCTION

To conclude this section, it should be stressed that the
minimal-substitution prescription alone cannot determine
the whole current operator associated with the form fac-
tors because one can add arbitrarily terms which are
divergence free. An example of such arbitrariness will be
considered in Sec. IV.

&"(y' —y)
o

= —f d4ri'd rib F(y' —ri')I'„'i(g'q:z)EF(ri —y) .

(3.6)

Using Eqs. (3.5) and (3.6), we perform the functional
derivative in Eq. (3.1), and we get the pion photoproduc-
tion amplitude in the form

(T[q( ')y( )y;(y)j„( )])
=i f d g'd gd riSF(x' —g') M'(fg:gz)

A. Basic equations

The pion photoproduction amplitude is calculated
from the functional derivative

( T[g(x')g(x)p;(yj)(z)])

XSF(g—x)AF(y —ri) .

M„' turns out to be divided into two parts,

M i M Bt' +gM i
p p P

(3.7)

(3.8)

6 (T[P( ')g( )P;(y)])]„,
5A„'(z)

(3.1)
The first term is the sum of three terms which contain the
isolated nucleon or pion pole,

Xr I ( g'g:ri)S ~(g —x)E P(y —g) . (3.2}

where the bold-faced f, p, and p; are the nucleon and
pion field operators in the presence of the external field
A ', and the modified vertex function I is defined by

( T[@(x')@(x)P;(y)])
= —f d g'd gd gS F(x' —x')

M„'(x 'x:yz)

= —f d g'd g I „(x'g':z)S' (g' g)r; I (gx:y)—
—f d g'd gr;I (x'g':y)S'(g' —g)I „(gx:z)

—f d g'd riI 'J(yri':z)b, F(ri' —g)r I (x'x:ri),
(3.9}

and the second term is

S F(x' —x) = ( T [f(x')f(x)]), (3.3)

The modified nucleon and pion propagators are given by hM' (x'x:yz) =r, 5 I (x'x:y)
5A '(z)

P A 0

(3.10)

and

&P(y' —y)=(T[P;(y')P, (y)]) . (3.4)

Using the momentum-dependent local representation as
described in Sec. II,

The functional derivatives of these Careen's functions b,M„'(x'x:yz) = i 5(x ' x)b,M—„'(x:yz—) (3.11)
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I (x'x:y) = —i5(x' —x)I"(x:y), (3.12)

one finds that Eq. (3.10) exactly corresponds to the in-
teraction derived in the previous section.

B. Ward-Takahashi identity

Our next task is to drive the WT equation that must be
satisfied by (3.7). Following the general prescription
developed by Nishijima ' we evaluate

(8/8 )(T[P( ')g( )(t;(y)j ( )]&=—5( o'
—o)(Tt[iti( '), jo( )lire( )P;(y)I &

5(x z )( Ttf(x )[iT)(x) jo(z)]$;(y)I &

—5(yp —zp)( T[g( x')f( x)[P;(y),jp(z)] I &,

where j„(z)= —8, A„(z) is the electromagnetic current and jp(z) = ij—4(z) Su.bstituting the relations

[g(x'),jp(z)]5(xp zp)=eiqP(x')5(x' z), —

[f(x)j()(z))5(x()—z() ) = f(x)e—iq5(x —z),
[p,.(y), jp(z)]5(y, —zp) = iee"'p, (y—)5(y —z),

we obtain the WT equation

((3/(}z„)( T[P(x ')g(x) it); (y )j (z) ] &
= —

e)( ( T[&(x')P(x )P;(y) ] & 5(x ' —z)

+ ( T[a/r(x')@(x)@;(y)] &e),,5(x z)+ice' —( T[@(x')vti(x)P (y)] &5(y —z) .

(3.13)

(3.14)

(3.15)

(3.16)

The Fourier transform of the photoproduction amplitude is defined as

M' (
'

~ ) = d4 'd4 d4k &p '(x y)+ip'(y x)+i~'(y
(2'�)' P

(3.17)

(3.18)

In momentum space, we again suppress the arguments p',
p, and k. The pion momentum is given by q =p +k —p'.
From Eq. (3.17) we get

k M' =eiq~;SF '(p')SF(p' —k)I (q,p' —k,p)

e&I (q,p', p +.k)SF(p +k)SF '(p)

M„' = r, I (q,p', p +k)S' (p +k)j „(p +k,p)

+j„(p',p' —k)SF(p' —k)r;1 (q,p' —k,p)

+j "'j(q, q k)bF(q k—)q; I (q k—,p', p), —(3.23)

iee'j r j(.~
'—(q)j(.~(q —k)I (q —k,p', p), (3.19)

where the nucleon and pion electromagnetic vertices are,
respectively, given by

where

S~(x' —x)= ' f d'p e i'"' ")S~(p)
(2~)4

(3.20)
( ) d4p d4p ip (x z)+ip (z x)j (p p)(2n. )' p

(3.24)

is the nucleon propagator and

A~(y' —y)= I d qe'q' 'bF(q)
(2~)4

(3.21)

and

I vrij( i . ) d d iq (y —z)+iq'. (z '—y)

(2~)'

is the pion propagator. For m+ production, Eq. (3.19) be-
comes

xj„'j(q',q) . (3.25)

k„M„=e[b,F '(q)AF(q —k)I (q k,p',p)—
—I (q,p', p +k)S~(p +k)SF '(p)],

(3.22)

in precise agreement with the one derived by Kazes.
Our last task is to prove that the interaction obtained

in the previous section is indeed consistent with the WT
relation (3.19). In momentum space M„' becomes

Using the WT identities for the electromagnetic vertices
of nucleon and pion,

k„j„(p',p) =e„SF '(p')[SF'(p) SF(p )]SF '(p), (3.26)—

k„j„"'j(q',q)= iee'j bF '( )q[b ( F—) qb, F(q')]bF '(q), —

(3.27)

we find the four-dimensional divergence of M„',
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k„M„'=r,e]vl (q,p', p+k)[SF(p) S—F(p+k)]SF '(p)

+e„r,s„' '(-p )[S,'(p k—) S—„'(p )]r(q,p k—,p)

ice—'J ~~bF '(q)[AF(q —k)

—bF(q)]I (q —k,p', p) . (3.28)

On the other hand, the four divergence of the interaction
bM„' is given by Eq. (2.49) in Sec. II. Therefore, the sum
of the isolated-pole contribution and the minimal-
coupling interaction satisfies

k„M„"+k„hM„'
r—, e~I (q,p', p +k)SF(p +k)SF '(p)

+e]vr;SF '(p')SF(p' —k)l (q,p' —k,p)

ie~—"'r, hF '(q)bF(q —k) I (q k, p—',p) . (3.29)

One sees that the obtained divergence exactly reproduces
the WT identity generalized to the photon-pion vertex.

IV. EXCHANGE CURRENTS

A. %T equation for NN interaction

Nishijima ' derived WT equations for n-point Green s functions, and it is straightforward to apply his results to the
two-nucleon system, as is done by Bentz. ' The %'T equation,

(aZaz, ) & T[y(x'] )y(x 2')y(x] )y(xz)J, (z)] &

& T[y( x ] ) ])j(x 2 )Iti ( x I )(t (x 2 )] & 5(x ] + )+ & T [q(x ] ) ti ( x 2 )y( x ] )q(x 2 ) ] & e]v ~(x ]

—e]'v'& T[y(x] )y(xz)]T(x] )q(xz)] &5(xz —z)+ & T[y(x'] )y(xz)y(x] )q(xz)] &e]I] '5(xz —z), (4.1)

relates the divergence of the radiative Green's function to the nonradiative Green's function. The five-point Green's
function is split into

&T[y( ')1t(,')1t(, )y(, )j„( )]&=—&T[y( ')q( )j„( )]&S'( ', —,) —&T[y( ', )y(, )j„( )]&S'( ' — )

+ & T[g(x ] )g(xz)j„(z)]&SF(xz —x, )+ & T[p(xz )p(x] )j„(z)]&SF(x', —xz)

+ & Tf/(x ] )g(xz)g(x I )p(xz)j„(2)]&, , (4.2)

where the first four terms are the electromagnetic interaction of noninteracting two nucleons, and the last term
represents the connected part which defines the two-body current operator as

& T[g(x] )g(xz)g(x])@(xz)j„(z)]&, =i f d /Id gzd g]d g2SF(x] —g)'SF(xz —gz)

XJ„(g]gz,g]gz:z)SF'(g] —x, )SF(gz —xz ) .

The nonradiative Green s function is also decomposed into disconnected and connected parts,

& T[g(x] )g(xz)]i'(x])$(xz)] &
= SF(x] —x] )S—F(x2 xz)+SF(x] —xz)SF(xz —x] )

+ & T [P(x] )1'(x z )f(x] )g(xz )] &, ,

(4.3)

(4.4)

and the latter defines the nucleon-nucleon interaction V,

& T[4X])Wxz)4«]4'(Xz)] &, = f d'0]d'kd'k]d'kzSF(x I
—kI)SF'«z 42»(P]4'k]4)SF(k] —XI )SF(k]—xz) .

(4.5)

Since the WT e]luation (4.1) holds true for the disconnected and connected parts separately, the connected part be-
comes, in momentum space,

kp p ~]J SF (PI ) F(p I k)V(PI k P2~PI P2)+V(PI P2 Pl+k Pz)eN F(P]+k)SF (P])

ez~'SF '(p z )SF(p—z —k)V(p', ,pz —k;p „pz )+V(p],p z', p „pz+k)e]v 'SF'(pz+ k)SF '(pz ) . (4.6)

Equation (4.3) can be calculated from the functional derivative

& T[$(x'] )Q(x 2 )g(x] )g(xz )j„(z)]&, = i —
& T [tP(XI )Q(x 2 )Q(x] )Q(xz)] &,

6A „'(z)
(4.7)

The nucleon-nucleon interaction V modified by the external field is defined by
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(T[f(xl )g(X2)$(XI)t)('(X2)]),—f d gld $2d g)d $2SF(xl —$I)SF(x2 $2)

X V(g)$2&g)$2)S F((I—x, )S F($2 x2) .

The direct evaluation of the functional derivative using Eq. (3.26) brings the total current operator into

Jext +J&
P P P

(4.8)

(4.9)

(4.10)

and the second term is

The first term is the contribution of nucleon-pole terms in which the photon is attached to the external nucleon lines,

J&'(x lx2', xlx2.z)= f d g'd gI z(x)g':z)SF(g' —g)V(gx2&'XIX2)

+ f d'g'd'g V(x IX2&'g'X2)SF(g' —g)1„(gx) z)

+ f d g'd gl „(xzg':z)S'(g' —g)V(x', g;XIX2)

+ f d"g'd g V( ', ';,g')SF(g' —g)I „(g 2. ),

J„'(X', X 2;X,X2:Z)=— 5 V(x',x2,'xlx2)
5A„'(z)

(4.11)

In momentum space,

Jy, J)&(p I &P I k)SF(P I k)V(P I k&P2 &P I &P2 ) V(P I &P2 &P I + k&P2 ) F(PI + )J)&(pl + k&pl

J) (P2&P2 k) F(P2 k)V(PI&P2 k &Pl&P2) V(P I &P2&PI&P2+k)SF(P2+k)J) (P2+k&P2

By the use of the WT equation (3.26) for the electromagnetic vertex function of the nucleon, we get

k„J„'"'= —SF '(p', )[S„'(p', —k) —SF(p', )]eN 'V(p', —k,p2, p„p2)
V(P I,P 2',P I +k,P2 )eN"[SF'(P I ) SF'(P I +k—) ]SF '(pl )

SF (P2 )[ F(P2 k) F(P2)] N V(PI P2 Pl P2

V(p, ,p2, pl, p2+k)eN'[SF(p2) —SF(p2+k)]SF (p2) .

(4.12)

(4.13)

Subtracting the divergence of J„'"' from that of the total
current J„,we get the constraint on the current J„',

kI& J)&, eN V(P I k&P 2&PI &P2 )

+V(pl P2 pl+k P2)eN"

first process, the contact interaction on nuc1eon 1,

=legeij'3r( I) 8 y(1)[f( ') f ( )]
(q'+q)

iZ 2

(4.17)

(2)
eN V(PI P2 k~pl P2)

+V(P I P2 Pl P2+k)eN

B. Qn-shell nucleons

(4.14)

emits the pion with momentum q' and isospin index i
which is to be reabsorbed by nucleon 2. In the second
process, the pion with momentum q and isospin index j
emitted by nucleon 1 is reabsorbed by the contact in-
teraction on nucleon 2,

In order to compare with the result of Gross and Ris-
ka, we put the external nucleons on their mass shell, and
use the pion-nucleon vertex function

I =iy5g)(q, —m, —m ) =iy5gf (q) . (4.15)

The minimal coupling we have derived is now reduced to
the contact interaction

(2q —k)„
i( M„'=ieg e"r, , ",iy, [f (q) —f (q —k) ],

q
—(q —k)

(4.16)
which induces two exchange current processes. In the

& 3 (2) (q'+q)V (2)bM' '~=iege" r,' ' "iy', '[f(q') —f(q)] .

j '~(q', q)= iee'J I (—q', q) . (4.19)

The total pion-exchange current operator becomes

(4.18)

The pionic exchange current, on the other hand, is in-
duced by the process in which the pion with momentum
q and isospin index j absorbs photon, thereby becoming
the pion with momentum q' and isospin index i. The
electromagnetic vertex of pion has the structure
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J„'=ieg [r("Xr( ']3iy(~"iy(5 ' I „(q', q)b~(q)b F(q')f (q)f (q') (—q'+q)„b F( q')f(q')(q') — (q)

—(q'+q)„, , &~(q)f (q)
(q') — (q) (4.20)

where

b,F(q)=1/(q +)((, )

k.(q'+q)q k„+B(k',q', q')(q'+q)„.

is the free pion propagator and p is the pion mass.
The most general form of the electromagnetic vertex of the pion is

I„(q',q)=A(k, q', q ) (q'+q)„—

(4.21)

(4.22)

Evaluating its divergence, we find

k„I „(q',q)=B(k, q', q )(q' q) . —

Since the WT identity (3.27) holds both for renormalized and unrenormalized operators, it places the constraint

B(k,q', q )=1,

(4.23)

(4.24)

if one uses the free propagator Az instead of the renormalized hF. For on-shell pion, it is customary to employ a pa-
rametrization

A (k, —
(((, , —p, )+1=F (k ) .

The three terms in Eq. (4.20) can be put together into

B(k,q', q )b, (q)h (q')f(q)f(q') — [6 (q')f(q')+b, (q)f(q)]
(q') — (q)

b, (q') —iI),(q), iI), '(q') —b, '(q)

(4.25)

(4.26)

where b, (q) is the pion propagator regularized by the
pion-nucleon form factors,

b(q)= f (q)'
(4.27)

q 2+p2

If we put A =F (k ) —1, we could reproduce the result
of Gross and Riska for Fo(k ) = 1. They derived this
equation by assuming the WT identity for the dressed
vertex of pion, Eq. (4.29). Indeed from

The current operator (4.20) is now cast in the form k„l „(q',q)=b, '(q') —b, '(q), (4.32)

J& —ieg 2[&(1)X &(2)] iy(1)& y(2)

X b.(q)b, (q')I „(q',q),
where

I „(q',q)= 3 (q'+q)„—
2 k„

k (q'+q)

(4.28)
we find B in agreement with Eq. (4.31). Our approach
justifies the use of the WT equation for the renormalized
vertex function. However, note that A is completely
undetermined in the approach in which the WT relation
alone is used. Our approach reveals that A is given by

[F (k') —1]!f(q)f (q')

and

+B (q'+q)„

gR f (q)f (q')

(4.29)

(4.30)
k„J„' =ie[r'" X r' ']3[v (q') —

U (q)], (4.33)

rather than F (k ) —l.
The four-divergence of the exchange current (4.28) is

given by

The effect of the minimal coupling associated with the
pion-nucleon vertex is to modify the form factor B = 1

into

where

U(q)= g iy5"iy5 )b, (q) . — (4.34)

'(q') —& '(q)'
q' —

q
(4.31) This equation coincides with (4.14) if we make the re-

placement
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V(pl k&p2&pl&p2) V(p I &p2&pl +k&p2)

(1). (2)
( )

V(p 1 &p 2 &pl &p2 V(p 1 &p 2 &pl &p2+ k

~(1)r(2)U(q}

(4.35)

(4.36)

f (q) f—(q —k)
ppg &3lJ&

& y
q

—(q —k)

X F()(k )(2q —k)„

—[F()(k ) —1] k„ (4.37)

In this way the requirement of the WT equation for the
nucleon-nucleon interaction is fulfilled.

As is emphasized in Sec. II, the minimal-coupling in-
teraction is undetermined up to four-divergence-free
terms. We can generalize Eq. (4.16) as

The added term, which is proportional to an arbitrary
form factor Fo(k )—1, is a conserved-current interac-
tion, and therefore does not affect the WT equation. The
modified exchange-current operator becomes

J„'=ieg [r")Xr( )]3iy(5"iy(& ' I „(q',q)bF(q)hz(q')f (q)f (q')

Fo(k'—)(q'+q)„„, [&~(q')f (q')+~~(q)f (q)]
(q') — (q)

+[F,(k') —1]k„q, [bF(q')f (q')+&~(q)f (q)] (4.38)

We again bring this into the form of (4.28) with B un-
changed and with A given by

Aa=, [A +1—F()(k )]+B [F()(k ) —1] .
I

(4.39)

If one sets A =F (k )
—1, the parametrization of Gross

and Riska,

k QM"'= —iee' r(."I ")(q' —k p' p )

+e(1)r())1 (1)(q& p' k p )

&( )e( )I ( )(q

k„aM(2)J =ice"'r(2)I'")( —
q

—k,p'„p, )

(2) (2)l ( )( k p
—r' 'e' 'I' '( —q,p', p +k),

(4.44)

(4.45)
1 —F()(k )1—f (q)f (q')

1 —F()(k )+gR
1 —F (k )

(4.40)

is essentially reproduced except for the factor
1/f (q)f (q') in front of the first term.

C. GS'-shell nucleons

We now turn to the exchange current for off-shell nu-
cleons. The current operator becomes

and the WT equation for the pion vertex, Eq. (3.27), we
obtain the constraint Eq. (4.14) with

V(pI kp 1 p2 p2) -= r"'~"'I'"(—q p kp1)—
Xb's'(q )I ( q p2 p2)

(4.46)

V(p', ,p, +k;p,',p, ) = —~"'v'2)r")(q, p', ,p, +k)
X ~F(q') I' "(—q,p 2,p2 ),

(4.47)

V(pl pi p2 —k p2)= —~"'~"'I"'(q,p) p))
I„'=~,'"I'"'(q p') pl )~r(qV„"(q', q)

Xb~(q')r( 'I '2'( q', p2,p2)—
+5M„"'b' (q')r'; 'I' '( —q', p', p )

+r(1)r("(q,p', ,p, )a„'(q)aM(')&,

where

(4.41)

X bF(q)I"( —q, p2 —k,p2),
(4.48)

V(pl, pl, p2, p2+k)= —v "r 'I'"(q,pl, pl )

XbF(q)I ' '( —q,p2, p2+k) .
(4.49)

O' =P I 5'& =Ps P2

P &+k =Pe

(4.42)

(4.43)

using the four divergence of the minimal coupling, Eq.
(2.49),

We again find that the sum of the pionic current and the
minimal-coupling terms satisfies the WT equation for the
nucleon-nucleon interaction. It is clear that the diver-
gence of the one-pion exchange current in the most gen-
eral form is free from the pion electromagnetic form fac-
tor.
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D. Electromagnetic form factor of the nucleon

The electromagnetic vertex function of the nucleon contained in the isolated-pole term (4.12) has the most general
form

j„(p',p)=iF, y„iF—,~,k, +F,k +(iy p'+m)(iF4y iF—5cr k +F6k )

+(iF7y„iF—so„k„+F9k„)(iyp+. m)+(iy.p'+m)(iF&oy„iF—„o„~k„+F&2k„)(iy.p+m) .

(4.50)

(Different parametrizations can be found in the litera-
ture. ") The twelve form factors are functions of p',
p, and k =(p' —p) . Using the fully dressed nucleon
propagator

I

j„(p',p ) =t (F, +2mFz )y„F2(—p +p)„
F, —e„+ (i y p'+ m ) iF2y—„—2 k„

S F(p)=iy pG(p )+mF(p ), (4.51) F, —
ew+ iF2y„+ k„(iy p+m)

k
(4.57)

the WT identity (3.26) imposes the four constraints

F, +2mF4+ k F6+(p +m )F&0 =e&G (p' ),

F, +2mF7 —k F9+(p' +m )F,o=e&G(p ),

F4 —F7 —k F12=0,

(4.52)

(4.53)

(4.54)

in agreement with Berends and West. ' As is pointed out
by Naus and Koch, ' their choice is too restrictive to be
realistic, but their conclusion that the current divergence
is independent of the electromagnetic form factors
remains true.

V. SUMMARY

k F3 —(p' +m )F4+(p +m )F7

=e~m [F(p') —F(p')] —e~m [G(p') —G(p')] .

(4.55)

F3=F =F =F =F =F =03 5 8 10 11 12

and G =F=1. The above conditions lead to F4=F7 =0
and

F6= F9= —(F, —e—z)lk

Therefore

+ leg p /F20 p~k~ (4.56)

We can further rewrite this as

As long as the form factors are consistent with these con-
straints, the current divergence does not contain them.
The choice of Gross and Riska corresponds to

We have proposed a method of constructing an elec-
tromagnetic current operator associated with the pion-
nucleon vertex function. Our basic tool is the minimal-
substitution prescription. We have transformed the non-
local vertex function into a momentum-dependent local
operator and replaced the nucleon momentum operators
by the gauge-invariant ones. The resulting minimal cou-
pling interaction is proved to be consistent with the WT
identity derived for the pion photoproduction. We also
derived the WT equation for the two-nucleon system and
examined the validity of our current operator for the
one-pion exchange current. We found that the minimal
coupling introduced into the pion-nucleon vertex is an
essential ingredient which is needed for the WT equation
to be valid. We showed that our result is consistent with
that of Gross and Riska.

Our result is also in conformity with Nishijima ' who
stressed that the WT equation holds true for composite
particles as well as for elementary particles. Although a
current operator is influenced by the electromagnetic
form factors of participating particles, its four divergence
is free from these form factors and takes the form as if
the composite particles are structureless pointlike ones.
This fact was already found by Berends and West' in
pion electroproduction, and more recently by Gross and
Riska in nuclear exchange currents. Our result supports
the conclusion that there arise no constraints on elec-
tromagnetic form factors to be used in hadronic interac-
tions.
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