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A phenomenological optical-model analysis is performed for the elastic scattering of alpha parti-
cles on *424448Cq at 1.37 GeV. Two geometries are considered for optical potentials, i.e., the tradi-
tional Woods-Saxon form and the double-Woods-Saxon form which can represent a change of the
potential shape from the Woods-Saxon one. Among them, the best-fit potential has a “Mexican-
hat” shape which is characterized by a long-ranged and weak attractive part in the surface region
and a repulsion in the central region. From discussions on shape dependence of chi-square values,
reaction cross sections, volume integrals, notch tests, and global potentials, a reasonable shape of
the real part of the optical potential is suggested to be the “Mexican-hat” shape at this energy.

I. INTRODUCTION

The optical model has played a remarkable role in
describing nuclear scattering phenomena. For proton-
nucleus scattering, it has been shown that the potential
shape apparently changes from a Woods-Saxon (WS)
shape at low energies ( <80 MeV/nucleon) to a wine-
bottle-bottom (WBB) shape at intermediate energies
(~200 MeV/ nucleon).' ™3

Also, it has recently been demonstrated, albeit phe-
nomenologically; that the real central potential shape
changes in deuteron scattering on °0O at 700 MeV (350
MeV/nucleon).* It is of interest to investigate how this
“shape change” persists in the scattering of various com-
posite particles. However, optical-model analyses of
high-energy heavy-ion scattering data are still few.

For alpha particles, Bonin et al. measured the elastic
scattering on >®Ni, 1%Sn, and 2°°Pb at 288, 340, 480, and
699 MeV, and searched optical potentials with conven-
tional WS shapes.’> Maki et al. analyzed the same data
without this restriction and showed that the shape of op-
tical potentials is likely to change from a WS shape to a
WBB shape as the incident energy increases.

Thus, it is interesting to study the optical potentials for
alpha-particle scattering at higher energies and to exam-
ine whether this shape change persists or not. In 1977,
Alkhazov et al. measured the elastic scattering cross sec-
tions of alpha particles on Ca isotopes at 1.37 GeV using
the Saturne synchrotron at Saclay.” They analyzed the
data using the Glauber model.””® Although this model
reproduced the experimental data very well, the shape of
the optical potential could not be determined. It is
noteworthy that this energy (343 MeV/nucleon) coin-
cides with that around which the p +Ca potential
changes shape, and also with the energy of the d +'°0
experiment in Ref. 4.

These data are suitable for optical potential analysis
because the angular distributions were measured in small
angular steps (0.25°) with a relatively small error (10%).
The analysis of these data leads us to examine whether
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the optical model is meaningful for the interpretation of
the experiments at this higher energy, and if so what
types of potentials are suggested from the experimental
side as reasonable for the scattering of alpha particles at
the intermediate energy (343 MeV/nucleon). This work
is aimed at examining these two questions. As a result, a
clear preference for a particular shape of the real part of
the optical potential is demonstrated.

In Sec. II, two geometries of the optical potentials em-
ployed in our search of best-fit potentials are described.
It is emphasized that special care is necessary to ensure
the accuracy of calculations. In Sec. III, we examine the
sensitivity of the data set to the shape of the potential.
The crucial evidence is presented by a study of the shape
dependence of the chi-square values. This is demonstrat-
ed with a plot of the best attainable chi squares as a func-
tion of the shape of the real part of the potential. Global
potential sets are determined on the assumption of
smooth isotope dependence of the potential parameters.
A notch perturbation test is carried out to examine the
sensitivity of the real potential in relation to the distance
from the nuclear interior. The role of the imaginary po-
tential, which renders the fits insensitive to the interior
real well depth, is discussed. A comparison of the de-
duced potential sets is made with respect to the reaction
cross sections and the volume integrals of the potentials.
In Sec. IV, the obtained potential sets are also compared
with the potential predicted on the basis of Brueckner
theory, and conclusions are given.

II. OPTICAL POTENTIAL SEARCH
UNDER TWO GEOMETRIES

A. Reconstruction of the data
and the accuracy of the numerical calculation

The measured angular distributions are diffractive in
the narrow angular range, and it is quite difficult to mea-
sure the data at deep minima. Thus it is necessary to
make some corrections to the raw data obtained by the
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spectrometer with position and cutting-angle-sensitive
detectors. The details of the angular distribution recon-
struction procedure are described in Ref. 9.

The numerical calculations require special attention.
We need angular distributions calculated to an accuracy
of at least 10~ 7 because the absolute cross sections fall off
rapidly in the narrow range of the angles. At first, we
should determine the maximum value of angular momen-
tum (/,,) in this analysis. This is important because an-
gular momenta of partial waves used in the high-energy
heavy-ion scattering are considered to be large. It de-
pends on the incident energy and the range of the interac-
tion. This value must be determined to render the S ma-
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trix reasonably convergent. We carefully checked the
change in the S matrices and angular distributions by in-
creasing /,, in steps of 10 units. The distribution patterns
calculated for /,, =100, 150, 200, and 250, along with the
experimental data are shown in Fig. 1. As can be seen in
Fig. 1(a), smaller /,, (<200) fails to reproduce the distri-
bution at higher angles. It was concluded that ,, =250 is
more than adequate for our purposes, as it exhibits a reg-
ular diffraction pattern for 6 <20° and reproduces all ob-
served maxima and minima. Other important parameters
are the matching radius (R,, ) and the mesh size (dR) for
integration. From Fig. 1(b), it becomes clear that
R,, =15 fm and dR =0.015 fm is sufficient for our data
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FIG. 1. Convergence in angular distributions for the various maximum clauses of angular momentum (/,,) and matching radius
(R,,). The upper panels show four cases of /,, =100, 150, 200, and 250, and the lower panels show four cases of R,, =7.5, 9, 12, and
15 fm from the left-hand side. The angular distributions are presented by the ratios of the elastic cross sections to the Rutherford
cross sections and plotted as a function of the center-of-mass angle. As an example, this calculation is made for the a+*Ca system
using the global potential parameters of the Mexican-hat shape in Table IV.
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set. Thus the following analyses employ the same set of
parameters.

B. Standard Woods-Saxon form

The potential search is made with two geometries for
the shape of the real part of the optical potential. One is
the traditional Woods-Saxon (WS) form and the other is
the Woods-Saxon plus squared Woods-Saxon one which
is, hereafter, cited as the “double-Woods-Saxon” (DWS)
form. This DWS form has six parameters for the real
part, and it can represent various shapes including the
simple Woods-Saxon shape, the wine-bottle-bottom
shape, and others which are classified in Fig. 2. Al-
though the DWS form includes a WS shape, the search in
the WS form was made independently.

The Woods-Saxon potential is written as follows:

UYS(r)=Vf (rg,ag;r)

+iWf (rpapr)+ VN resr)
(1)
Sflro,ag;r)=1/{1+exp[(r —R)/ay1}, R =ry4}7,

with the Coulomb radius parameter r.=1.3 fm and 4,
the mass number of the target nucleus.

Only a volume type is adopted for imaginary poten-
tials, since the effects of the surface type are expected to

(A) Woods-Saxon
shape

Ik

q

(B) Wine -bottle -
bottom shape

"

(C)Mexican-hat
shape

4 \/

(D)Mindayan -hat
shape

R

FIG. 2. Gross classification of potential shapes represented
by the double Woods-Saxon shape where ( 4), (B), (C), and (D)
represent a Woods-Saxon shape, a wine-bottle-bottom shape, a
Mexican-hat shape, and a Mindayan-hat shape, respectively.
The scales of the axes are arbitrary.
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be very small at this energy.!%!! Thus the WS potential
used has six free parameters.

The best-fit results are shown in Fig. 3. The calculated
angular distributions are in good agreement with the ex-
perimental data. It is worthwhile to mention that the
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FIG. 3. Best-fit WS potentials with six free parameters and
their angular distributions, together with the experimental data
of 40:42.4448C4 from the top. The solid line is the optical-model
fit to the data with the searched values given in Table I.” As for
the error bars of the experimental data, see Fig. 1(a).
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TABLE 1. Best-fit potential parameters of the Woods-Saxon shape with six free parameters and related quantities such as volume
integrals of the real and imaginary parts of the potential, Jz,J; and reaction cross sections o g,

FIG. 4. The role of the real part of the WS potential. Angu-
lar distributions are calculated for various depth V, while the
other five parameters are kept to the best-fit WS values. The
solid line shows the best-fit angular distribution with

= —6.89, and the dashed-dotted, dashed, and dotted lines
show the angular distributions with V= —3, 0, and +3 MeV,
respectively.

V MeV) rg (fm) az (fm) W MeV) r; (fm)  a; (fm) x*/N Jr J or (mb)
40Ca —6.890 1.841 0.646 —332.7 0.790 0.880 1.42 —49.7 —353.4 1159
2Ca —7.095 1.828 0.741 —129.8 1.072 0.811 0.69 —51.5 —245.9 1126
4Ca —6.530 1.783 0.612 —236.3 0.894 0.877 1.26 —42.3 —312.0 1211
Ca —5.604 1.750 0.586 —405.9 0.760 0.890 3.68 —34.1 —379.2 1277
Average=1.76
agreement between the data and optical-model fits vali- ﬁ T
dates the angular distribution reconstruction from raw T
data, and also confirms that the optical model is useful at y
the intermediate energies. The best-fit optical potential .
parameters are listed in Table I. The range parameters of
the imaginary potentials »; are much smaller than those L 4
of the real potentials. This short ranged and deep imagi- -50 | " ]
nary potentials have a relation with the ambiguity of the o L §
potential. This point is important and will be discussed E -100 | |
again in the following sections. o I |
All the best-fit WS potentials have very shallow real
parts and deep imaginary parts. This shallow real part 5 - 1
results in deeper dips in angular distributions. As is © 50 | 4
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FIG. 5. Best-fit Mexican-hat (MH) potentials with nine free
parameters and their angular distributions together with the ex-
perimental data. The solid line is the optical-model fit with the
searched values given in Tables II.
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TABLE II. Best-fit potential parameters of the Mexican-hat (MH) shape with nine free parameters and related quantities such as

volume integrals of the real and imaginary parts of the potential,

Jr,J; and reaction cross sections o'y .

V MeV) rg (fm) ai (fm) V, (MeV) r, (fm) a, (fm) W (MeV) r; (fm) a; (fm) x*/N Jr Jr or (mb)

“Ca —10.701 1.787  1.002 93.86 1.237 0.834
“2Ca  —0.928 2.025 0.351 26.85 1.384  0.565
“Ca —1911 1.878 0.412 32.18 1.281 0.586
“Ca —4.405 1.904 0.575 17.13 1.344  0.320

—72.08 1.274 0.864 0.59 534 —215.8 1224
—4697 1355 0.730 0.29 489 —151.3 1054
—100.02 1.141 0.837 1.15 39.7 —2220 1184
—136.42 1.053 0.879 0.73 2.3 —255.1 1283

Average=0.69

C. Double Woods-Saxon form

The double Woods-Saxon form is represented as

UPWS(r)y=UWS(r)+ V,f2ry,a,;7) , )

where f2 is a squared form of the Woods-Saxon shape
and V), is real and usually positive, i.e., a repulsive force.
The imaginary part is kept as a WS shape. Thus the
DWS form has nine free parameters.

The best-fit potentials are shown in Fig. 5, and their
parameters are listed in Table II; these potentials also
reproduce the experimental data well. The shape of the
real potential evidently changes from the standard
Woods-Saxon shape to the shape which is classified as a
“Mexican-hat” shape in Fig. 2. The Mexican-hat (MH)
shape is characterized by a long-ranged attraction at the
surface and a repulsion in the central region. In contrast
to the best-fit WS potential, the imaginary part is not so
deep. The range of the imaginary potential of MH shape
is smaller than that of the real potential, as well as that of

the WS potentials. Both potentials have the “surface
transparent” nature which was apparent in the scattering
of alpha particles at lower energies.® This surface trans-
parent nature makes the nucleus translucent. As shown
in Fig. 6, the peaks shift to the forward angles and the an-
gular distributions become more diffractive as the range
r; becomes larger than that of the best fit. The limit of
sufficiently deep imaginary potential corresponds to a
shadow scattering by a black disk.

The comparison between Fig. 3 and Fig. 5 provides the
most notable difference between the two shapes. Even in
the region larger than 4 fm, the shapes of the real part are
quite different from each other, although the imaginary
part is very similar in the outer region. This difference
can be seen in angular distributions, as will be shown by
the notch test. Actually, it is seen that the WS shape
gives a difference at larger angles. Particularly, the
heights of the fifth and sixth peaks are lower than those
of MH shape in all isotopes. This difference is an impor-
tant point in the selection of the preferable shape of the
real part, as will be shown in the following sections.
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FIG. 6. The change in the angular distributions calculated for increasing the range parameter of the imaginary potential. Four
cases of #;=0.79 (best fit), 1.0, 1.2, and 1.4 are shown from the left-hand side. The other five parameters are kept to the best-fit WS
values.
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FIG. 7. Ratios of xY2/N values to the best-fit y*/N values in a
“notch test” where a small perturbative potential is added
whose center is 7y, the depth is 10 MeV, and the diffuseness pa-
rameter is 0.2 fm. In our case, the depth is kept constant, in
contrast to the usual notch test. The solid and dashed lines
show the y2/N for the Woods-Saxon and the Mexican-hat po-
tentials, respectively. As an example, this calculation is made
for the a+*°Ca system.
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III. DISCUSSION

A. Ambiguity of the searched potentials and notch test

In the preceding section, we obtained two shapes WS
and MH which can reproduce the experimental data well.
The potential obtained are further scrutinized to see if we
can single out a potential shape as the preferred one. We
shall discuss the ambiguity of the searched potentials
from the following two points; one is a so-called notch
test and the other is the shape dependence of the chi
square per data point (y2/N).

In the notch test, we perturb the searched potential by
adding a narrow radial potential which has the variable
center ry, of width 0.2 fm and of constant depth of 10
MeV. The relative ratio of the Y2/N to that of the best
fits are plotted versus the variable center ry in Fig. 7.
The chi square in the case of WS potential does not
change substantially even if the small perturbation is add-
ed in the inner region less than 3 fm. This indicates that
the angular distributions are not sensitive to the shape of
the WS potential for » <3 fm. The deep and short-
ranged imaginary potential of WS, as shown in Fig. 3, is
the main contributing factor. On the contrary, the chi
square in the case of the MH shape changes gradually
even in the inside region. This indicates that the MH
shape is determined with a relatively small ambiguity up
to the deep interior of the nucleus.

A small perturbation in the outer region (7 >4 fm)
influences chi-square values for both the MH and WS
shapes, which proves that the outside region of the poten-
tials is determined with little ambiguity. This is indicated
also in Fig. 8, which shows the angular distributions cal-
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FIG. 8. Angular distributions calculated with various ry at the notch test. The potential in this calculation is the best-fit MH po-
tential plus the small perturbative potential whose center is ry. Four cases of ry =2, 3, 4, and 5 fm are shown for the a+“Ca system.
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culated with the perturbed potentials. The figure shows
that the deviation in angular distributions appears at
larger angles when we vary the center of the narrow radi-
al potential from outside to inside. The agreement be-
tween calculations and the present data set, extending up
to 11°, is not influenced by potential variation for ry <3
fm. Beyond this radius, the experimental data are quite
sensitive to the real potential, and we conclude that this
analysis with the available data set fixes the shape of the
potential from the nuclear surface to about 3 fm.

B. Shape dependence of xy2/N

As a further test of the above-mentioned results we
have examined the shape dependence of y?/N in the fol-
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lowing way. Fixing the r, and a, to the best-fit values
listed in Table II, a free parameter search was conducted
for V, rg, agr, W, r;, and a; for different values of V,.
The trial with V,=0 is, of course, the traditional WS
search. The best attainable )(Z/N, as a function of the
depth V,, is shown in Fig. 9 for all isotopes, together
with the potentials obtained. The V, for the best y? are
quite isotope dependent. It can be seen that the MH
shape is favored clearly for “®Ca, and roughly for “*Ca
and “°Ca. The valley in the **Ca case is too broad to
identify the shape. This may, at least partly, be due to
the limited experimental data. The data of *Ca have
more data points than **Ca, especially in the fifth peak
around 11°, which is very important for the identification
of the shape, as discussed in Sec. II. The high peak value
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FIG. 9. Best attainable y?/N values within the six-pé.rameter search for various V,, while r, and a, are kept constant. The dotted
points in the figure show the searched values and the solid lines are only to guide the eye. Some of the searched potentials are depict-
ed for the points ( 4)-(E), where point (B) is the best-fit MH potential and point (E) is the best-fit WS potential.
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TABLE III. Global potential parameters for the WS shape and related quantities. The four parame-
ters are fixed to rz =1.80 fm, agx =0.65 fm, ;=0.89 fm, and a;=0.86 fm, and the depth parameters V'
and W are given by the formula in the text.
V (MeV) W (MeV) x*/N Jr J; or (mb)
©Ca —7.021 —244.2 5.10 —47.6 —306.1 1150
“2Ca —6.525 —249.0 21.1 —44.1 —307.4 1177
#Ca —6.028 —254.7 8.88 —40.6 —310.1 1204
“Ca —5.035 —263.3 36.9 —33.7 —312.5 1254
Average=18.0
of ¥Ca in the angular distribution can be reproduced parameters is as follows:
only by MH potentials. The reason **Ca has the broad (i) For WS shape,
valley in the y?/N is that “*Ca has a few data points in _
the important fifth peak in the angular distribution, and =—7.02+0.25(N —Z), rp=1.80, ag=0.65,
the height of the peak is not definite.
g P n W =—244.0—2.38(N —Z), r;=0.89, a,=0.86 .
C. Role of the imaginary potential (ii) For MH shape,
Another interesting point in Fig. 9 is the change in the V=-—9.59+0.41(N —2Z), rg=1.75, ap=0.85,
depth of imaginary potentials. The imaginary potential
becomes deeper as the real part changes from MH shape V,=+41.7+0.04N —2Z), r,=1.30, a,=0.66,
to WS shape.
This implies that the imaginary potential masks the W =—92.0+0.36(N —Z), r,=1.19, a,=0.83 .

effect from the inside region of the WS potential, which is
attractive and opposite to the MH potential. As ex-
plained in subsection A, the deep imaginary potential
renders the fits insensitive to the magnitude and shape of
real potential for r <4 fm.

D. Global optical potentials

The main criterion for the best-fit potentials is to ob-
tain a minimum Y2 /N without regard to the errors of the
experimental data points. As a result, the best-fit poten-
tials do not necessarily exhibit a smooth isotope depen-
dence. However, we can construct global potentials by
expecting the smooth isotope dependence of the potential
parameters. The global potentials have no free parame-
ters. We determined the parameters as follows. First, we
searched the depth parameters V, W (and V, for the MH
shape), fixing the other parameters rz, ap, r;, a; (and
ry,a, for the MH shape) around their averages of the
best-fit parameters. After that, we determined the best-fit
linear function of the neutron number N for the depth pa-
rameters searched. The formula obtained for the depth

The ¥2/N and the related quantities are listed in Tables
III and IV, and the angular distributions are shown in
Figs. 10 and 11 together with the potentials. As shown in
the figures, the isotope dependence of the angular distri-
bution and the potentials are very smooth for both
shapes. It is clearly seen that the large difference between
the WS and MH shapes comes from the fifth peak in the
angular distributions. The WS global potentials cannot
reproduce the high peak value, while it is reproduced by
the MH global potentials. Hence, the average y>/N
value of the MH global potentials is much smaller than
that of WS global potentials. Thus global potentials offer
another reason to prefer the MH shape over the WS
shape.

One might consider that the global potential for the
MH shape differs largely from the best fit MH potential,
especially in “°Ca, because the heights of the “hat” are
different from each other. However, we should consider
the surface region, which greatly influences the angular
distributions. The two potentials have little difference in
the region r >4 fm, although the heights are quite

TABLE 1V. Global potential parameters for the MH shape and related quantities. The six parame-
ters are fixed to rg =1.75 fm, az =0.85 fm, r,=1.30 fm, a,=0.66 fm, r;=1.19 fm, and a; =0.83 fm,
and the depth parameters V, V,, and W are given by the formula in the text.

V MeV) V, MeV) W (MeV) x2/N Jr J; ox (mb)
40Cq —9.591 41.68 —92.00 3.68 6.85  —2282 1091
20y —8.780 41.76 —91.28 510  12.9 —224.3 1187
#Cq —7.968 41.83 —90.56 221 18.7 —220.6 1210
#Cy —6.345 41.98 —89.12 2.60 305 —213.7 1255

Average=13.40
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different in the central region. The difference cannot be
noticed if one does not measure more backward angles,
for example, the sixth peak. It should be worthwhile to
note that the peaks in the angular distribution by the glo-
bal potential for the MH shape falls off naturally at larger
angles beyond 11°, although the y?/N values are slightly
larger than those of the best fits.
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FIG. 10. Global potentials for the WS shape and their angu-
lar distributions of “°Ca, **Ca, **Ca, and *8Ca from the top.

E. Reaction cross sections and volume integrals

In this subsection, we compare other physical quanti-
ties such as reaction cross sections or volume integrals of
the potentials. There are no experimental data of reac-
tion cross sections of the alpha particles on Ca isotopes in
this energy region. However, we can estimate these
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FIG. 11. Global potentials for the MH shape and their angu-
lar distribuitions of “°Ca, *Ca, **Ca, and “®Ca from the top.
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values from other data. According to Peng et al.,'? the
reaction cross section of the alpha particles on 2C is
about 550 mb at this energy. Considering the reaction
cross sections to be simply due to surface interaction, one
can write

or(A)=(A4,/4,)*P0g(A4,) .

Thus for Ca isotopes we obtain o g =1200 mb from this
estimate. As listed in Tables I and II, all the best-fit po-
tentials give reasonable reaction cross sections close to
this value.

The systematics of the volume integrals of the obtained

-500—r—rTrrry v — T T
....... lirotons, Becchetti- Greenlees 1
I s Volume Integral ]
- 400k . Real Central Potentials ]
s 1 4
N ‘
~ [ AR ]
E —:;ooL-+x)f t -
= p
> i .
[ 7] 3 g
= s 4
~ | Protons, Arnold et al. o
% - 200} Jr1AT =-916+150 In Ep .
- s 4
< s 4
: 3 A Deuterons 4
- g o 3 .
~100 He (Shallow) ]
- ®  « Particles L
[ o «Global Potentials ]
or -
ad MH < -
i il
100 i A il " I a2 2l 1 't L
5 10 20 50 100 200 500
E/ Ap (MeV)
-loOC-'...., T T T Ty v T
L Volume Integral i
s i Imaginary Central Potentials ﬁ
E 300} ]
> X A Deuterons i
(3 - ® 3He 4
\z' ® o Particles &
a L 4
< -200 O aGlobal Potentials MH
[ Protons, Arnold et al 7
< F Protons 4 g <
-~ n Becchetti-Greenlees J
- i »;‘.1‘"&1’;.-\__. . b
[ a0 Ll e 0 1
-100f Bty . .
L Protons - . p
| Agrawal- Sood 4
L
ol 1 P Y | . ——
5 10 20 50 100 200 500
E/Ap (MeV)

FIG. 12. Volume integrals of real (the upper panel) and
imaginary (the lower panel) optical potentials together with
Becchetti-Greenlees’s and Arnold’s lines which are suggested
for proton scatterings, where WS and MH mean Woods-Saxon
potentials and Mexican-hat potentials, respectively. The
squares show volume integrals of the best-fit potentials and the
open circles show those of the global potentials for **4%4+43Ca.

real and imaginary potentials are shown in Fig. 12 to-
gether with the systematics for the potentials of compos-
ite particles at low energies.'>'* From the Arnold’s
line, '* which is estimated for proton scattering in the in-
termediate energy region, the volume integral of the real
part of the potential should be about 10 MeV fm? and the
volume integral of the imaginary part is about 210
MeV fm?® at 343 MeV/nucleon. In the case of the WS
shape, the calculated values of the volume integrals of
real parts are slightly large (34-52 MeV fm?), and those of
the imaginary part are much larger (245-379 MeV fm?).
In the case of the MH shape, the potentials obtained give
slightly small volume integrals for the real potential be-
cause of the repulsion in the central region, while the
volume integrals of the imaginary potential range over
151-255 MeV fm® around the Arnold’s line. The situa-
tion seems to be better in the MH shape than in the WS
shape. Furthermore, the volume integrals of the global
MH potentials come very close to the Arnold’s line, while
the global WS potentials are not compatible.

IV. CONCLUSIONS

In this paper, we have examined the application of op-
tical models for the scattering of 1.37 GeV alpha particles
on 04244480y jsotopes. Traditional Woods-Saxon and
double-Woods-Saxon-type potentials were tried. The
simple best-fit criterion is satisfied by the two potential
sets. However the notch test and minimum chi-square
(x?) condition reveal that the results are not very sensi-
tive to the real well depth in traditional WS form. The
insensitivity to the real depth is likely due to the masking
by the deep imaginary potential. On the contrary, the
DWS form with a less deep imaginary potential is quite
sensitive to the shape and depth of the real potential for
distances up to 3 fm.

Various tests such as shape dependence of ¥?/N, depth
of the imaginary potentials, global potentials, and the
volume integrals of the potentials indicate that the
Mexican-hat shape is favorable for an optical potential of
alpha particles at this energy.

The crucial point of the evidence is the shape depen-
dence of the xy*/N which is shown in Fig. 9. The results
of *8Ca, **Ca, and *°Ca on clearly favor the Mexican-hat
shape. The lack of sensitivity, in the case of **Ca, is most
likely due to sparcity of data points in the fifth maximum.
It should be noted that the shape in the interior region
becomes less ambiguous with data extended to larger an-
gles. ! In our case, it is especially important to define the
heights of the fifth and sixth peaks. This is easily under-
stood from the comparison of angular distributions calcu-
lated for both shapes, as shown in Figs. 3 and 5. The cal-
culated angular distributions by the WS shape decrease
very rapidly outside the range of the measured angles.
On the other hand, the Mexican-hat shape potential gives
high peaks even at larger angles.

We determined the global potentials with no free pa-
rameters for both shapes, assuming smooth isotope
dependence of the potential parameters, and could obtain
better global potentials for the MH shape than for the
WS shape. The global potentials also indicate that the
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FIG. 13. Comparison of three kinds of the optical potentials
in “°Ca. The dotted and the solid lines show the best-fit MH po-
tential and the global MH potential, respectively. These are
phenomenologically obtained. On the other hand, the potential
calculated by Nagata et al. is shown with the dashed line. For
details, see Refs. 17-19.

MH shape is superior.

There is little difference between the global MH poten-
tials and the best-fit MH potentials in the region larger
than 4 fm. All the best-fit MH and the global MH poten-
tials change sign around 5 fm from attractive to repul-
sive, and the depth of the attraction is less than 5 MeV.
It should again be noted that the repulsion and the weak
attraction in the surface region larger than 4 fm, which
the Mexican-hat shape has, plays an important role in
reproducing the high peaks at the backward angles in the
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angular distribution.

From theoretical points of view, the Mexican-hat
shape is also supported for the potential at this energy.
On the basis of the Brueckner theory, Nagata et al. suc-
ceeded in reproducing angular distributions of p-nucleus
scatterings.!” In their model, the optical potential is con-
structed'® by folding the complex reaction G matrices,
calculated in nuclear matter, into both density distribu-
tions of a target nucleus and a projectile. The optical po-
tential’® of the a+%Ca system at the energy of 343
MeV/nucleon is a typical Mexican-hat shape, which is
similar to our best-fit potential as shown in Fig. 13, where
the calculated potential is presented together with the
best-fit and global MH potentials for “°Ca.

Therefore we conclude that the optical potential
analysis is applicable for the elastic scattering even at this
energy, and the Mexican-hat shape is strongly suggested
as a reasonable potential which should be adopted for the
scattering of alpha particles at intermediate energies
around 300 MeV/nucleon. This conclusion, together
with the result of Ref. 6, indicates the fact that the poten-
tial shape changes systematically from a Woods-Saxon
shape at low energies via a wine-bottle-bottom shape at
around 100 MeV/nucleon to a Mexican-hat shape at 343
MeV/nucleon. It thus appears that alpha particle
scattering also exhibits a gradual potential shape change
with increasing energy, just as the proton and deuteron
projectiles do.
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