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We justify the inclusion of the rho meson in the Bonn potential in terms of the NN~~a helicity
amplitude analysis. The tensor observables are well reproduced with the resulting interaction.
Consequences for the momentum dependence of the spin-longitudinal and spin-transverse efFective

interactions are discussed.

I. INTRODUCTION

Recently' the ability of the Bonn nucleon-nucleon in-
teraction to reproduce the energy dependence of the ten-
sor XX scattering observables has been questioned. At is-
sue is the form of the coupling of the p meson to the nu-
cleons. The long-range part of the tensor force is, of
course, provided by the one-pion-exchange potential
(OPEP). At short distances the OPEP tensor force be-
comes progressively stronger and must be regulated to
avoid unphysical consequences. The p meson contributes
a tensor force of sign opposite to the pion and effectively
plays this role. For this and related reasons the p meson
is extremely important in the theoretical description of
the nucleon-nucleon interaction and has far-ranging
consequences, e.g. , for the saturation of nuclear matter,
pion condensation, Gamow-Teller and magnetic M1
transitions, and the isovector spin-isospin response of nu-
clei. '

Because the p meson is such an important piece of the
nucleon-nucleon interaction, we have undertaken the
current investigation to provide a firmer theoretical basis
for its inclusion in the Bonn potential. The Bonn poten-
tial assumes that the p meson is an elementary particle of
zero width, whose coupling to nucleons is specified by
coupling constants and a form factor v (q) parametrized
as

A —m
v(q)= +2+q2

where q is the meson momentum, m is the p-meson
mass, and A is a parameter specifying the cutoff in
momentum. The coupling constants and form factor are
determined by a fit to the nucleon-nucleon phase shifts.

We know, in fact, that the p meson is not a structure-
less elementary particle and that it is strongly coupled to
two pions. The details of how the p meson couples to nu-
cleons may be extracted from the pseudophysical
NN~trmamplitudes havin. g J =1 and I =1, f ' (t).
Such an analysis then provides theoretical values for the
coupling constant and momentum cutoff directly from
theory.

II. THE p-MESON EXCHANGE

A. Helicity amplitude analysis

We will base our analysis on the results of Ref. 8,
which are obtained from the more detailed formalism in
Ref. 6. According to this work, the p-meson potential is
related to the helicity amplitude f ' (t) by

+1 +2I(q')q't~l2(q 2'q ~l ~2] (2.1)

where S&2(q) is the tensor operator and

I(q )=f dt
4p t+q

with

(2.2a)

In this paper we begin by finding an expression for the
p-meson exchange potential in terms of the IVX~~~ hel-
icity amplitude. It is important for our analysis to in-
clude the interference terms between the p exchange and
the mm. continuum, and in addition a cutoff in coordinate
space to regulate the short-distance behavior of the po-
tential. Because in our approach the p meson is actually
a composite object of distributed mass, we have been un-
able to parametrize the helicity analysis by a simple pole
of mass m =770 MeV, the physical rho-meson mass.

Pi
However, we have found it sufficient over the limited
range of momentum transfer for which the XN —+~~ hel-
icity amplitudes are known to add to this a second piece
of a slightly longer range with m =650 MeV, each with

P2

a form factor as given in Eq. (1.1). Using this theoretical-
ly determined p-meson contribution, the NX phase shifts
are refit by adjusting slightly the o.-meson coupling pa-
rameters, and the Fermi-liquid parameters are evaluated.
We find excellent reproduction of the energy dependence
of the tensor observables. The corresponding spin-
isospin Fermi-liquid parameter is go(NN)=0. 70. [We
will generally quote go in the "Jiilich units" (302 MeV
fm ). The connection to pionic units is

g 0(pionic) = —,'g o(Jiilich). Sometimes "Stony Brook units"
are also used, for which go(Stony Brook) =2go(Julich). ]
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3( t 4 2)3/2p(t)=, — if' (t)i'.
32M 23/t

(2.2b)

Here p is the pion mass and M the nucleon mass. When
equated to the p-meson exchange potential in the nonre-
lativistic limit we find, approximately,

I( 2) q P P2( 2) f C
v'(q'),

q+m m m q+mp p 7T p

(2.3)

where the effective p-meson nucleon coupling f is relat-
P

ed to the coupling parameters f and g of Ref. 9 as
2 2

m ff2 P 2 1+ P

2M P gp

(2.4)

and u (q) is given by Eq. (1.1). One also sometimes intro-
duces the n to pcou-pl-ing constant (f =1)

'2f m g f
f~mp g gp

(2.5)

The familiar "strong p" coupling is obtained from the
Hohler-Pieterinen analysis. For our work we take the
helicity amplitudes for the background as given in Ref.
10. Parametrizing these results to within the quoted er-
rors we obtain

—f,rf' (t)=
t —xo+iI (2.6)

with fo=1.92, x0=29p, and I =4.8p . We then find
that

C =2.3

and (2.7)

—,r(t —x, )

(t —x, )'+ r2 (2.8)

m —5.5p

give an acceptable parametrization of Eq. (2.2a) over the
interval 4p, ~ t ~ 50', if we take v (q) = 1. The value in

Eq. (2.7) agrees, to within errors, with that obtained in
Ref. 7. Including the 2m background, we have

C,s=u (0)C (2.9)

f (v)=1 jo(r/r, ), — (2.1 1)

where jo is a spherical Bessel function. This approaches
—,
' for r/r, = 1.895, unity for r =mr„and for r )nr„ f (r)
has damped oscillations about unity with period 2~r, .
These oscillations are a small effect, and they have no
significant consequences for our work.

About the only theoretical guidance available in choos-
ing r, is that f (r) should approach unity for internucleon
spacings of about 1 fm, implying that r, ~~ '=0.3 fm
(or q, ~650 MeV/c). In practice the final choice of r,
may have to be determined by fitting the nucleon-nucleon
phase shifts. The function f (r) in Eq. (2.11) has the valu-
able property that its Fourier transform is the sum of two
delta functions ( q, =Pic /r, )

In Table I we show values of C and Cp ff corresponding
to various Bonn potentials. In order to agree with the
helicity analysis given above C =2.3. We see that C
for all of the Bonn interactions falls short of this Hohler-
Pieterinen value, corresponding to interactions that are
apparently too weak. We note in passing that if one
wants to include form factors and a value of C compati-
ble with the NN phase shifts, then this C will be in most
cases substantially larger than 2.

The differences noted above are interpreted as follows.
The helicity analysis is expected to give the two-body
force at su%ciently long range, say r ~ r, . For distances
r (r„poorly known effects, such as the explicit partici-
pation of quarks and gluons, begin to play a role. To re-
tain V (r) down to distances r (r, would be practical
only if the other contributions were known and also in-
cluded in the potential. Since this is not the case, we are
entitled to modify V (r) at these distances to simulate the
omitted contributions. Consequently, we cut off VP(r) at
some small distance, which can be conveniently accom-
plished by multiplying V (r) by a function f (r)

V,(r)=V, (r)f(r) . (2.10)

The function V (r) is thus the potential that we will use
in the one-boson-exchange (OBE) part of the potential. A
convenient function f (r) is the one given by

where now xo =29, I =4.8, A =13, B =0.6 (in units of
p ), and f0=1.92.

6(q —q, )
f(q)=(2m) 5(q) —2n

q
(2.12)

B. Form factors

Before considering the representation of V (q) includ-
ing the 2~ background, it is necessary to discuss the issue
of form factors. The results in Eq. (2.7) correspond to a
pointlike coupling [v(q)=1] of the p to nucleon. We
have found it impossible to find an acceptable fit for any
other v (q). This is a source of two problems to which we
return. One is that u(q) adds a momentum dependence
that is not consistent with the NN~m~ amplitude, and
the other is that u (q =0) rescales the magnitude of
V (q) so that the effective coupling constant is actually

Source

OBEPT'
OBEPQ'
HEAb
Full'
Hohler-Pieterinen

Cp, .a
1.75
1.49
1.31
1.43
2.3

3.23
2.83
2.11
2.94
2.3

'Reference 9.
Reference 11.

TABLE I. Values of C in various Bonn potentials including
the e6'ect of the form factor at q =0.
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which makes the function V (r)= V (r)f(r) easy to ex-
press in momentum space using the approximation tech-
niques of Ref. 12. In that paper it is shown that if

then

Vp 'q) r1 r2 ('q )(~1 q~2 q —q'~i. ~2) (2.13)

V (q)=(a, qo2 q —
q o, oz)

X[I(q ) I(q—+q, )]r, .r2+b V (q), (2.14)

where

For q, = 1 GeV/c, this piece could be simulated by an ex-
changed meson of mass about 2 GeV. Thus, AV (r) con-
tributes dominantly at distances less than r, . As the size
of AV (r) is obviously sensitive to the details of the shape
of the function f (r), we have dropped this term in our
numerical results shown below. Dropping hV (r) is con-
sistent with our philosophy that the potential cannot be
determined theoretically for r (r, at the present time.

b V (q) = 3a, .cr—2q, I(q +q, )v, .r2 . (2.15) C. Helicity analysis including 2m continuum

2 2fp q,
m p2 (q2+m p2)(q2+q2+m p2)

(2.16)

We see that Eq. (2.16) now has the same form as Eq. (2.3)
with

2

v (q)= '+~c+
p

(2.17)

In other words, a short distance -cutoQin coordinate space
is equivalent to imposing a form factor Note .that, as in
the Bonn potential, v (0)%1 in Eq. (2.17). If q, -=l
GeV/c (r, =0.2 fm), then we understand the differences
between the values in Table I and the value C =2.3 in
Eq. (2.7). A similar cutoff procedure was applied in the
Paris potential. ' In Fig. 1 we compare this helicity
analysis with the Paris momentum space potential
[Vz(q)] for Paris is determined from the isovector tensor
force' with the OPEP subtracted and various Bonn po-
tentials. In all cases, the realistic interactions fall below
the helicity analysis, as we would expect to occur if one
uses a cutofF in coordinate space.

Finally, we note in Eq. (2.14) that our cutoff procedure
introduces an extra short-range, spin-dependent force.

In the case that the p meson is given by Eq. (2.3), we have

I(q )=I(q —) I(q —+q2)
We note that when Eq. (2.8) is used for Ref ' (t) the re-

sulting potential V (q) contains the 2m. continuum, the p
meson, and a p

—~n interference term that corresponds
to the virtual decay of the p meson as it is exchanged.
The corresponding V (q) calculated from Eqs. (2.1) and
(2.2) is not appropriate as an NN potential to be used in a
Schrodinger equation because the 2~ continuum is large-
ly contained in the iterated OPEP. To make an appropri-
ate potential we must subtract this part out of V (q).
(The full subtraction of the empirical continuum may be
too severe for the OBEP because the crossed box and 2m

with 6 intermediate states contribute to the continuum.
We believe that these are small, but in any case they are
added back into the full Bonn potential. ) We show in
Fig. 2 V (q) calculated with the 2~ continuum and with
the 2~ continuum subtracted. These are compared to the
p meson (solid line in Fig. 1). The difference between the
dashed and solid curves is the p —m~ interference term
that arises when Eq. (2.8) is squared. This piece is not
contained explicitly in the Bonn potential, either in
OBEP or in the full model, and we therefore want to in-
clude it as part of our V (r). We have found that this
case, p+(p —mm. ) interference, can be well represented by
a two-component p meson of the form

0.4

0.4

0.3 — OBEPT

E
0.2—

p+(p —m-v ) 27T+P+ (P —71.7r)

0. 1—

0.1—

0.0

q (urn-')

f

4

0.0

q (tm-')

FICx. 1. The rho-meson interaction V(q) = [(Pic)'/(2m )']l(q)
for various models. Helicity, p meson only (solid); Paris (short-
dashed); Bonn OBEPT (long-dashed); and full Bonn (dotted).

F&Ci. 2. The rho-meson interaction V(q) =[(A'c)'/(2vr)']I{q)
determined from the helicity analysis. Full helicity interaction
(dotted); with 2~ continuum subtracted (dashed); and with 2~
continuum and p

—2m. interference subtracted (solid).
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TABLE II. Various parametrizations of the helicity amplitude analysis.

Case W (MeV)

mp

(MeV) C

m

(MeV) Cp

(1) Rho-meson pole only
(2) Pole+ interference 1500

770
770

2.3
2.56 625 0.61 0.19

m I(q)=
A —m2 2'2

1 1

A+q q +m&

2 2 2

+ A —m e

~2 +q
2

q
2 + 2 (2.18)

III. CALCULATIONS

In this section we will use the results of Sec. II to ob-
tain a new one-boson-exchange potential. We saw there
that our p-meson interaction is considerably stronger
than the ones used in the Bonn OBEP interactions and
has a range that has been fixed theoretically by the cou-
pling of the p meson to the 2m continuum. We want to
see whether this makes any difference in the ability of the
theory to fit the nucleon-nucleon scattering data.

After refitting the OBEP to the XN phase shifts, we
will examine the nuclear matter results, specifically the

with the parameters given in Table II. We have imposed
a cutoff with r, =0.19 fm to approximately simulate the
cutoff applied to the Paris potential and oge sees in Fig. 3
that the results are very similar. It is also clear in Fig. 3
that our helicity potential, the Paris potential, and the
full Bonn potential all fall off faster in momentum space
and therefore have a larger range in coordinate space
then the pure p potential (solid curve). The reason for
this is that the p —mm. interference increases the range.

Fermi-liquid parameters, and the effective interactions in
the spin-longitudinal and spin-transverse channels.

A. Fit to XN phase shifts

We begin with the energy-dependent one-boson-
exchange (OBEPT) NN potential. This contains two sca-
lar mesons, an isoscalar (with different parameters in
T =0 and T = 1 states) and an isovector (5), the vector
mesons co and p, and the pseudoscalar mesons m and g.
Their masses and coupling constants as determined in the
original work are given in Table III.

To incorporate our helicity analysis, we have given the

p meson two components in line with Table II, case 2.
We then refit the coupling constants of the oo, o.

&, and 5
and the form factor of the ~ meson to reproduce the XX
phase shifts. The new helicity-analysis-based one-boson-
exchange potential (OBEPH) incorporates the values for
the p determined from the helicity analysis. These values
are given in Table III. The level of quality of the fit is as
good as that of OBEPT. The deuteron properties come
out well in both cases. We do not show the phase-shift fit
to the data for our new potential because it is quite simi-
lar to the old one.

We have also tried fits with different values of r, . We
have found it diScult to find fits to the nucleon-nucleon
phase shifts with smaller values of r„corresponding to a
weaker tensor and strong spin-spin force. For stronger
spin-spin forces we generally find improved fits to the 'P,
phase shift, but at the same time the P2 phase shift
deteriorates considerably. The smaller r, also weakens

0.4

—10—

)
(D

0.2-—

Paris
—20—

—30—

0.0-
0

helicity p+(p —vr7r)

q («~-'j

FULL

FULL

C)BEPT - - - -- --
OBEPQ ~ ~

I I r

0.5

q (t~ ')

FICy. 3. The rho-meson interaction V(q)=[(Pic) /(2') ]I(q)
for various models. Helicity with p only and r, =0 (solid); Paris
(short-dashed); helicity with p+ (p —2n ) interference and
r, =0.19 fm (long-dashed); p exchange of full Bonn potential
(dotted).

FIG. 4. Theoretical tensor nucleon-nucleon scattering ob-
servable compared to experiment (open circles) at laboratory en-

ergy of 30 MeV. The theoretical result obtained in this paper,
OBEPH, is the solid curve. Also shown are the full Bonn poten-
tial (long-dashed), the Bonn OBEPT (short-dashed), and the
Bonn OBEPQ (dotted).



1320 T. HIPPCHEN, J. SPETH, AND MIKKEL B. JOHNSON

TABLE III. Mesons and meson-nucleon interactions. Top, mesons that are the same in the original
OBEPT and the new fit. Bottom, mesons whose couplings to nucleons have changed.

g /4m

f~g
m (MeV)
~ (Mev)

5.0

548.8
1500

20.0
0.0

782.6
1500

OBEPT
g /4m

f~g
m (MeV)
A (MeV)

OBEPH
g /4m.

f4
m (MeV)
A (MeV)

14.6

138.03
1750

14.6

138.03
2000

11.7027

615
2000

11.3213

615
2000

8.8543

550
2000

8.7993

550
2000

1.1585

983
2000

1.1465

983
2000

0.920
6.1

769
1500

0.7385
6.1

770
1500

0.1738
6.1

625
1500

the net tensor force to an extent that cannot be repaired
by adjustments in the coupling constants of the other
mesons.

Next, let us turn to the tensor observables. Love' has
deduced the energy dependence of the isovector tensor
observables from the SM84 NN amphtude of Amdt and
Roper. ' These tensor observables are defined in Ref. 17.
He has found these at T&,b=30, 50, 100, 140, and 210
MeV, which we show in Figs. 4—8 compared with the
predictions of the energy-independent one-boson-
exchange Bonn potential OBEPQ, OBEPT, the full
Bonn potential, and our new model, OBEPH. We see
that our OBEPH is comparable to the other one-boson-
exchange interactions. All of these interactions agree
quite well with the data, but the full Bonn potential seems
to do somewhat better than the others, especially at the
higher energies. The older Holinde, Erkelenz, and Alzet-
ta (HEA) potential" was found by Nakayama' ' to be

inconsistent with the tensor observables; we have
confirmed this disagreement but stress that the more re-
cent interactions including our own do not suit'er from
the difhculties of Ref. 1.

We have therefore not only arrived at an understand-
ing of the strength and range of the p-meson contribution
to the NN interaction based on the helicity analysis, we
have shown that the interaction determined in this
fashion is consistent with the tensor observables in the
NN data. Our analysis favors a somewhat stronger p-
meson coupling than is found in the published Bonn in-
teractions, but the e8ect of this on the isovector tensor
observables is compensated by adjustments in the cou-
pling constants of the scalar mesons.

B. Nuclear matter properties

The low-lying properties of nuclei are determined by
the Landau Fermi-liquid parameters. These are ob-

0-

—10—

-2O-

-3O-

—20—
F

—30—

—40—
Q)

—50—

—60
0.0

QBEPT
OBEPQ . . - . . -. -

I I I

0.5

T = 5Q MeV

I I
I

t I I I I

1.0 1.5

q Ifm )

2.0

—50—

—60—

OBEPQ
~ s & t

f
& s s s

0.0 0, 5 1.0 1.5

q (tlT1

2.0

FIG. 5. Theoretical tensor nucleon-nucleon scattering ob-
servable compared to experiment at laboratory energy of 50
MeV. The legend is the same as that in Fig. 4.

FIG. 6. Theoretical tensor nucleon-nucleon scattering ob-
servable compared to experiment at laboratory energy of 100
MeV. The legend is the same as that in Fig. 4.
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0.0
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0.5 1.0 1.5 2.0 2.5

. OBEPQ
a a a a

i
a a a

i
a a a a

i
a a a a

f
a a a a

i
a a a

3.0

—60—

~ ~ ~ ~ OBEPQ70 a ~ ~ a

~

a a a a ]
a a a ~

[
a a a a

] a a a
[

a a a a
~

a a a a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

q (fm 1

FICx. 7. Theoretical tensor nucleon-nucleon scattering ob-
servable compared to experiment at laboratory energy of 140
MeV. The legend is the same as that in Fig. 4.

FIG. 8. Theoretical tensor nucleon-nucleon scattering ob-
servable compared to experiment at laboratory energy of 210
MeV. The legend is the same as that in Fig. 4.

tained from a G-matrix calculation by taking functional
derivative energy density of nuclear matter with respect
to the neutron and proton densities. The Landau param-
eters for the original OBEPT and new OBEPH interac-
tions are given in Table IV. The changes in all the pa-
rameters are quite small. The binding energy per particle
and the saturation density are nearly the same in the two
cases when calculated with a self-consistent efFective
mass. These values are in good agreement with the
empirical values k~ = 1.36 fm ' and BE/2 = 15.68
MeV.

Of particular interest to us is the Fermi-liquid parame-
ter go, because this is directly infiuenced by the p meson.
This plays an important role in pion condensation,
Gamow-Teller resonances, magnetic M 1 transitions, and
in the isovector spin-isospin response of nuclei. Empiri-
cal studies of Gamow-Teller resonances and magnetic
M 1 transitions give ' values of go ——0.84 which fall some-
what short of the values in Table IV. We have tried
fitting the XN scattering data with rho mesons of various
strengths and find that when the other coupling constants
are adjusted to fit the data, go stays very close to its value
of go -0.7. To pull go substantially away from 0.7, great
compromises on the quality of the fit to the data must be
made. We have concluded therefore that the value of
go -0.7 is rather well fixed by the data and presume that
the remaining discrepancy with the empirical value is to
be remedied by the nuclear matter theory.

Finally, let us remark on the e6'ective isovector interac-
tions in the spin-longitudinal and spin-transverse chan-

nels. These may be deduced from the ~- and p-meson ex-
change interactions and have the following familiar forms
(for energy transfer co =0):

f u (q)q
Vi (q)= o, qo~ g +goI g p

u (q)C q
VT(q)= o, Xqo2XQ +go

rn q 772
p

(3.1)

(3.2)

where go is the familiar Fermi-liquid parameter (Table
IV) and C is the quantity defined in Eq. (2.3). In deriv-
ing Eqs. (3.1) and (3.2), it is assumed that the isovector
tensor force is not influenced by medium modifications
but that the isovector spin-spin farce is, leading to the
final value of go. Considering short-range correlations
and antisymmetry, g~ picks up contributions from the
pion, the p meson, and other mesons as well. Nakaya-
ma' has shown that this particular treatment of the ten-
sor force is reasonably accurate, at least for densities
p/po ~

—,
' and q 8 2 fm

So we see that our modifications will have some
inhuence on the spin-transverse channel, leading to an in-
crease in C (see, e.g., Fig. 3) and therefore to a shghtly
diminished hardening of the spin-transverse response
function, which can be measured in electron scattering.
Because go is unchanged, the spin-longitudinal response
function is also unchanged. These considerations were
discussed earlier in Ref. 5.

We finally comment on attempts that have been made

TABLE IV. Landau Fermi-liquid parameters.

Parameter

Old
New

fo
—0.91
—0.95

+0.46
+0.48

go

+0.18
+0.19

go

+0.69
+0.71

kF {fm ')

1.35
1.30

BE/A
(Mev)

14.7
13.1
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to obtain go directly from the helicity analysis without
refitting of the NX phase shifts. Some of these calcula-
tions (e.g. , Ref. 22) omit the 2tr continuum, but others
(e.g., Refs. 23 —25) include the 2' continuum and its in-
terference with the p meson. In all these calculations go
was found to be large and we have confirmed the results.
For example, in Ref. 22, go =1.15. Unfortunately, when
the full interaction is included and refit to the XX phases
as we do here, the large go is found to be spurious. We
believe that the value should be close to go =0.7.

this procedure. This tail has important consequences for
nuclear-matter calculations because the tail is much less
cut down by the short-range correlations. However, the
value of the Landau parameter go is not altered. This is
similar to the results in Ref. 26, where it was found that
whereas the A, meson changes the potential, the Landau
parameters are unchanged once the potential is made to
fit the XN scattering data. The tensor observables are in
excellent agreement with the XN scattering data, and the
concerns expressed in Ref. 1 are thereby satisfied.

IV. SUMMARY AND CONCLUSIONS

We have found that the helicity analysis justifies the in-
clusion of the p meson in the %1V potential. The p meson
found by such a procedure is an effective one whose range
in coordinate space is increased by the coupling to the 2~
continuum. Including a cutoff for distances r ~0.6 fm to
account for nucleon size, the resulting potential fits the
XN scattering data. In order to obtain this fit, it is neces-
sary to readjust the coupling constants and form factors
of the remaining mesons. The long-range tail survives
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