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Two bremsstrahlung amplitudes in the special two-energy-two-angle approximation, which are
relativistic, gauge invariant, and consistent with the soft-photon theorem, are derived for brems-
strahlung processes with or without scattering resonances. These two amplitudes include the first
two terms in the series expansion of the bremsstrahlung amplitude in powers of the photon energy
but they are independent of any derivative of the elastic T matrix with respect to the total energy
squared s or the momentum transfer squared t. It is found that the special two-energy-two-angle ap-
proximation provides an excellent description of almost all the available mopy and p

' Cy data.

I. INTRODUCTION

During the last decade, considerable attention has been
focused on the effects of scattering resonances on brems-
strahlung emissions. Several radiative resonant scatter-
ing processes have been studied both experimentally and
theoretically. Two processes whose cross sections have
been systematically measured are the pion-proton brems-
strahlung (m

—py) near the b, (1232) resonance' and the
proton-carbon bremsstrahlung (p ' Cy) near both the
1.7-Me V resonance and the 461-keV resonance.
Another process, the proton-oxygen bremsstrahlung
(p' Oy) near the 2.66-MeV resonance, has also been
studied very recently by the Brooklyn group. There are
many good reasons for studying these radiative resonant
scattering processes. In addition to the study of the off-
shell effects (the most important goal in the investigation
of the nucleon-nucleon bremsstrahlung ), these processes
have been used either to study the electromagnetic prop-
erties of resonances or to measure nuclear time delay,
providing information which can be used to study nu-
clear reactions. " In fact, values of the magnetic mo-
ment of b, (1232), ranging from 1.6 to 9.8 e/(2 m)(m is
the proton mass), have been extracted from the tr+py
[University of California at Los Angeles (UCLA)] data'
by many authors' ' using various theoretical models
and nuclear time delays of the order of 10 s have been
extracted from the p' Cy data. ' ' Moreover, since
different approximate bremsstrahlung amplitudes may
predict quite different cross sections in the vicinity of a
resonance, the combined ~+—

py and p
' Cy data can also

provide a very sensitive test of the validity of various
theoretical approximations and models.

Among various theoretical models and approximations
proposed during the past three decades for bremsstrah-
lung calculations, the most well-known approximations

are the soft-photon approximations (SPA). The SPA,
which can be used to calculate the bremsstrahlung cross
section in terms of the corresponding elastic scattering
amplitude, are based upon a fundamental theorem,
known as the soft-photon theorem or the low-energy
theorem. It was first derived by Low' and was general-
ized and extended later by many other authors. ' ' The
SPA can be divided into the following classes: (i) the
one-energy-one-angle approximation (OEOA), which in-
cludes Low's original SPA (Low), ' the external-
emission-dominance (EED) approximation of Nefkens
and Sober, ' and the modified SPA of Nutt, Liu, and
Liou (NLL), (ii) the one-energy-two-angle approxima-
tion (OETA), (iii) the two-energy-one-angle approxima-
tion (TEOA), which includes the Feshbach-Yennie ap-
proximation (FYA), (iv) the two-energy-two-angle ap-
proximation (TETA), which includes the Fischer-
Minkowski approximation and Heller's approxima-
tion. The OEOA, OETA, and TEOA have been
thoroughly investigated, but a systematic study of the
TETA has not yet been done.

We have studied various TETA approximations by ap-
plying them to calculate the m

—py and p
' Cy cross sec-

tions. When the results of our calculations are compared
with the experimental data, we have found a special
TETA approximation (referred to as TETAS) which can
be used to describe almost all of the m

+—
py and p' Cy

data. In this paper, we describe the derivation of this
approximation and explain why it is a good approxima-
tion for bremsstrahlung processes in the energy region of
a resonance. We also present the results of m.—py and
p

' Cy cross sections calculated in the TETAS approxi-
mation. These results are compared with experimental
data and with the predictions calculated in other approxi-
mations.
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II. SPECIAI. TWO-ENERGY- TWO-ANGLE
APPROXIMATION

We consider photon emission accompanying the
scattering of two particles A and 8

3 (qf')+B (p/')~ A (qfi')+B (pfi')+ y(K") .

Here, qi' (qfi') and PP' (pg) are the initial (final) four-
momenta for particles A and 8, respectively, and K" is
the four-momentum for the emitted photon. These five
momenta satisfy energy-momentum conservation

q,~+p,~ =q&+p&+K" .

We shall first discuss the spinless case (or the case with
spin but the contribution from the spin and the magnetic
moment of the participating particles is negligible) and
assume that particles A and 8 have charges Z&e and
Z~e, respectively. Since we are interested in the soft-
photon approximation, we shall derive an approximate
bremsstrahlung amplitude which can be calculated exact-
ly in terms of the corresponding elastic T matrix and the

charges Z~e and Zze. A diagram which represents the
elastic scattering process is shown in Fig. 1(a).

The total bremsstrahlung amplitude M„consists of the
external scattering amplitude M and the internal

I. P
scattering amplitude M„:

M„=M„+M„~ (1)

In Fig. 2, we show five photon emission diagrams for all
bremsstrahlung processes. The first four diagrams [Figs.
2(a)—(d)] represent photon emission from the four exter-
nal legs (lines) and these external diagrams determine the
amplitude M„. The last diagram [Fig. 2(e)] represents
photon emission from all internal lines and/or vertices
and it defines the amplitude M„. A general method
which enables us to generate all possible soft-photon ap-
proximations is discussed in Ref. 20. The reader is re-
ferred to this reference for the details. Here, we shall
focus on the TETA approximations. All TETA ampli-
tudes depend upon two difFerent energies and two
difFerent angles. A class of such TETA amplitudes can be
written as

M„(s p, t, , ;s p, t, , )= A„(s p, t, ;s p, t, „, )/K+B„(s p, t, p, ,s p, t, „,),
1 1 0']P] 2 2 2P2 ] ] &]P~ 2 2 a2P2 1 ] &]P] 2 2 &pP2

(2a)

where

and

~ /K=Z„p
(qf +pf)„q;„(q;+p, )

T(s p, t, , )
—Z„"— " T(s, t, )(qf+pf). K ' ~iPi q; K (q;+p;) E P ' ~Pi

Pfp qf Pf p Pip K Pi p( + ) ( + )
B so, p it I ii T($~ .it / I )

pf 'K (qf +pf )'K i i 2~2 p; K (q;+p; ) K»' 2p2
(2b)

pi qf„(q;+p; )„B =2Z& — ' "
(q, +p,. ) KdT(s p, t, , )/Bs~ pa+P, qf K q+p;.K

" a2+ p2 q;.K
(q, +p;)„

(q;+p;) K'aT(s p, t, , )/as
2 2 &]P] 2 2

pi pfi qr +pl p

I

(q;+p;)„
+2Z~ " — "

(q, +p;) KdT(s p, t, p, )/Bs„pa2+ 2 p, K q;+p;.K 2 2' ~zPz z z

p', qf„" a, +p', qf K
(qi —qf )„

(q, —pf ) KBT(s p, t, , )IBt,~q
—

q Ki f

+2Z„
a', +p, q; K (q, —

qf ) KdT(s p, t, , )Id.t, ,
q

—
q )Ki f 2 2 &]P] &]P]

az pfiJ, (qi qf )p+2Z~ — (q, —qf).KdT($ p, t,&)IBt, ,
'

a2+p2 pf K q;
—

qf K 2222
az p;„(q;—

qf )—2Z — (q,. —qf) KdT(s p, t, , )/Bt. . .
a2+p2 p;'K q; qf)'K 2P2 2P2

(2c)
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In Eqs. (2b) and (Zc), T is the elastic scattering T matrix,

s p =(a„s;+P„sf)/(a„+P„).

t, =(a'„tz+P'„tq )l(a'„+13'„), n =1,2,
n n

s;=(q;+p, )

sf (qf +Pf )

t~ =(Pf —P;)

t =(qf —
q, )

and a„,P„, a'„, and P'„(n = 1,2) are arbitrary real numbers. It is easy to see that the amplitudes M„" depend not only
upon T, evaluated at four different sets of (s, t), but also upon the derivatives of T with respect to s & and t,

n n a„P„
(n =1,2). A special TETA amplitude which is free of any derivative of T with respect to s or t can be found if we
choose P, =P& =a2=a2=0. Thus the TETAS amplitude for spinless particles has the form

qfl (qf+pf )I q vM +s(s, ,s;t, t )=Z„"— " T(s;, t ) —Z&T(s, t )

Pfp qf+Pf v Pip+Zz — T(s;, tq) —Zz T(sf, tq )
pf K qf+pf K

(q;+p;)„
(q;+p;) K

(q, +p;)„
(q, +p;) K

(3)

To understand the physical meaning of the TETAS
amplitude, let us consider the p' Cy process near a
scattering resonance (around 1.7 or 0.5 MeV) as an exam-
ple:

p(pF )+~2C(qP)~ N ~P'(pg)+' C(qf )+y(&")

Here, we have chosen particle 8 to be proton and particle
A to be ' C, Z& =1, and Z„=6. Since the contribution
from those terms involving spin or magnetic moment is
negligible for low-energy scattering, the TETAS ampli-
tude for the p

' Cy process can be written as 9) q( 9)

the scattering of proton and carbon, and in that case the
Feynman diagram given by Fig. 1(b) becomes the dom-
inant elastic diagram. Using Fig. 1(b) as the source dia-
gram to generate photon emission diagrams, we obtain
five bremsstrahlung diagrams (as shown in Fig. 3) which
dominate bremsstrahlung production in the resonance re-
gion. The elastic scattering T matrix corresponding to
Fig. 1(b) has the form

Jkt„= u (pf, vf )M„(s;,sf ', t, t )u (p;, v; ) . (4)

Here, M„ is given by Eq. (3) and u (p;, v; ) [or
u (pf, vf )] is the Dirac spinor for proton with momentum

p; (or pf ) and spin component v; (or vf ). In the reso-
nance region, an intermediate particle, ' N*, is formed by

q(+K~
~Q

Q;
A

(a}
B

~ p(+K
~C

I

q-,

A
P;

B

9)

q.,
A

P;
B

P, -K

q,
A

Pl
B

q.
I

A

(b) Q;

A

(e)

9f

9;
B

— FIG. 1. (a) The graphical representation of elastic scattering.
(b) The one-particle s-channel exchange diagram (the dominant
elastic diagram in the resonance region).

FIG. 2. Feynman diagrams for bremsstrahlung: (a)—(d) the
external scattering diagrams; (e) the internal scattering diagram.
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K

A

K

K

(b)
+z, ( + )

pf K (qf+pf) K

(q;+p;)„
(q;+p, ) K

—Zs T(sf ) p;.K

Combining Eqs. (6) and (8) gives

M ME+MI Z fP f+f 8 T(-)q (q+p)
qf K (qf+pf) K

q, (q;+p;)„

. (9)

(c)
Qf Pg

Piqi K Pf qf
K

p +q

(e)

FIG. 3. Feynman diagrams for photon emission generated by
the source diagram, Fig. 1(b): (a)—(d) the external emission dia-
grams; (e) the internal emission diagram.

M =Z„" T(s, ) Z„T(s )—
+Z~ " T(s, ) —ZiiT(s )

The internal amplitude, u (pf, vf )M &u (p, , v; ), corre-
sponding to Fig. 3(e) has the form

M „=I[i/(p —M* +iE)][ i (Z„+Z—)(p+p')„]
X [i /(p' —M"+i E)]r, (7)

T(s):I [i /(s —M—' +iE)]1

Here, M* is the mass of ' N*, I is the p-' N*-' C vertex,
and s is the total energy squared (which can be either s;
or sf ). The external amplitude, u (pf, vf )M „u (p;, v; ), for
the Feynman diagrams in Figs. 3(a)—3(d) can be written in
terms of T(s, )and T(sf ) as.

M =M (TETAS)+M (TETAS)

where

(10a)

ME(TETAS) =Zq " T(s, , tq )
—Zq T(sf, &p )

+Z~ " T(s;, tq) —Zs T(sf, tq)

and

(lob)

(q;+p;)„MI (TETAS) = —Z~ " [T(s;,t ) —T(sf, tp )]
q;+p;) K

(q;+p;)„—Zs
' " [T(s;,t )

—T(sf, t )] .
q;+p; K

If we compare Eq. (9) with Eq. (3), we can see that the
amplitude MTETAs reduces to the amplitude M in the
resonance region. This shows very clearly that the ampli-
tude M takes into account the photon emission
from the charge of the intermediate particle ' N*. The
second term in each of the square brackets in Eq. (3) [i.e.,
the term which involves (q;+p; ) /(q;+p; ) K or
(qf +pf )„/(qf +pf ) K] is called the gauge term since it is
required in order to make the total amplitude gauge in-
variant. These gauge terms represent photon emission
from the charge of the intermediate particle ' N*.

The TETAS amplitude given by Eq. (3) is consistent
with the soft-photon theorem. Although the individual
gauge terms appear to be both 0(K ') and nonanalytic at
K =0, the complete internal amplitude, which is the sum
of all gauge terms, can be shown to be 0(K ) and analytic
at K =0". To see this, we rearrange Eq. (3) in the form

where p„=(p;+q, )„and p„'=p„—K„=pf„+qf„. Ap-
plying the Brodsky-Brown decomposition identity to
split the amplitude M „,we obtain four quasiexternal am-
plitudes:

Here, we have used the fact that K =c K =0 and

(q;+p;) E/(q;+p;) K =(qf+pf ) E/(qf+pf ) K

(10c)

(q;+p;) (q +p )

(q;+p;) K (qf+pf) K

(q;+p; )„(qf+pf )„

(8" is the photon polarization). M„(TETAS) is the exter-
nal emission amplitude and M„(TETAS) is the internal
amplitude, which represents photon emission from the
charge of the intermediate particle as we have already
discussed. If we expand T(sf, t ) and T(sf, t ) about s;
(K =0) and use the relation s, —sf =2(q;+p; ) K, we find
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M„(TETAS)= —2(q, +p, )„[Z„BT(s;,t )/Bs;+Z BT(s;,t )/Bs, ]+

which shows that the internal amplitude M„(TETAS) is
of order K and is independent of K" when X~0. Thus,
M„(TETAS) has no kinematic singularity at K =0.

Historically, the amplitude M given by Eq. (3) (or
an amplitude similar to M„)has been obtained and
written in various forms by many other authors. Fischer
and Minkowski, for example, have obtained a TETA
amplitude [Eq. (40) of Ref. 24] similar but not identical to
M for m.—py processes. It is true that a largep +discrepancy has been found between the m.—py cross sec-
tions calculated in the Fischer-Minkowski approximation
and the UCLA data. ' However, if we ignore those terms
involving spin and the anomalous magnetic moment of
proton in Fischer-Minkowski (FM) amplitude, we would
obtain our version of the Fischer-Minkowski amplitude
for spinless particles:

M" =M (TETAS)

—2(q, +p, )„[Z„D,T(s, , t )+ZsD, T(s, , t )],
(12)

has pointed out in Ref. 25 that it contributes nothing
since it involves a factor (q;+p;)„[or more precisely
(q;+p;) e] which vanishes in the c.m. system and in the
Coulomb gauge. Other versions of the TETA amplitude
similar to M„have also been constructed and used in
the nonrelativistic potential model calculations.

Now, let us discuss how to modify M„when one
of the participating particles has a spin —, and an anoma-
lous magnetic moment A, . Surprisingly, our study shows
that the TETAS amplitude for ~—

p y processes,

rt+(q/')+—P(pt')~~ +(qg)+—P (pg)+ y(K"),
can also be written in the same form as Eq. (4) with
M„given by Eq. (3) [or Eq. (10)], Z„=zs =1 for
m+p y and —Z~ =Zz = 1 for m py. The agreement be-
tween theoretical predictions and the UCLA data is
found to be very good. On the other hand, it is well
known that p;„and pf„must be replaced by p;„—R,„and
pf„—Rf„, respectively, in order to take into account the
spin and the anomalous magnetic moment k of the pro-
ton. R;„and Rf„can be written as

where

D, r(s, , t~)—= [T(sfpt ) —T(s, , t )]/(sf —s, ),f
D, r(s, , t~)—= [T(sf, t~) —T(s;, t )]/(sf —s,. ),f

and

R;„=—,
' [X,y„]+A, [ [E,y„],P, J /( 8m )

Rf„=,'[E,y ]+A—. j[g,y„],graf J/(8m ) .

(14a)

(14b)

and M~(TETAS) is given by Eq. (10b). The amplitude

Mz given by Eq. (12) is identical to M„a since
(s; —sf) =2(p, +q;) K. If M„" were used by Fischer and
Minkowski for the m

—py calculation, they would find a
very good agreement between their calculations and the
UCLA data. Heller, on the other hand, has used the
mean value theorem for derivatives,

T(sf, t )
—T(s, , t )=(sf —s;)BT(s,t )/Bs, sf s s;

and

In Eqs. (14a) and (14b), m~ is the proton mass, and we
have used [X,Y]—:XY—YX and [X,Y] =XY+ YX.
These expressions for R;„and Rf„are obtained from the
following relations:

u(pf Uf)I p[1/(pf+g —m~)]

=u(pf, vf )(pf„—Rf„)/pf K (15a)

and

[ I /(P; —g —m ) ]I „u (p;, U; )

T(sf t ) —T(s;, t ) = (sf —s; )BT(s ', t )/Bs, sf —s —s;

to rewrite Eq. (12) in the form:
where

= —(1/p K)(p,„—R;„)u (p;, U; ), (15b)

M„=M„(TETAS)
—2(p;+q;)„[Z„BT(so,tz )/Bs

+Z&BT(so, t~ )/Bs] . (13)

Although the internal amplitude in Eq. (13) depends on
the derivative of the T matrix with respect to s, Heller

I

I „=y„iApo„+—'/, (2m ), cr„=i [y„,y„]/2 .

It is easy to show that R;.K =Rf K =0. If we apply the
substitutions, p,„~p;„—R;„and pf„—+pf„—Rf„, to both
the external amplitude [M„(TETAS) given by Eq. (10b)]
and the internal amplitude [M„(TETAS) given by Eq.
(10c)], we obtained the following modified TETAS ampli-
tude:

(q;+p; —R;)„
(q;+p;) K

(q, +p; —R;)„
(q;+p;) K

M (TETAS)=Z~ " — " T(s;, t )—Z~ T(s, t )P

p —R (q +p —R ) p; —R;
+Z, " "— ' " r(s t ) Zr(sf t )
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Since R; K =RI.K =0, the modified amplitude M„(TETAS) is gauge invariant,

M„(TETAS)K"=0 .

Our study shows that the amplitude M„(TETAS) can be used to describe almost all the available ~+—

py and p
' Cy data.

The contribution from those terms involving R,„and Rf is completely negligible for the p Cy process but it is impor-
tant for the m

—+py processes.
The amplitude M„(TETAS) given by Eq. (16) is not the only amplitude studied by us. There are other TETAS ampli-

tudes which are also gauge invariant but none of them is better than the amplitude M„(TETAS). The Fischer-
Minkowski amplitude is an example. Another example is an amplitude which can be obtained if we apply the substitu-
tions, p;„—+p,„—R;„and pf„—+pf„—Rf„, to the external amplitude but not to the internal amplitude. It has the form

fpq

qf E
(q;+p;)

(q;+p;) K

+Z " "— " T(, , t, ) Z, T( —t )

—R ( + )
—R ( + )

p& K (q/+p/) K " ~ I' ~ p; K (q;+p;) K (17)

which is slightly different from the Fischer-Minkowski amplitude [Eq. (40) of Ref. 24]. [The FM amplitude has extra
terms involving y„B(s2,t) and y„B(s,t).] The third example is an amplitude which can be obtained if we rewrite the
internal amplitude M„(TETAS) in the form

M„(TETAS)=
—,
' —Z~ " T(s;, tp )+ T(s;, t~ )

(qf+pf) K '' "
(qf+pf) K

(q;+p;)„(q;+p;)„

qf Pf P T( )+T( )
qf Pf P

(q& +p&) K " ~ " ~ (q&+p&).K

(q;+p; )„(q;+p;)„

before we apply the substitutions, p;„~p;„—R;„and
p&„~p&„R&~. These —amplitudes (and some other am-
plitudes) have been thoroughly studied by us and we have
found that none of them is a good approximate ampli-
tude. They predict ~—

p y cross sections which are in
poor agreement with most of the UCLA data.

The amplitude M„given by Eq. (3) or the ampli-
tude M„(TETAS) given by Eq. (16) is interesting for it de-
pends only on the elastic T matrix, evaluated at four
different sets of (s, t): (s;, tz), (s&, tz), (s;, tq), and (s&, tq),
but it is independent of any derivative of T with respect
to s or t. The choice of the four sets of (s, t) is fixed by
the requirement of making the TETAS amplitude free of
BT/Bs and/or dT/dt. Such' choice is unique and natural
since the four sets of (s, t) are determined by the four
external emission diagrams. There are good reasons for
considering the TETAS amplitude as an ideal amplitude
for bremsstrahlung processes with resonances. (i) The
TETAS amplitude is relativistic, gauge invariant and
consistent with the soft-photon theorem. It includes the
first two terms in the series expansion of the bremsstrah-
lung amplitude in powers of the photon energy and its
internal amplitude represents the photon emission from
the intermediate particle formed by the scattering of par-
ticles A and B in the resonance region. (ii) The TETAS

amplitude is free of BT/Bs and/or BT/'dt If the elast.ic T
matrix, which has been used as an input for bremsstrah-
lung calculations in the soft-photon approximation,
varies rapidly with s and/or t in the vicinity of a reso-
nance, then the expansion of the four half-oA'-shell T ma-
trices in powers of s or t, which is the standard technique
used in the derivation of a soft-photon approximation, is
obviously not valid. In that case, the amplitude which is
free of BT/Bs and/or dT/Bt is the only proper choice.
(iii) As pointed out in Ref. 20, if a soft-photon amplitude
depends upon an elastic T matrix evaluated at s & with
a&0 and p&0, then the amplitude must also depend
upon BT/Bs &. In the energy region of a resonance, the
bremsstrahlung spectrum calculated from this amplitude
will show a giant resonant peak (or structure), which will
be centered about a photon energy K and will have a
width I ~. [The expressions for K~ and I are given in
Appendix A of Ref. 20, Eqs. (A4) and (A9).] Since K
and I r are directly proportional to (a+p)/p if other
kinematical factors (the bombarding energy, the resonant
energy, and the direction of photon) are fixed, the posi-
tion and the width of the peak predicted by the amplitude
can be easily determined by the values of a and P. There-
fore, we know how the predicted peak changes with a
and P and this useful information allows us to extract the
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values of a and P from the experimental data. Our study
shows that any soft-photon amplitude which depends
upon s & with a&0 and PRO cannot be used to describe
the resonant peak observed in the p' Cy data. In other
words, it is absolutely impossible to fit the p' Cy data
near a resonance by adjusting the parameters (t and P.
The experimentally observed peak can only be described
by the amplitude which depends on a T matrix evaluated
at s, (which contributes nothing to enhance the cross sec-
tion around K =K since s, is independent of K) and
another T matrix evaluated at sf [which produces a reso-
nant peak around K =Kr with (a+/3)/p= 1 since sf is a
function of K]. This is an unambiguous experimental evi-
dence for choosing the two-energy approximation which
depends upon s,- and sf. The special two-energy-two-
angle approximation is supported by this evidence.
Furthermore, the choice of the TETAS amplitude for the
p

' Cy process is also theoretically justified since it
reduces to the two-energy amplitude given by Eq. (9) in
the energy region of a resonance. (iv) The TETAS ampli-
tude has been tested. As we shall show in next section,
the amplitude can be used to describe almost all the avail-
able p' Cy and m

+—
py data. Such an excellent fit to the

data cannot be obtained by using the two-energy-one-
angle approximation or other approximations.

(rPcr =(r I(TPcrel pCy el (19b)

As we have already mentioned, the TETAS amplitude
depends upon the elastic scattering T matrix evaluated at
four sets of (s, t): (s;, tz), (s;, tq), (sf, tz), and (sf, tq). In
other words T(s;, t ), T(s;, tq ), T(sf, t ), and T(sf, tq )

have been used as an input in our bremsstrahlung calcu-
lations. Since how to calculate these T matrices without
ambiguity is also an important part of this work, let us
brieAy discuss how they are calculated in the c.m. system.
We use the m

—py process as an example.
For the mp elastic process,

vr (q/') +P (—p/' )~ sr+ (q ~f ) +P—(p ~f ),
the elastic T matrix has the form

d Fpcr (PfdPf/2Ep)(d qf/2Ec)(K /2K),
—(m2 +. 2 )1/2c c

and mc is the mass of carbon. To compare with the
Brooklyn data, ' we have also calculated the ratio of the
bremsstrahlung cross sectin (o cr) to the elastic p' C
CrOSS SeCtian ((r~1 ):

T(s, t)= & (s, t)+ —,'(g;+t/f )&(s, t), (20)

III. BREMSSTRAHLUNG CROSS SECTION

The di6'erential cross section for m. +—
py can be written

o r
—=d' (lrdQQA dK

=(2') J5 (q;+p; —
qf

—pf K)—

where

s=(q;+p;) =(qf+pf)
t =(q; —

qf )'=(p; —pf )' .

In the c.m. system, q,
/" and q ~f can be written as

q/'= [(m +q, )'/, 0,0,q, ]

and

(21a)

where

J =em /[(p;q) —m m ]'

d F =(qfdqf/2E )(d pf/2E )(K /2K),

E:(m 2 +q2 )1/2

E =(m +p )1/2f cos8, = 1+t /(2q, ) . (21d)

q f=[(m„+q, )', —q, sin8, , 0,q, cos8, ],
(21b)

where

q, = [[s—(m„+m ) ][s —(m —m ) ]/4s)'/ (21c)

and

or

JR„=u (pf, vf )M„(TETAS)u (p;, u; )

u (pf, uf )M„u (p;, v; ),

The expression for q ~& is chosen in such a way that the
scattered pion in the lab system has a direction
(8,$ )=(50.5', 180'), the direction used in the UCLA
experiment. From s, the total c.m. energy is given by

o- c =d o/dQpdQydK, (19a)

if J and d F are replaced by Jpcz and d F~c~.
Here,

m is the mass of pion, and M„(TETAS) and M„are
given by Eqs. (16) and (3), respectively. The expression
given by Eq. (18) can also be used to define the differential
cross section for p' Cy,

w =s'"
Thus for a given (s, t), the c.m. momentum q, , the total
c.m. energy w and the c.m. scattering angle 0, can be
defined. What we should emphasize here is that q, , w,
and 0, can also be obtained from the two-body kine-
matics based on the energy-momentum conservation in
the c.m. system,

q& c.m. +p& c.m. q fc.m. +p fc.m.
P ~ P =—P ~ —

)M
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That is, we have

lqic m . I=. lqfc. m, I =qc.m.

0 ~ 0 —0 ~—0
qic. m. +Pic.m. q fc.m. +S fc.m.

aI1d

The amplitudes 2 (s, t) and B (s, t) can be written as func-
tions of w and 0, , and the complete ~p elastic T matrix
T(s, t) can evaluated by using harp phase shifts and inelas-
ticities.

Care must be taken in treating T(s;, tz ), T(s;, tq ),
T(sf tp), and T(s&, tq) as elastic T matrices since they
are originally derived from four half-oQ'-shell T matrices
for the brexnsstrahlung process. I et us discuss an obvi-
ous ambiguity. From s; and sf, we can de6ne two c.m.
momenta,

q,' =I[s, —(m +m ) ][s;—(m~ —m„) ]/4s;I'

Since T(s&, t~) has been treated as an elastic T matrix
evaluated at (s&, t~ ), it should be evaluated at the total
c.m. energy and the scattering angle determined by sf
and t~ T.hat is, u~/ given by Eq. (23b), q/m given by Eq.
(22b), and the scattering angle

8~ =cos '[1+t /(2q/ )]

should be used to calculate T(sI, t ). This can be done
for both 3 (s&, t ) and B(s&,tz ) without any difficulty but
not for the factor

in Eq. (25b). This factor can only be calculated by solv-
ing Eq. (24), i.e., the three-body kinematics must be used.
This not only means that Eq. (25b) cannot be calculated
consistently but also implies that T(sI, t ) has no longer
been treated as an exact elastic T matrix [since

q, = I[s&—(m„+mz) ][s&—(m~ —m ) )/4s&I'

(22a)
and

(q&, +p&, )&(q, +p, )

and two total c.m. energies

w'=s'"
i

w f 1/2w —sf

(22b)

(23a)

(23b)

as shown in Eq. (25a)].
Next, let us show that Eq. (11), an important property

of the internal amplitude, cannot be obtained if Eq. (25b)
and the following expressions for T matrices:

On the other hand, from the three-body kinematics (or
the energy-momentum conservation) in the c.m. system, (25c)

qrc. m. +Pic.m. qfc. m. +Pfc.m. ++c.m. (24)
T(s;, tq)= A(s;, t )+—,'(g;, +g&, )B(s;,tq), (25d)

we can also obtain two c.m. momenta, qi, and qf,
and two total c.m. energies, q;, +p;, and

qf, +pf, . It is easy to show that
and

T(sf, t )=A (sf, t )+—,'(y;, +ittf, )B(sf, t ), (25e)

f 0 0 0 0+qfc m +Pfc m @qic.m. +P. ic. ..m. . (25a)

Thus, two sets of the total c.m. energy, the c.m. momen-
tum and the scattering angle can be obtained: one from a
given (s, t) and another one from the three-body kinemat-
ics, Eq. (24). The fact that these two sets are different is
not surprising, but it would create a problem if we wish
to evaluate T(s&, t ), for example, from the following ex-
pression:

T(s/, t ) —A(sj, t )+—'(g, , +/I, —g, )B(s/, t ) .

(25b)
I

are used in Eq. (10c). To obtain Eq. (11) from Eq. (10c),
T (s&, t ) and T (s&, t ) must be expanded about s; . Such
expansions can be done only if T(s&, t~ ) is a function of s/
and t~ and T(sI, tq) is a function of sI and t . It is obvi-
ous that the factor

in Eq. (25b) for T(s&, t ), for example, is not a function of
sI and tp even though A (s&, tz) and B(s&,t~) are func-
tions of sf and t~. To see what we would obtain if T ma-
trices defined by Eqs. (25b)—(25e) are used in Eq. (10c), let
us use Eqs. (25b) and (25c) to calculate the first term in

Eq. (10c). We find

(q;+p;)„I:—Zg " [T(s, , t—)—T(s/, t )]
(q;+p; .K
(q;+p;)„= —Z~ " {[A(s;, t ) —A(sI, t 7+ —,'(g;, +g/, )[B(s;,t ) B(sI,t )]+ ,'Sf, [—B(—s,, t )+B(s/, t )]I.
q;+p; K

(256
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If we expand A (sf, t ) and B (sf, t ) about s, and use the relation s; —sf =2(p; +q; ) K again, we obtain

I = —2Z„(q;+p;)„[BA(s;, t )/Bs, + —,'(g, , +gf, )BB(s;,t )/Bs;]

—Z„(q;+p;)„[E, /(q;+p, ) K]B(s;,t )+ (25g)

This result is quite different from the first term of Eq. (11)
ainly because Eq. (25g) includes an extra term,

K, /(q;+p;) K, which is zeroth order in K but is not
independent of K. Finally, our numerical study shows
that calchlation based on those T niatrices defined by
Eqs. (25b)—(25e) gives a large resonant peak for most of
the ~—py spectra, in disagreement with the UCLA data
which show no resonant peak. To avoid the ambiguity,
inconsistency and the violation of the soft-photon
theorem mentioned above, we have introduced a new
treatment in this work.

In our calculation, we have used q,' [as defined in

(22a)], t~, and t~ to define two c.m. scattering angles,

=cos '[1+t /(2q,' )] (26a)

and
0~ =cos '[1+t /(2q, '

) ] . (26b)

We then use q,', qf, w', wf, 8', and 0~, [defined

by (22a), (22b), (23a), (23b), (26a), arid (26b), respectively]
to write the following expressions for the four elastic T
matrices:

T(s;, t )= A (w', 0~ )+—,'(g;, +gf; )B(w', 0~ ),

where

qi' = j[m +(q,' ) ]',0,0,q,' ], qfi', = j[m +(q', ) ],—q', sin&, ,O, q,' cosP,'

T(s;, tq)=2( w'0, ~ )+ 2(g;;~+gf—~q)B(w', 0~ ),

where

qP, =qp~= j[m2.+(q,' )~]'~2, 0,0,q,' ], qg
= j[m +(q,' ) ],—q,' sin0~, 0,q,' cos0~

T(sf, t )= A (wf, 8", )+—,'(g;&~+gff~)B(wf, 0~ ),

where

qP+
——

j [m +(q ) ],Q Q q J, qff =
j [m +(q ) ],—q, sin0, ,0 q, cos0,

(iv)

T(sfyt ) —A (w, 0, )+ ,'(tft/f +off )B(w, 0, )—

where

q/&~ =qP&~ = j[m +(q, ) ]',0,0,q, ], qg&~
= j [m +(q, ) ]',—q, sin0, ,0,q, cos0,

It should be pointed out that we have not used scattering
angles,

0 q =cos '[1+tq /(2qf )],

and

0~ =cos '[1+t~ l(2qf )]
for T(sf, t ) and T(sf, tq-), respectively. Were we to use

0q, 0~, and 0~ for T(s;, t~), T(s;, t~),
T ( sf tp ), and T (sf, t~ ), respectively, then we would have
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the special two-energy-four-angle approximation rather
than the TETAS. The special two-energy-four-angle ap-
proximation is also a good approximation except that the
cross section cannot be calculated when the photon ener-

gy is greater than about 100 MeV for the ~—+
py cases.

This is because 0~ and Oq cannot be defined for
K ~ 100 MeV.

IV. RESULTS AND COMPARISON
WITH EXPERIMENT

We have used Eq. (18) to calculate the vr*py cross sec-
tions, o ~z, and have used Eq. (19b) to calculate the rela-
tive p' Cy cross sections, g-&,

&
. Two di6'erent sets of

m+—p y cross sections have been calculated depending
upon which TETAS amplitude, M„of Eq. (3) (for
two spin-0 particles) or M„(TETAS) of Eq. (16) (for a
spin- —,—spin-0 system), is used. Surprisingly, it turns out
that the amplitudes M„and M„(TETAS) predict
very similar results (which are in excellent agreement
with the UCLA data) for many photon counters even
though the contribution from each term involving R;„or
Rf„ is not negligible for the m

—py processes near the 4
resonance. This implies that cancellation among those
terms involving R;„and Rf„exists. Some ~+—

py spectra
calculated with the amplitude M„are shown in Figs.
4—6. We use the amplitude M„(TETAS) for most of our

m
+—
py calculations mainly because it takes into account

the magnetic moment of proton and also because the
overall agreement between theory and experiment is
better if M„(TETAS) is used. Some rr~py spectra (from
Gl to G19) calculated with M„(TETAS) are shown in
Figs. 7—14. Since the contribution from R,„and Rfp
terms can be completely ignored, only one set of 0.„,~ has
been obtained using either the amplitude M„or the
amplitude M„(TETAS) for calculations. Some of these
calculations are exhibited in Figs. 15 and 16.

As we have already mentioned in the Introduction,
both the m

—py processes and the p' Cy process have
been studied experimentally and the combined m

—
py and

p
' Cy data have been used to test the validity of various

theoretical approximations and models. The fact that the
combined data cannot be completely described by either
the OEOA or OETA approximation is almost well estab-
lished. BrieAy, the OETA approximation has been ap-
plied to calculate the m

—+py spectra by the UCLA group
in order to describe the spectra measured by them. They
have found that the calculated spectra at 298 MeV rise
steeply with increasing photon energy above K =80
MeV, in complete disagreement with their experimental
result [see Figs. 4(d) or 7(c)]. We repeated the calculation
and obtained essentially the same result. We have also
applied the Low approximation to calculate the p' Cy
cross sections at 1.88 MeV for a scattering angle of 155'
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FIG. 4. Comparison of various theoretical predictions with the m
—py data, (a) at 263 MeV (the averaged m py cross section over

the ten photon counters 61—610), (b) at 269 MeV (the averaged m. py cross section over the photon counters G1 —610), (c) at 298
MeV (m py) for the photon counter 611, and (d) at 298 MeV (m.+py) for the photon counter 611. The solid curves represent the
result of the TETAS calculation using the amplitude M„given by Eq. (3). The dashed curves and the dotted curves represent the
result of the FYA calculation using the amplitude M„"(FYA) [Eq. (Al) in the Appendix] and the amplitude M„"~(FYA) [Eq. (A2) in
the Appendix], respectively. The dash-dotted curves are calculated in the NLL approximation and the dash-double-dotted curves are
calculated in the Low approximation. The experimental ~+—py data are from Ref. 1.



SPECIAL TWO-ENERGY-TWO-ANGLE APPROXIMATION FOR ~ ~ ~ 1301

4.0—

2.0-

C:

~ IO.O-a
b

5.0-

I

40

TT pl(
298 MeV, Gl2

~ ~ ~ ~ ~.~
~ v~

6-

(c)
40 80

TT pX
263MeV, Gl3

Tl'p g
269 MeV, 6 lb

TETAS
TEOA {FYA)M

~ ~ ~ o o TPOA {F&A)M+I
——OEOA {HLL)

80 120

Tf'p 5

298 MeV, GI2 40-
TETANY

——TEOA(F MAIM&'
32

" ~ TEOA{FYA)M 8
-'- OEOA (NLL)

(b)

40

~l~~
X

~o

80 I20
K {MeV)

I

40

~ ~
~

~

~ ~

+ ~ a ~ ~ ~ ' ~ ~ oW

80 l20
K (MeV)

FIG. 5. Same as Fi . 4 bug. , ut (a) at 298 MeV (m py) for G12, (b) at 298 MeV (m.+

(d) at 269 MeV (~+py) for 613.
a e m. py) for 612, (c) at 263 MeV (~ py) for 613, and

~ 40-
c'

c 50-

L"
L~~

vv, ~ ~ ~

80
I

40

TT+p )(

298 MeV, 6l4
TETAS

——TEOA(FYA) M„" '' TEOA{FYA) M4~
— —OEOA (NLL)

TT p)( 298MeV, GI4

40-

(c)
I

40
0

TT p5
263 MeV, GI5

~ ~ ~ ~ ~ ~ ~~ to~ ~ ~

l20

TT'p )I'

269 MeV, 6I5
TETAS

——TEOA (FYA) M

TEOA tFYA) Mu+8

——OEOA (NLL)

~ ~ ~ ~ ~ oo ~ ~ ~ lo- "~.
~ ~

"~.. x

I

40 80
K (MeV)

120
I

40
K (MeV)

l20

FIG. 6. Same as Fig. 4, but (a) at 298 MeV (m py) for G14, (b) at 298 MeV (~+
(d) at 269 MeV (n+py ) for G15.

a e ~ py) for 614, (c) at 263 MeV (m py) for G15, and



1302 Z. M. DING, DAHANG LIN, AND M. K. LIOU 40

4.0—

AJ

2.0—

IO

pY
98MeV,

—4.0

—2.0

(c

3.0—

C3

b 20-

40 80

]T pT
'', 298MeV,

''.G2

120

(d)
40

TT pl' 324MeV, GI3
TETAS
TEOA(FYA) M

TEOA(F YA) MAe
——OEOA(NLL)--—OEOA(LOW)M~+a

ej~
~ 0 ~ r ~ r ~ r ry~~ 01~~oat~~~

80 I20
K [MeV)

FIG. 7. Comparison of various theoretical predictions with the n—py data (a) at 263 MeV (the averaged m. py cross section over
the ten photon counters G1 —G10, (b) at 298 MeV for the photon counter G2, (c) at 298 MeV for the photon counter G11, and (d) at
324 MeV for the photon counter G13. The solid curves represent the result of the TETAS calculation using the amplitude

M„(TETAS) given by Eq. (16). The dashed curves and the dotted curves represent the result of the FYA calculation using the ampli-
tude M„"(FYA) [Eq. (Al) in the Appendix with the substitutions p;„—+p;„—R;„and pf~~pf„—Rf„] and the amplitude M„" (FYA)
[Eq. (A2) in the Appendix with the substitutions p; ~p;„—R;„and pf„~pf„—Rf„], respectively. The dash-dotted curves are calcu-
lated in the NLL approximation and the dash-double-dotted curves are calculated in the Low approximation. The experimental
~—py data are from Ref. 1.

(.0- 1T py
298 MeV, G9—5.0-

0
Tf'p y
298 MeV

~ 50-
b

~ ~
~ ~ ~ ~ j+P ro~ te

I I I

~ ~ ~ ~ ~ ~

~ ~ ~

~ ~

I

(b)

0'
0 56 72

K (MeV)

I

108 144

FIG. 8. A comparison of the TETAS calculation using the
amplitude M„,(TETAS) given by Eq. (16) with the calculation of
Heller et al. using the MIT model. The solid curves are calcu-
lated in the TETAS approximation and the other four curves
(obtained from Fig. 16 of the Ref. 14) are the MIT calculation;
dotted curve: MIT model II, pq/p~=3; dash-double-dotted
curve: MIT model I, p&/p~=3; dashed curve MIT model II,
pz/p~=2; and dash-dotted curve: MIT model I, pq/p~=2.
The experimental m+py data are from Ref. 1.

and we have found that the calculated cross sections
show a giant resonance peak around K =270 keV, which
is quite different from the small peak observed experi-
mentally around K =135 keV [see Fig. 16(b)]. The EED
approximation, on the other hand, can be used to de-
scribe most of the m

—py data, but (just like the Low ap-
proximation) it fails to fit the p' Cy data near the 1.7-
MeV or the 0.5-MeV resonance [see Fig. 16(b)]. Finally,
the NLL approximation does not predict any resonant
structure in the resonance region; it always gives a typical
smooth spectra with 1/K dependence. Therefore, it can-
not be used to describe the structure observed in the
p' Cy spectra even though it works remarkably well for
the n py case (see—Figs. 4—7). In short, the one-energy
approximation (either OEOA or OETA) is inadequate to
describe the combined data.

It is evident that the combined data can only be de-
scribed by the two-energy approximations, which include
the TEOA approximations and the TETA approxima-
tions. Since the Fischer-Minkowski amplitude, the am-
plitude M„' given by Eq. (17) and other amplitudes pre-
dict m.—py cross sections which are in poor agreement
with most of the UCLA data, we shall focus on the com-
parison between the FYA (a typical TEOA approxima-
tion) and the TETAS approximation [using the amplitude
given by Eq. (3) or (16)] in this work. The expressions for
the FYA amplitude are given in the Appendix. Some ex-
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FIG. 11. Same as Fig. 9, but (a) at 324 MeV for G8, (b) at 269
MeV for 612, and (c) at 269 MeV for 614.
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amples of such comparison can be found in Figs. 4—7 and
9—14. This comparison reveals two interesting features:
(i) For the m+py process, except for the photon counter
G18 (and G19 for some cases), most of spectra predicted
by Eq. (18) with the amplitude M& given by Eq. (3)
are in excellent agreement with the UCLA data (see Figs.
4—6) while the spectra calculated with the amplitude
M„(TETAS) given by Eq. (16) are consistently in excel-
lent agreement with the data (see Figs. 7—14). As for the
FYA predictions, the spectra calculated with the ampli-
tude M„(FYA) [given by Eq. (A2) in the Appendix] are
in excellent agreement with the data for the photon
counters G11—G17, but the agreement becomes poor for
the other counters, G 1 —G 10, G 18, and G 19. The predic-
tions using the amplitude M„(FYA) [given by Eq. (Al) in
the Appendix], on the contrary, are in poor agreement
with the data for the counters G11—G17, but the agree-
ment is either good or excellent for the rest of the photon
counters. (ii) For the n. py process, both the TETAS ap-
proximation [using either M„or M„(TETAS)] and
the FYA approximation predict about the same results,
which are in very good agreement with the UCLA data,

9.0—

6.0—

7 py
298 MeV
6!4

3.0—

(a)
0

O

8.0-
Vl

60-
C 40-

(b)

20.0-

tT py
263 MeV
GI5

I I I

298MeV, GI8

I5.0-

IO.O—

5.0-
(c)

0 1 I I I I I I I

0 36 72 l08 l44
K(MeV)

8.0—

6.0—

(a)
FIG. 14. The ~ py cross section as a function of K (a) at 298

MeV for G14, (b) at 263 MeV for G15, and (c) at 298 MeV for
G18. The solid curves and the dashed curves are explained in
Fig. 13.
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FIG. 13. (a) The average m. py cross section (over the ten
photon counters G1 —G10) as a function of K at 298 MeV. (b)
The m py cross section as a function of K at 263 MeV for G12.
(c) Same as Fig. 9, but at 324 MeV for G19. The solid curves
are calculated in the TETAS approximation using the amplitude
M„(TETAS) and the dashed curves are calculated in the FYA
approximation using the amplitude M„" (FYA) with the substi-
tutions p;„~p;„—R;„and pf„~pfp Rfp.

for many photon counters. But, again, the overall agree-
ment between theory and experiment is better if the
TETAS approximation is used. For the photon counter
G18 at 298 MeV, the agreement between the TETAS cal-
culation and the UCLA data is poor in the ~+py case
[Fig. 12(c)] but the agreement is very good in the m py
case [Fig. 14(c)].

So far we have discussed only the soft-photon approxi-
mations. These approximations are model independent
since the elastic T matrix, determined by the elastic
scattering experiments, has been used as an input in the
bremsstrahlung calculations. It should be pointed out
that two model-dependent calculations, the Mas-
sachusetts Institute of Technology (MIT) model and the
TRIUMF model, have been performed very recently by
Heller et al. ' and Wittman' in order to extract the
magnetic moment of 5++ from the m+py data. Com-
paring with these model-dependent calculations, it is
easy to find that the ++ay spectra calculated in the
TETAS approximation are in better agreement with the
experimental spectra obtained by the UCLA group than
those calculated in either the MIT model or the
TRIUMF model. A comparison between the calculation
using the TETAS approximation and that using the MIT
model is shown in Fig. 8.

The comparison between the predicted p' Cy cross
sections and the experimental data is shown in Figs. 15
and 16 for the incident proton energies of 1.594, 1.81,
0.591, and 1.88 MeV. In the energy region far from any
resonance, as shown in Fig. 15(a), all approximations give
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FIG. 15. The relative p' Cy cross section, o.„,], as a function
of photon energy K at the incident proton energies of (a) 1.594
MeV and (b) 1.81 MeV. The solid curves are the result of the
calculation using the amplitude M„given by Eq. (3) [or the
amplitude M„(TETAS) given by Eq. (16)]. The dashed curves
and the dotted curves are the result of the calculation using the
amplitude M„"(FYA) [Eq. (Al) in the Appendix] and the ampli-
tude M„" (FYA) [Eq. (A2) in the Appendix], respectively. The
experimental p' Cy data are from Ref. 3.

about the same prediction and the result is in good agree-
ment with the Brooklyn data. In the vicinity of the 0.5-
MeV and the 1.7-MeV resonances, both the TETAS ap-
proximation and the FYA approximation predict reso-
nant structure which agrees very well with the observed
one. This implies that the choice of the two energies, s,.
and sf (not any other linear combinations of s; and sf),
used in both the TETAS amplitude and the FYA ampli-
tude is correct. We refer to Ref. 20 for further discus-
sion. Because of the finite size of the photon detector
used in the experiment, the theoretical calculations
should be averaged over the solid angle of the photon
detector in order to compare with the experimental data.
The result shown in Figs. 15 and 16 does not take into ac-
count the effects of the finite size of the photon detector.
In general, the averaged cross sections are in much better
agreement with the data than the unaveraged cross sec-
tions.

V. CONCLUSION

We have studied various bremsstrahlung amplitudes in
the two-energy-two-angle approximation and have found
two special two-energy-two-angle amplitudes, M„
and M„(TETAS), which depend only on the elastic T ma-
trix evaluated at four sets of (s, t): (s;, t~ ), (sf, t~ ), (s;, tq ),
and (sf, tq ). Here, M is the amplitude for the
scattering of two spinless particles while M„(TETAS) is

FIG. 16. Comparison of various theoretical predictions with
the p' Cy data (the relative p' Cy cross section, 0.„])at the in-
cident proton energies of (a) 0.591 MeV and (b} 1.88 MeV. The
solid curves are calculated in the TETAS approximation using
either M„or M„(TETAS). The long-dashed curves and the
dotted curves are calculated in the FYA approximation using
M„(FYA) and M„" (FYA), respectively. The dash-dotted curve
and the dash-double-dotted curve are calculated in the Low ap-
proximation using M„"(Low) (leading term only) and M„(Low)
(both leading term and the second term), respectively. The
short-dashed curve is calculated in the EED approximation.
The 0.591-MeV data are from Ref. 5 and the 1.88-MeV data are
from Ref. 3.

the amplitude for the scattering of a spin-0 particle and a
spin- —,

' particle. The choice of these four sets of (s, t) is
fixed by the requirement of making the amplitudes
M„and M„(TETAS) free of any term involving
t)T/Bs and/or dT/dt. Such choice is unique and can be
done only in the TETA approximation. It turns out that
these four sets of (s, t) are determined by the four external
scattering diagrams. We have also discussed the reason
(both the experimental evidence and the theoretical
justification) for evaluating the elastic T matrix at either
s; or sf but not at any other linear combination of s; and
Sf.

We have shown that the internal amplitude of M
I P

[viz. , M„(TETAS)] represents the photon emission from
the intermediate particle formed by two bombarding par-
ticles during the scattering and we have also proved that
this internal amplitude is consistent with the soft-photon
theorem, i.e., it is 0(IC ) and analytic at K =0.

The amplitude M„and M (TETAS) have been ap-
plied to calculate the ~—py and the p' Cy cross sections.
The result of this calculation has been compared with the
experimental data and also with the result calculated in
other soft-photon approximations (including Low, NLL,
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EED, FYA, and FM approximations) and in MIT model
of Heller et al. From this comparison, we have found
that the amplitude M„(TETAS), which is better than any
other amplitudes, can be used to describe almost all the
available ~—+p y and p

' Cy data. Moreover, the ampli-
tude M„, which has a very simple expression, has
also been found to be a very good approximation for
bremsstrahlung processes with scattering resonances.
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APPENDIX: THE FESHBACH- YENNIE
APPROXIMATION

where

t = lim t = lim t
k~0 k~o q

(q;+p, )—(z„+z, )
(q;+p;) K

(Al)

The bremsstrahlung amplitude in the FYA has already
been discussed in Ref. 23. The amplitude which involves

The complete Feshbach- Yennie amplitude, which in-
cludes both the principal term and the correction
(second) term, can be written as

M (FYA)=M (FYA)+ Z„" (X~ K)+Z (Xe K) —Z X~ —Z Xe (s, t)P P K B K A p 8 p Bt
S

f f

(sI, t) Z~ " (X~.K)+Zs " (Xq K) Z„X~ Z—sXe— (A2)

where X and X are defined by the following equations:

(t„t) =X'„Ki"+—0(K'),

(t, t) =X„'K"+0(K—') .

It is easy to show that the amplitude M„(FYA) is exact-
ly identical to Eq. (15) of Ref. 23.

The amplitudes M„(FYA) and M„" (FYA) have been
used to calculate all p' Cy cross sections, shown in Figs.
15 and 16, since the contribution from the magnetic mo-
ment of proton is negligible. Some of the calculated
~+—

py cross sections using these two amplitudes, com-
pared with the TETAS calculations using the amplitude
M„given by Eq. (3), are shown in Figs. 4—6. Howev-

er, since the contribution from the magnetic moment of
proton is not negligible for the ~+—

py cases, we have used
the modified M„"(FYA) and M„" (FYA) in most of the
vr py calculati—ons (Figs. 7 and 9—14). The modified
M„"(FYA) and M„" (FYA) are obtained from Eqs. (Al)
and (A2) by replacing every p;„and every p&„ in the am-
plitude M„(FYA) [in both Eqs. (A 1) and (A2)] by
p;„—R;„and pf„—Rf„, respectively. Here, the expres-
sions for R;„and R&„are defined by Eq. (14). In this
work, the modified M„"(FYA) and M„" (FYA) are always
compared with the amplitude M„(TETAS) given by Eq.
(16) while the original M„"(FYA) and M„" (FYA) are
compared with the amplitude M
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