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Nuclear molecular configurations in heavy ion collisions
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The possibilities of nuclear molecular configurations in symmetric and asymmetric heavy ion col-
lisions are investigated by choosing a proper parametrization for the molecule-like compound state.
We treat the nucleus as a rotating liquid drop in terms of the elliptic lemniscatoid parametrization
suggested by Royer and Remaud which describes all deformed shapes that occur during the process
of fusion of two nuclei, starting from two touching spheres to a single one with the intermediate for-
mation of a deep neck. Only one parameter (s for the symmetric and s& for the conditional asym-
metric case) is needed to define all the shapes encountered in the process. The shape has a neck as
long as s or s, is less than 1/&2. In this parametrization, analytical expressions can be obtained for
volume, surface, and moment of inertia while the Coulomb energy has to be evaluated numerically.
The total energy of the system is calculated as a function of the parameter s or s&, for various spins
and if the stable shape corresponding to minimum energy is one with a neck, then it is concluded
that the molecular configuration is possible. Our model yields results which are in good agreement
with the experimental findings.

I. INTRODUCTION

The existence of nuclear molecular configurations in
heavy ion collisions was first predicted by Bromley et al. '

as a result of their experiments on the elastic scattering of
' C by ' C at energies just above the Coulomb barrier.
When the reaction cross section was plotted as a function
of incident energy, they observed that the curve exhibited
peaks or resonances which they attributed to the forma-
tion of a molecule-like compound state by the two carbon
nuclei. In many other cases of heavy ion reactions, such
as ' 0+' 0 ' N+' N, ' B+' C, ' B+' N, and
' C+' C, no evidence was found for the existence of
prominent resonances in the energy range of a sub-
Coulomb barrier. Even though there are certain systems
which show the resonance structure, they do so only in
selected reaction channels, and when the sum is taken
over all channels the resulting total cross section exhibits
a fairly smooth energy dependence. In contrast, in the
reaction of ' C on ' C, at lower energies near the top of
the Coulomb barrier, sharp, well-resolved resonances are
observed in the total reaction cross section. An explana-
tion as to why sharp resonances were observed in the
Coulomb barrier energy range for some nuclei and absent
in many other cases has been sought and discussed by a
number of authors.

Theoretically, Park et a/. " have given a microscopic
model considering the orbital motion of the outermost
loosely bound nucleons around both nuclear centers gen-
erating a covalent binding. On the other hand, a
macroscopic-microscopic model proposed by Leander
and Larsson' using the Strutinsky shell correction
method has led to the detection of secondary minimum in
heavy ion potential near the interaction barrier in the
case of Mg in the (P, y ) plane. They have found
different minima corresponding to different config-

urations at large deformation having axially symmetric
and reQection asymmetric shape. It is doubtful whether
one of the minima obtained in a one-center Nilsson model
could really correspond to a molecular configuration.
Thus there is some ambiguity as to which of the different
minima corresponded to the molecular configuration.

The molecular model proposed by Chandra and
Mosel' envisages a two-center harmonic oscillator with
separation as an additional degree of freedom and has
also utilized the Strutinsky shell correction prescription.
They have obtained a secondary minimum in the form of
a "shoulder" in the curve of interaction energy plotted as
a function of the separation distance R for ' C+ ' C reac-
tion assuming a nonaxially symmetric shape.

The model adopted by us is a simple macroscopic ro-
tating liquid drop model (RLDM) which uses the e1liptic
leminiscatoid parametrization of Royer and Remaud. '

It is a two-center parametrization incorporating the neck
degree of freedom. In heavy ion collisions, the com-
pound nuclei which are formed have large angular
momentum as well as internal excitation. The latter may
make the shell corrections vanish, and in such a context a
macroscopic model can be taken to be valid. Even in the
case where shell effects are appreciable the calculations
have to start with a correct macroscopic description,
which we feel is provided by the present model.

In this work, we have minimized, in the frame work of
the RLDM, the total energy of the compound nucleus
with respect to the relevant shape parameter for each an-
gular momentum, and if the shape of higher stability is
one with a neck it would imply the probable formation of
a nuclear molecule. In this spirit, we have first investigat-
ed the possibilities of symmetrical molecular config-
urations at high spins in different heavy ion collisions. '

We have further extended our calculation independently
to certain asymmetric cases also' for which evidence' is
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available. Royer and Remaud' have given the asym-
metric extension of the previous parametrization in con-
nection with their discussion of fusion barriers. Let us
now recall the important work by Broglia et al. ' on the
stability of a dinucleus system at high angular momen-
tum. In contrast to their model our model deals with a
merged dinucleus system and includes asymmetric cases
also, but the proximity energy which is considered by
them is not included in this work.

In Sec. II, we give a description of the model used and
the expression for the various shape-dependent energy
terms. The application of this model to symmetric cases
is dealt with in Sec. III. The same has been extended to
asymmetric case in Sec. IV.

II. DESCRIPTION OF THE MODEL

Royer and Remaud' had proposed a one-parameter
family of shapes for the fusion of two identical nuclei us-
ing the elliptic lemniscatoid parametrization with a single
parameter s which is the reduced neck diameter of the
shape. This is capable of describing all possible inter-
mediate deformation shapes encountered in the process
of fusion of two nuclei, starting from two touching
spheres and ending in a single sphere. We have extended
this model to cover asymmetric cases also (see Fig. 1),
and the equation to the axially symmetric and reAection
asymmetric elliptic lemniscatoid in cylindrical coordi-
nates is given by

[(C s —2Z )+s &C& +4Z C (1—s )'i ]/2
for —C1 &Z &0,

[(C s —2Z )+s C +4Z C (1—s )' ]/2 (1)

for 0&Z & C2,

where a is the neck radius and C, and C2 are the elonga-
tions. The two parameters s1 and s2 are defined by

a a$1= and $2=
1 2

The relation between s, and s2 is given by'
$2

12=$2=
s2+( 1 s2 )P2

where

R2

1

R1 and R2 being the initial radii of the two colliding nu-
clei. When s, increases from 0 to 1 the shape changes
gradually from two touching spheres of radii R1 and R2
to a single one, the neck disappearing for values of
s, ) 1/v'2.

Analytical expressions for the volume, surface area,
and relative perpendicular moment of inertia (the mo-
ment of inertia in units of the moment of inertia of the
equivalent sphere) of the two-center shape can be easily
obtained and are given by

V= 4 g C+6 g Cs+3 g Cs(1—s) ' sinh '[2s (1—s)'~]
i =1,2 i =1,2 i =1,2

(2)

s=4~R+, =m g C + g C (1—s )
' s sinh '[s; (1—s )'~ ] (3)

i =1,2 i =1,2

where R o is the radius of the equivalent sphere and B, the relative surface energy, and

C5 2
1 11

1024, , ~ 1 —
g,.

~

1/2
112 1 s

+8+30s, —135s, +(120s; —135s, )(1—s; )
' sinh

$2 $2
l I

(4)

For the relative Coulomb energy B, there is no closed expression, and therefore it must be evaluated numerically.
While Royer and Remaud' have used the method of Cohen and Swiatecki, we have adopted the Lawrence method as it
lends itself easily for such computation in cylindrical coordinates discussed at length by Devanathan. ' The procedure
is to divide the deformed nucleus into thin discs and then calculate the interaction between any two discs. The
Coulomb energy is the sum of the interaction energies between all such discs, taking care to avoid double counting.
The expression arrived at involves six integrations but eventually can be reduced to three by the use of certain formulas
involving Bessel functions and Watson s identity. The Anal expression for Coulomb energy E, of the nucleus is given by

"
o izb —z. i+[(zb —z. )'+w']'" '

where

co = and W =p, +pb 2p, pb co—s( ~co ),
and p is expressed as a function of Z. The triple integra-

tion involved in the above expression can be evaluated by
using the 16-point Gaussian integration formula.

For the reAection symmetric case, we have s1=s2=s
and C, =C2=C. As s varies from 0 to 1, the lemnisca-
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FIG. 3. Same as Fig. 2 for the case of ' 0+ ' O~ S.

FIG. 1. The gradual shape changes from two touching
spheres of radii R1 and R2 to a single sphere of radius Ro as the
reduced neck diameter of the left fragment s1 varies from 0 to 1

in the conditional asymmetric collision ~Mg+ He —+ Si.

toid varies from two touching spheres to a single corn-
pound nucleus with the intermediate formation of a deep
neck. The neck disappears when s ) 1/&2.

Knowing B„B„and Jz, the surface energy E„ the
Coulomb energy E, and the perpendicular moment of in-
ertia J are calculated as follows:
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12C + 12C~24Mg

160+16O 32S

28S1+2$S1 56N1

"Mg+ Mg~ Cr,

40Ca+ 40Ca 80Zr

The variation of total energy E„„1with the reduced
neck diameter s for various spins I in the above cases are
showii in Figs. 2—6. Froin these figures, it is seen that

Mg is spherical (s = l) for I =0—6, deformed to a one-
center ellipsoidal shape with s =0.8 for I =8—12, and ac-
quires a dumbbell shape at I =14—20 (s =0.6) thereby
indicating the possibility of molecular configurations at
these spiiis. This does not happen up to spin I =20 in the
case of S, Cr, Ni, and Zr indicating the absence of
such molecular configurations up to this spin. In the case
of Ni molecular configurations have been experimental-
ly found to occur at I =34—42 which agrees with our
result shown in Fig. 4. These results are thus in good
agreement with the experimental findings.

IV. EXTENSION TO ASYMMETRIC SYSTEMS

We have considered the possibility of asymmetrical
molecular configurations also in the reactions

14C+ 14He 18O

4Mg+

16O + 12C~28S

and our results are shown in Figs. 7—9, which indicate the
possible formation of ' C-a- and Mg-a-type molecules
around a spin of I =8 and I =12 in the first two cases, re-
spectively, thus generally agreeing with the finding of
Suzuki et al. and Karekatte et a/. ' In the case of
' 0+' C, the molecular formation occurs at a spin of
J ~ 14 similar to the case of ' C+ ' C.

Thus it is seen that the Royer and Remaud type of
two-center parametrization is highly suitable for studying
molecular configurations in heavy ion collisions. The ad-
vantage of using this model is that the resulting equilibri-
um configuration can be readily tested for the presence of
a neck in terms of the value of the parameter s, or s1 as
the case may be, thereby indicating the formation of nu-
clear molecules.
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