Spin of the ²¹⁹Ra ground state

Evan D. Hackett, J. A. Kuehner, and J. C. Waddington Tandem Accelerator Laboratory, McMaster University, Hamilton, Ontario, Canada L8S 4K1

G. D. Jones

Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom (Received 20 April 1989)

The ²⁰⁸Pb(¹⁸O,3*n*)²²³Th reaction at 83 MeV bombarding energy was used to populate the alpharadioactive nucleus ²²³Th. Out-of-beam alpha-gamma coincidences were recorded at correlation angles of 90° and 180°. The a_2 angular correlation coefficient was extracted for an alpha-gamma cascade to the ²¹⁵Rn ground state via the 0.316 MeV excited state. This limited the assignment of the ground-state spin of ²¹⁹Ra to $(\frac{7}{7}, \frac{11}{2})^+$.

I. INTRODUCTION

Interest has grown recently in stable octupolequadrupole deformation in the A = 218 - 230 region. A recent paper by Sheline¹ attempts to define the boundaries of octupole-deformed nuclei by comparing measured ground-state state spins and parities to those predicted by various theories. In particular, ²¹⁹Ra lies close to the predicted boundary but no firm assignment of spin and parity has been made to its ground state.

A recent study by El-Lawindy et al.² used an 83 MeV pulsed oxygen beam to produce thorium via the ²⁰⁸Pb(¹⁸O,3n)²²³Th reaction. The thorium α decays through the chain ²²³Th \rightarrow ²¹⁹Ra \rightarrow ²¹⁵Rn \rightarrow ²¹¹Po \rightarrow ²⁰⁷Pb. Beam pulsing made it possible to collect α - γ coincidences during the 0.75 s beam-off periods without the background of direct products. Their data revealed many excited states which were populated by the various α decays. In particular the α decay of the ²¹⁹Ra ground state with a half-life of 10 ms populates a 0.316 MeV excited state of ²¹⁵Rn which decays through an M1 γ transition to the $J^{\pi} = \frac{9}{2} + ^{215}$ Rn ground state. The γ -ray multipolarity was assigned on the strength of conversion electron measurements. This limits the possible spins of the 0.316 MeV state to $(\frac{7}{2}, \frac{9}{2}, \frac{11}{2})^+$. One can extend the corresponding assignment to the ²¹⁹Ra ground state since an unhindered α decay (hindrance factor=3.4±0.5)² connects the two. El-Lawindy et al.² favored $J^{\pi} = \frac{7}{2}^+$ for both of these states.

This paper reports a measurement of the α - γ angular correlation of the cascade, in an attempt to obtain a firm spin assignment. Provided the α decay is not dominated by the S-wave component the value of the a_2 angular correlation coefficient is quite sensitive to the specific spin change $\Delta J = +1, 0, -1$, involved in the γ transition.

II. EXPERIMENTAL PROCEDURE

An 83 MeV ¹⁸O beam from the McMaster University tandem accelerator was pulsed at 1 ms intervals on a 1.3 mg/cm² self-supporting foil of 97.8% enriched ²⁰⁸Pb.

The 316 keV γ ray of interest was easily identified following the work of El-Lawindy *et al.*²

Two silicon surface-barrier detectors and a 26% Ortec model GMX germanium detector were positioned as in Fig. 1. This configuration allowed us to collect coincident gamma rays at both 90° and 180° to the detected alpha particles. The dominant M1 nature of the γ -ray transition necessitated measurements for only two angles in order to determine the a_2 coefficient in the angular distribution. The γ detector was subsequently moved to position B of Fig. 1 and more coincidences collected with the roles of the α detectors reversed. In this way detector efficiencies canceled when the $W(180^\circ)/W(90^\circ)$ ratios for positions A and B were combined.

A standard fast-slow coincidence circuit selected events within a 400 ns coincidence window. All α - γ

FIG. 1. The target chamber and detector layout. In position A the α - γ coincidence yield $W(180^\circ)$ is measured by the $\alpha 1$ detector while $W(90^\circ)$ is measured by the $\alpha 2$ detector. Moving the γ detector to position B reverses the angles and allows us to eliminate detector efficiencies and geometrical factors when computing the ratio $R = W(180^\circ)/W(90^\circ)$.

<u>40</u> 1234

FIG. 2. (a) shows a gamma spectrum detected in coincidence with α particles in the decay of ²²³Th. (b) shows a spectrum of α particles coincident with γ rays of any energy (dotted line) and coincident with the 316 keV γ ray (solid line).

FIG. 3. The experimental result $a_2=0.15\pm0.07$ (dashed box), assuming a pure M1 transition, is compared with theoretical predictions. The theoretical values of the a_2 coefficient are plotted as a function of δ_{α} with $\delta_{\gamma}=0$ for the three possible spins $(\frac{7}{2}, \frac{9}{2}, \frac{11}{2})$ of the intermediate state. Only positive values of δ_{α} have physical significance.

FIG. 4. Plots of a limited range of δ_{γ} vs δ_{α} for the three possible spins $(\frac{7}{2}, \frac{9}{2}, \frac{11}{2})$ of the initial (and identically the intermediate) state are given. The crosshatched regions mark a combination of δ_{γ} and δ_{α} with a theoretically predicted asymmetry ratio, $R = W(180^{\circ})/W90^{\circ}$), lying within the experimentally obtained range of 1.24 ± 0.12 . The dashed boundary encloses the physically acceptable region as discussed in the text.

coincidence events were stored on tape and later replayed with various gates set on the α or γ peaks. Figure 2(a) shows a typical coincidence γ spectrum. Figure 2(b) shows the corresponding α spectrum with no gate on the γ energy (dotted outline) and with a gate set on the 316 keV γ peak (solid line). A gate set on the α peak [solid line of Fig. 2(b)] produced the final γ spectra for analysis. The resulting γ peaks were then summed and the background was subtracted. In computing the ratio $R = W(180^\circ)/W(90^\circ)$ the count rate errors were added in quadrature. The final result of the experiment, which is described in more detail elsewhere,³ was

$$R = 1.24 \pm 0.12$$
.

Finally, the a_2 was calculated from

$$a_2 = \frac{R-1}{1+\frac{1}{2}R} \ .$$

The above analysis yielded a result $a_2 = 0.15 \pm 0.07$.

III. DISCUSSION

In calculating theoretical a_2 values, we are left with two adjustable parameters, δ_{α} and δ_{γ} , the mixing ratios of the α and γ transitions. Normally one would expect an l=2 contribution in the α decay with a probability of about 60% ($\delta_{\alpha} \approx 0.8$) of the l=0 contribution based on penetrability considerations.⁴ This is consistent with the nonzero measured value of a_2 . Figure 3 shows the theoretical predictions (using the phase convention of Rose and Brink⁵) for a_2 as a function of δ_{α} , assuming $\delta_{\gamma}=0$. Although the figure shows the entire range for $\delta_{\alpha}=-\infty$ to $+\infty$, δ_{α} is restricted to positive values only. Values of δ_{α} significantly larger than 0.8 would be inconsistent with the hindrance factor of 3.4 ± 0.5 measured by El-Lawindy *et al.*² For this case we can definitely rule out $J^{\pi} = \frac{9}{2}^{+}$ for the ²¹⁹Ra ground state. We must, however consider the effect of a nonzero δ_{γ} . The *M*1 character of the γ transition is based on conversion electron measurements.² An uncertainty of two standard deviations on the conversion coefficient would imply an upper limit of $|\delta_{\gamma}| \leq 0.4$. Figure 4 shows the combinations of δ_{γ} and δ_{α} for the three spin hypotheses which allow theoretical asymmetry coefficients *R* within the experimentally measured range 1.24±0.12. It is clear that the $J^{\pi} = \frac{9}{2}^{+}$ hypothesis is ruled out even for very relaxed values of the γ -ray mixing ratio and α -particle mixing ratio.

We are left with a spin assignment of $J^{\pi} = (\frac{7}{2}, \frac{11}{2})^+$ for the ²¹⁵Rn excited state, and hence for the ²¹⁹Ra ground state. This is an interesting deviation from the $\frac{9}{2}^+$ ground state of the isotone ²¹⁷Rn.⁶ As El-Lawindy *et al.*² have pointed out, a similar cascade from the $(\frac{5}{2}^+)$ ²²³Th ground state makes $J^{\pi} = \frac{7}{2}^+$ the more likely of the two possibilities, however, we cannot rule out $J^{\pi} = \frac{11}{2}^+$ on the basis of the experimental data alone.

It is noteworthy to mention that a recent set of model calculations⁷ based on a reflection asymmetric rotor model for odd $A \simeq 219-229$ nuclei is able to predict $J^{\pi} = \frac{7}{2}^{+}$ for the ground state of ²¹⁹Ra, based on the premise that this nucleus does indeed have an octupole deformation.

¹R. K. Sheline, Phys. Lett. B 197, 500 (1987).

- ²A. M. Y. El-Lawindy, J. D. Burrows, P. A. Butler, J. R. Cresswell, V. Holliday, G. D. Jones, R. Tanner, R. Wadsworth, D. L. Watson, K. A. Connell, J. Simpson, C. Lauterbach, and J. R. Mines, J. Phys. G 13, 93 (1987).
- ³E. D. Hackett, M.Sc. thesis, McMaster University, 1988.
- ⁴J. O. Rasmussen, *Alpha-, Beta- and Gamma-Ray Spectroscopy* (North-Holland, Amsterdam, 1968), Vol. 1, p. 997.
- ⁵H. J. Rose and D. M. Brink, Rev. Mod. Phys. **39**, 306 (1967).
- ⁶R. Neugart, E. Arnold, W. Borchers, W. Neu, G. Ulm, and K. Wendt, in *Nuclei Far From Stability (Lake Ontario, Canada, 1987)*, Proceedings of the 5th International Conference on Nuclei Far from Stability, AIP Conf. Proc. No. 164, edited by Ian S. Towner (AIP, New York, 1987), p. 126.
- ⁷G. A. Leander and Y. S. Chen, Phys. Rev. C 37, 2744 (1988).