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The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon
collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions.
Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions
are calculated.

I. INTR&)DUCTION

One of the main challenges which high-energy heavy-
ion physics is faced with at present is the determination
of the energy density c achieved in heavy-ion reactions.
It is clear that it is not enough to provide a mean value
for e, E, but the distribution of e,y(E) is needed, in order
to estimate the probability of exceeding a certain critical
value E„necessary, e.g. , to achieve a quark-gluon plasma
(QCxP). So far apparently only Z has been calculated and
even this number is obtained under assumptions which
have not been subjected to an experimental test. Thus,
e.g., one usually assumes the existence of a rapidity pla-
teau in nucleus-nucleus ( A A ) collisions, one takes the en-

ergy density proportional to transverse energy density,
and one assumes that nucleus-nucleus collisions can be
reduced to a linear superposition of nucleon-nucleon re-
actions. Furthermore, most nucleon-nucleon inputs used
so far do not distinguish between the central rapidity re-
gion and the fragmentation region.

In this paper we present an extension of the interacting
gluon model, developed previously to describe the inelas-
ticity and leading particle spectra in hadron-nucleon
(hN) collisions, to hadron-nucleus (hA) and nucleus-
nucleus collisions. As before, our model applies only to
the central rapidity region. This region is of special in-
terest among other things because (i) at very high ener-
gies it is believed to contain most of the deposited energy

and (ii) present folklore assumes that it is due mostly to
gluons which are easier to handle in lattice quantum
chromodynamics (QCD) calculations.

Apart from its relevance to the problem of QCxP for-
mation in nuclear collisions, the inelasticity distribution
serves as an essential ingredient for statistical models ' of
multiparticle production in high-energy hadronic col-
lisions that distinguish between production in the central
region and in the fragmentation regions. In those mod-
els, observables such as the multiplicity of secondary par-
ticles tend to depend on the energy-momentum deposited
in the central region rather than on the total center-of-
mass-system (c.m. s.) energy available, &s, and the distri-
butions of these observables are considerably broadened
by inelasticity fluctuations; ' consequently, any serious
analysis of, e.g. , the multiplicity distribution P(n) has to
take into account these effects. In fact, there exists ex-
perimental evidence ' to suggest that in hadron-hadron
collisions P(n) indeed depends on the invariant mass M
of secondaries after the leading particles have been ex-
cluded, rather than on &s.

In contrast, in models such as the Fritiof Model
developed by the Lund Group, ' or the dual parton mod-
el, " hadron-hadron collisions are assumed to produce
two or more excited strings, which eventually fragment
into secondary particles; within such a scenario, no com-
pelling reason exists to single out leading hadrons in the
first place, and a priori one would not expect the total
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multiplicity distribution to depend on the invariant mass
M defined above.

The interacting gluon model not only offers an ex-
planation of the leading particle effect ' but also pre-
dicts ' the energy dependence of the inelasticity distri-
bution; thus, it is to be hoped that future experiments
along the lines of Refs. 8 and 9 will help to clarify the
contribution of gluon interactions to hX, h A, and A A

high-energy collisions.
Finally, we would like to emphasize that the interact-

ing gluon model, since it concentrates on the process of
energy-momentum deposition, contains far fewer param-
eters than the string models already mentioned, which in-
clude elaborate hadronization prescriptions. Moreover,
results obtained from analytic and semianalytic expres-
sions in our model are more transparent than the corre-
sponding Monte Carlo results of, e.g. , Fritiof or the dual
parton model.

The organization of the paper is as follows: we start in
Sec. II with a presentation of the interacting gluon model
for the hX interaction case. In this section also, distribu-
tions of interest are defined and the basic parameters of
the model are fixed by fitting to the available data on
inelasticity, its energy dependence and leading particle
(LP) spectra. Section III deals with the generalization of
the model to the hA case. Two different schemes are
considered here. This generalized model is then con-
fronted with the data on LP on nuclei. The inelasticity
distribution for nuclei is also presented there. Section IV
deals with further generalizations along the previous lines
to the case of A A collisions.

As an application the (initial) energy density deposited
in the central region is calculated for AA reactions and
compared with existing data. It allows one to extract the
longitudinal size of the initial energy deposition region.
Remarks and conclusions are contained in Sec. V.

II. INTERACTING GLUON MODEL FOR THE hW CASE

N —LP

FIG. 1. Schematic view of the interacting gluon model. The
notation is explained in the text.

ally form a lump of (gluonic) matter which we shall call a
central fireball (CF) (cf. Fig. I).

In the present study we are interested only in the ener-

gy deposition in the central region. The question of par-
ticle distributions would require some model' to specify
the conversion of the energy into particles and will not be
discussed here. Because of this the actual form of a CF is
not important for us and we shall assume in what follows
that we have always only one CF. The other
simplification will be the assumption that the energy not
stored in the CF is to be found among produced LP's.
(This overestimates the role of the CF in the cases where
the central region is not yet fully developed; on the other
hand, it makes our presentation more precise. )

Although the formalism of the model was presented
previously, we have now introduced certain simpli-
fications and therefore we present the main points again:
We define the probability to form a CF by depositing
fractions x and y of the energy momenta of the incoming
hadrons as a sum over (an undefined number n of) MF's,

The interacting gluon model originates from the obser-
vation ' ' that according to (perturbative) QCD:
0

qq
(0

qg
& 0 gg

where o.
qq p cT

qg & and 0
gg

are the interac-
tion cross sections of a quark-quark, quark-gluon, and
gluon-gluon pair, respectively. Assuming the same in-
equality to hold also for soft interactions one expects that
in each event one has weakly interacting, throughgoing
valence quar ks and strongly interacting and almost
stopped glue (all possible qq sea quarks are thus "convert-
ed" to equivalent gluons). Such a picture is consistent
with possible chaotic, or turbulent properties of the non-
Abelian gauge fields' (i.e., gluons) suggesting a more rap-
id dissipation of the kinetic energy of colliding gluonic
clouds and its redistribution among collective excitations
on a very short time scale. The valence quarks are then
supposed to be responsible for the fragmentation regions
and especially for the leading particles, while the interact-
ing gluons produce an indefinite number of "minifire-
balls" (MF's) through gluon fusion. Those MF's eventu-

g(x,y)= g 5 x —gn;x; 5 y —gn;y; Q P(n;)
[ n ) i i [ g. j

(all masses and transverse momenta are neglected in what
follows' ). The number distribution of MF's is given by
P(n; ) for which we use Poisson distributions

n,.
n exp( n; )—P(n;)=

n, !
(2)

corresponding to independent production. In this respect
our approach resembles hadron or proton bremsstrah-
lung' models. As a matter of fact, it can be shown that
the results for the inelasticity distribution are indepen-
dent of the assumed form of P (n; ) (cf. Appendix A). Ex-
pressing the delta functions via Fourier integrals one can
perform all summations and arrive at the general formu-
la:"

y(x, y) = f dt f du exp i (xt +yu)+ f dx' f dy', ', (e '"'+~"—I )
(2ir ) 0 0 GX Gy
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where we made a substitution

(4)

Here v's is the total invariant energy of the reaction.
The inelasticity of the reaction is then defined (in an in-
variant way) as

o. and o.z& are the inelastic gluon-gluon and hadron-
~ ~

nucleon cross sections, respectively, and s =M, M being
the invariant mass of the MF. The GI, & are the effective
number of gluons which we approximate by the gluonic
structure functions of corresponding hadrons normalized
to the percentage of hadronic momentum allocated to the
glue

1

dx xGh ~(x ) ph ~— (6)

The energy 8' and momentum P of the CF in the c.m.
frame of hN are

W= (x +y), P = (x —y),
v's v's

2 ' 2

and its invariant mass M and rapidity 6 are

The central ingredient in our model is the spectral func-
tion of produced MF's, co(x,y) =dn ldx dy, i.e., the mean
number of MF's at given x and y which is proportional to
the number of gg interactions. It reads

o xs(s) 2~(x,y) =, G„(x)G~(y)e(xy —It;„);
hN($)

MK= =Vxy .v'g

In this notation E;„is the minimal inelasticity

M0
min

S
(10)

o (s=M )= +Sina — M

0

We have then two more parameters, a and 5.
Because of the form of G& ~, the spectral function

co(x,y) is sharply peaked at small (x,y) which justifies the
approximation

exp[ i (x—t +yu)] —1 = i (xt—+yu)

M0 being the mass of the lightest possible CF, which in
principle is a free parameter.

As for trzs(s), the simplest form (rieglecting threshold
effects when M ~MO) which incorporates the most gen-
eral energy dependence of the cross section, is

M = ( W P) ' ~ =&xys—

8'+p, x
2 ~ p 2

y

(8)

—
—,'(xt +yu)' .

This leads to an analytic formula for y(x, y),

(12)

, y
exp ', [&y'&(x —&x &)'+&x'&(y —

&y })'—2&xy)(x —(x))(y —(y })] . ,2~(D,'y)' ' 2D' (13)

where

(14)(x "y ) = f dx x"f dyy co(x,y)
0 0

are (unnormalized) moments of the MF spectral function,

X(&)= f 'dx f 'dy e(xy ~',„)—S«xy K)y(x,y)—

D.', = &x'& &y') —(xy )'
and g0 is the normalization constant so that

f dx f dy e(xy —K;„)y(x,y)=1 .

(15)

(16)

and the leading particle spectrum

f (xL )=f dx f dy e(xy IC;„)5(1—x ——xL )y(x,y)

= f, dy y(1 —xL;y);

One should mention here that Eq. (13) can be also de-
rived using the saddle-point integration method in which
one has a better control over the approximations in-
volved. It can then serve as a starting point for possible
improvements. The details of such an approach are
presented in the Appendix B.

The (normalized) distribution y(x, y) is our basic start-
ing point. Gut of it one can form all other distributions
of interest. In the following we shall use the inelasticity
distribution

y(C(0, 1 —K;„), (18)

where xL is the fractional momentum of the LP.
All the relevant moments can now be easily evaluated.

In Fig. 2 and Table I we present a sample of results
1 1&. . . &=—f dx f dy e(xy —IC')( ~ . - )q(x,y) .

0 0

Notice that (6)=0. The only experimental information
about y(K) available at present is that extracted from
Ref. 8 (cf. Ref. 7). It is seen from Fig. 2(a) that the shape
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Vs=16.5 GeY

we effectively deal with a Gaussian-like distribution
X(x y}:

x{K)—
g(x,y) =exp (x —&x &)' (y —(y))'

2(x') 2(y') (21)

0
0.0 0.5 1.0

100
Ed d

dp 10—

[mb/{Ge Y/c} ]
0.2

I I I I I

) i t

0.6

~ ~

x„

FIG. 2. (a) g(K) for &s =16.5 GeV; the data are extracted
from Ref. 8 (cf. Ref. 7). (b) Leading particle spectrum for
&s =14 GeV (the data are from Ref. 19). The parameters are
the same as for Table I, o'" =31 mb.

The energy dependence of y(x, y) can be traced back to
the energy dependence of o. and in particular to the rel-
ative importance of the two different terms in os' (de-
creasing and increasing with s, correspondingly). To esti-
mate in a first approximation this energy dependence we
keep only the 1/x, 1/y terms in the structure functions
and perform the integrations over the phase ~sace [Eq.
(14)]. Retaining only the leading terms in &s one gets
for the moments of the MF spectral function

&x)=2&x')=, . +
MD cr q~(s )

61n
~o

2o hx
(22)

It is then clear that in order to have (K ) or (x ) decreas-
ing with v's (Ref. 22} we had to put 8=0. Notice that,
because both (x ) and (x ) decrease with s, we expect
asymptotically,

g(x,y) ~&(x —&x & )&(y —
&y ) ),

of g(E) at &s = 16.5 CxeV can be accounted for quite sat-
isfactorily by the present approach.

Here and in what follows we use the simple structure
function form '

One should stress again that this refers only to the energy
stored in the central region of rapidity. The actual mea-
sured distribution can (and will} be affected by contam-
ination coming from the fragmentation regions (from the
tails of the LP spectra in our case).

(
p(l+n)

( )n (19) III. EXTENSION TO h A COLLISIONS

&xy & «&x') «x), (20)

TABLE I. Results for different moments of y for different en-
ergies. The parameters used are MD=0. 35 GeV, ap =0.036
GeV fm, 5=0. The inelastic proton-proton cross sections used
are cr~~ =31, 56, 73, and 126 mb at &s =16.5 and 540 GeV and
2 and 40 TeV, respectively (Ref. 20}. D ( )= &( )'& —

& &')'".

&s (aev)

16.5
540

2 000
40 000

'Input.

0.45'
0 30'
0.24
0.16

0.24
0.11
0.07
0.03

D(X)

0.18
0.14
0.11
0.08

D(h)

0.24
0.33
0.37
0.44

which ean readily be generalized to nuclear collisions (we
use n =5). The values for (K) at &s =16.5 and 540
GeV in Table I were used as input. The parameters of
the problem are Mo, which fixes our phase space and a
combination of a and p in the form ap .

Because of the inequalities

Proceeding to h A and A A collisions one has to decide
how to treat the nucleus. DifFerent approaches were
developed for this purpose. Being an extended object,
the nucleus is sensitive to the space time development
and coherence properties of the scattering process, i.e.,
those aspects, which usually are not properly considered
(if at all) in the process of model building of reaction
mechanisms at the hadron-nucleon level. This implies,
that new, previously unknown (or ignored) parameters
appear, making a real differentiation between models very
dificult.

Recently, interest in the nuclear scattering problem has
been renewed by the search for QGP. ' From the data on
hadron-nucleus leading particle spectra' ' ' informa-
tion on the "stopping power" of the nucleus was extract-
ed (in a model dependent way, however, and without
specifying where the energy lost by the LP is deposit-

d) 27

Actually our model, although oversimplified, provides
a clear answer to this question (at least for h A collisions):
the energy goes into the CF occupying the central region
in rapidity. (Furthermore, it will be seen in Sec. IV that
recent A A collision data may provide some information
on the size of this CF).

We shall proceed in the h A case, as in the hN case by
considering particularly the role of gluonic sources in the
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deposition of energy leading to a CF. The most natural
and straightforward generalization to nuclear processes is
to treat the nucleons as an effective impact parameter (b)
dependent, collective source composed of v nucleons, and
we shall use this method in the following.

This can be done in two ways which we shall call mod-
el ( A ) and model (8), respectively.

Model (A). This is a straightforward generalization of
hN collisions to h (vN)-collisions where the (vN) cluster
is treated as a single object [cf. Fig. 3(a)]. If x,y C(0, 1)
the fractions of mornenta of the incoming hadron and
(vN) cluster in the hN c.m. frame, then the correspond-
ing distribution g,(x,y) for a h +(vN) collision is given
by Eqs. (1)—(6) with the following substitutions:

p ~G( )
1-X

Al

(i) M ~M =vxys,
&s

(ii) W~ W = (x +vy),

FIG. 3. Schematic view of the interacting gluon model for
p A collisions. For notations cf. the text.

vp (n+1)

(iii) P~P„= S

2
(x —vy),

(iv) G~(y)~G, (y),

( v) (Ji ~($)~0 ~~( vs)

(23)
y

o,z represents the hadron-(vN) cluster cross section.
From geometrical considerations it should not be very
different from the hadron-nucleon case. Therefore, we
take

As mentioned previously all masses are neglected: &s is
the hN c.m. energy, G, (y) and cr,&(vs) are new (nuclear)
quantities which are specified as follows: G„(y)
represents the effective number of gluons in the struck v-
nucleonic cluster. We can expect that 6 -vG& and that
Jody yG„(y) =p„where p, is the percentage of the clus-
ter momentum carried by gluons (we do not expect p to
differ drastically from p, —i =p). This leads to

(24)

where y is a new parameter.
Model (8). Here the incoming hadron collides again

with v nucleons inside the nucleus but they act now in-
dependently [cf. Fig. 3(b)]. The probability to form a CF
by depositing fractions x and y&, . . . , y of the energy
momenta of the incoming hadron and nuclear nucleons
involved in this collision is then

X.(x;yi,
In „.I In,.

I

V V V

5 x —g gn1; x; /f5 yi
—gniyi + QP(ni),

i 1=1 1=1 i 1=1
In& I

t

(25)

where the sum extends over the (undefined numbers of) MF's. Assuming as before a Poisson distribution for P (n; ) and
proceeding in an analogous way as in Sec. II, we arrive finally at an expression equivalent to Eq. (3):

V

y,(x;yi, . . . , y )=,f dt e'"'g f du&e' '"'exp f dx'f dy', ",(e
'" "' —1)(2~)'+ ' oo 0 0 dX

(26)

Now the energy W, and momentum P, of the CF corresponding to h-(vN) collisions are

v'g v's
W.= x+ yy, , P.= x —yy,

1 ] 2 I I

and the invariant mass M and rapidity 5,
1/2

(27)

xgy, s 5 =—,'ln (28)

Proceeding further as in Sec. II we finally get an analytical form for y„(x;y„.. . , y, ):
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Xv(x iyi»yv) +vO

[(2~)v+ lvD2 &y2)
v —1]I/2 exp

2&y'&

Xexp

2

(x —v&x &)&y') —&xy) & (y( —&y))
E=1

2v& y'&D„'y
(29)

where all definitions and the parametrization of & x "y ) and D„~ are as in Sec. II [Eqs. (14) and (15)];X~ is the normali-
zation constant (all X are separately normalized to 1). Notice that for v= 1 we recover the result for the hN case, Eq.
(13).

As we are interested only in the total energy-momentum transfer from the nucleus to the CF: y =y]+ . . +y, we
now have to integrate over Iyi I to get

1 1
V

X.(x,y)= dyl dy. & y —y yl X,(x;yl, ,y. )
0 0 E=1

(30)

That is our basic formula from which all relevant distri-
butions will be calculated. Notice that although

X,(x;y„.. . , y ) has a rather simple form, X,(x,y) can-
not be obtained analytically as in model (A). The cross
section o,)v is given again by Eq. (24).

We must also introduce the nuclear weight functions,
P, necessary for the averaging over the impact parame-
ter

different data on LP distributions. In Fig. 7 the mean
number of slow protons calculated with our prescription
for P is compared with data. In Fig. 8 our predictions
for the inelasticity distributions for different nuclei are
presented.

The LP spectrum is now for model ( 3 ) [cf. Eq. (18)]

X~(x y)= g ~."X.(x,y)
v=1

(31) 1000-

p A — fd2b[ (b)]v n(b)1

)~hA
in

(32)

with n (b) being the mean number of struck nucleons at a
given impact parameter b

P is the probability that the incoming nucleon strikes v
nucleons in the target A. We use for it a distribution
which follows either from geometrical considerations,
or, as a limiting case for large A, from the Glauber mod-
el:"

100
1000

10

1000

100—

I I I

p-Pb

p-Ag

I I I I

and

n(b)=o )v f dzp(b, z)

Irin f d2b (1 e
—n(b))

(33)

(34)

10
~ 1000

LU

100—

I
I I I I

p- Al

p-Cu
I I I I I I

p(b, z) is the nuclear number density normalized to A.
(In what follows we have adopted for our XA calcula-
tions the p used by Date et al. )

The parameters of the problem are now, in model
( A )—Mo, y, and a combination of a, p, and p under the
form ap p; in model (B)—Mo, y, and a combination of
a and p under the form op . The values for M0 and ap
were taken from the pp case. Then it turns out that mod-
els (A) and (B) give very similar results if one chooses
ap p =ay and y=1. 15 in model (2) (Ref. 30) and y=1
in model (B), cf. Fig. 4 and Table II. Therefore, in what
follows, only results for model (A) will be shown. Figs.
4—6 represent a comparison of our calculations with

100 =

p-C
10
0.2 0.6 X 1.0

FIG. 4. Leading particle spectrum for various nuclei. The
data are from Ref. 19 (for fixed pT=0. 3 GeV/c). The parame-
ter values used are Mo =0.35 GeV, app =0.036 GeV fm, and
y=1.15 for model (A), full line, and y=1 for model (B),
dashed line (the irregularities are caused by Monte Carlo in-

tegration�}.



INTERACTING GLUON MODEL FOR HADRON-NUCLEUS AND. . .

1 dN

N dy ~oo
II

0.3 I ) I

p-Ag central collisions

p-Ag 0.1—

0.01
0.0 1.0 2.0 3.0

0.0

0.2—
FIG. 5. The leading particle spectrum for p-Ag reaction, data

points are from Refs. 25 and 26. They cover a wider range of
rapidity loss of the leading particle by ——lnx~ than those of
Ref. 19. The parameters used are the same as in Fig. 4.

-(z 0.1—

0.0
0.0 1.0 2.0

f„(xL )= g P„"f dy y,(1—xz,y)
in/'[v~ &

—
&I, ~J

Xe 1 —xL (35)

FIG. 6. The same data as in Fig. 5, but presented for the
"central" and "peripheral" parts (cf. Ref. 26). In our calcula-
tions we set accordingly 6~v~10 for the central part and
1 ~ v ~ 5 for the peripheral one. Other parameters and notation
are as in Fig. 5.

and for model (8)
and for model (8)

f„(xL )= g P"f dx g f dyre(xyi —K;„)
v ——i

X5(1—x —xL )

Xy,(x;y„.. . ,y, ) .

y„(K)=2KA g P f, dx Q f, dy,
v=1 tnin min

(K;„=Ma /&s as before, &s is the nucleon-nucleon
c.m. energy). The inelasticity distribution is, correspond-
ingly for model ( A ) [cf. Eq. (17)],

Iv(x iy» . iyv)
X

(38)

A +min
~„(K)=2KA g P."e &v/A —«K—

v= I

f dx AE
X g, x,

WX2/v X
(37)

where K is the ratio of the invariant energy deposited
into the central region (the mass of the CF) to the total
invariant energy of the reaction: Qs~ =&As.

As may be seen, the 6t to the Lp spectra for p A is of
the same quality as for pp. The theoretical results are al-
ways below the experimental ones at small x, i.e., large

TABLE II. Results for different moments of y and for masses of CF for different nuclei. The param-
eters are the same as for Fig. 4. The incoming proton momentum is p1,b

= 100 GeV/c.

Model (A)

&&Tc )
&m)

(GeV)

Model (B)

&v'TC )
&I)

(GeV)

p 12C

p Al

p Cu
p 108A

p 207Pb

0.56
0.59
0.63
0.65
0.68

0.17
0.13
0.10
0.08
0.07

0.39
0.35
0.30
0.28
0.25

7.9
9.5

10.9
12.2
13.4

0.60
0.62
0.65
0.67
0.69

0.20
0.15
0.11
0.09
0.08

0.44
0.37
0.32
0.29
0.27

9.5
10.7
12.0
13.6
15.0
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A. 80
O
~ 6.0-
CL

—4.0—
Vl

O
~~ 2.0 —

)Xl

& 0.0
00 1.0 2.0 3.0

hy ——lnxL .

xL. This could be due either to the fact that the data
contain contamination from other processes such as
diffraction or that our treatment of the valence quarks
components as the Lp's is, perhaps, too strong an as-
sumption, or both.

This is also rejected in Fig. 6 where it is seen that the
model can account quite well for the "central collision"

FIG. 7. Results for the number of slow protons (essentially
given by v, cf. Ref. 29) vs hy; the notation and the parameters
are as in Fig. 5. For v(hy) we use the relation

v{hy) = g vP" f dy y{I —xL,y) g P„"f dy y{1 —xr, y)
V V

part but not for the "peripheral one." To be conservative
it appears therefore preferable to limit the applications of
our model to the central rapidity region. A clear experi-
mental separation of the central and fragmentation re-
gions which are determined by different dynamics would
be of great value whenever possible.

The fact that our calculations for the number of slow
protons observed agree rather well (Fig. 7) with data sug-
gests that our model for P„ is an adequate one.

In Table II the moments (x), (K), (vK ), and
(M) =(K) Qs„ for incoming proton momentum

p&,b
= 100 CxeV/c are presented for both models ( A) and

(8). From (x ) one can calculate the energy deposited in
the laboratory frame using the formula W„b=(x )p„b.
Model (8) gives slightly higher values of inelasticities
(x ) and (K ) [this is due to the difFerent approach to the
(vN) clusters in the two models; the LP spectra are prac-
tically the same for both models]. So far no measure-
ments of y„(K) have been reported. There exist data '

only for the transverse energy distribution do /dEr. Un-
fortunately, ET is a highly model-dependent function of
the invariant energy deposited Mz, so that we cannot use
it for comparison with our results. The only piece of ex-
perimental information on inelasticity are the results
from cosmic ray data where the A dependence of the
energy 8;,b deposited in the laboratory frame by the pro-
jectile was found to be A +— . Our result is
(x) —A for model (A) and (x ) —A for model
(8).

30.0

20.0

10.0

0.0
0.0 0.05 0.1 0.15 0.2

1 2.0

X(K) (K)c =o{«-

IV. A A COLLISIONS
IN THE INTERACTING GLUON MODEL

Both models (A) and (8) can be generalized to AA
collisions in a straightforward way. On the other hand,
because of the complexity of model (8) we shall present
numerical results obtained only for model ( A ). However,
for completeness we provide in Appendix C the corre-
sponding formulae of model (8), too.

A generalization of our approach to 3 A collisions in
model ( A ) can be obtained as follows. We regard the col-
lision as taking place between a (p-nucleonic) object from
one nucleus ( A) on a (v-nucleonic) system from the other
one (8). The corresponding y„„(x,y), calculated as be-
fore in the NN c.m. frame is again given by Eqs. (1)—(6);
as before all masses are neglected; &s is the NN c.m. en-
ergy. Relations (23) are now replaced by

8.0

4.0

0.0
0.0 0.1 0.2 0.3 0.4 0.5

(i) M ~M„=pvxys,
&s

2
(px +vy),

&s
(iii) P~P„= (px —vy),

(iv) G&(x)—+G„(x), Gz(y)~G (y),

(39)

FICx. 8. (a) Example of g,(E) for p Pb collision; (b) Inelasti-
city distribution y&(E) for A =12, 63, and 207. In' both cases
the incoming nucleon momentum p&,b =100 GeV/c and the pa-
rameters are as in Fig. 4. The corresponding values of
(Mz ) = (X„)&s are given in Table II.

as defined in Sec. III

(v) o „~~o„,=y'~r02(p'"+ v'")' .

The parameters of the problem are now Mo and a com-
bination of a, p„,p„and y' under the form g=ap~„/y'
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where we expect (as in the previous case) that y'-y —1

and p =p„=p. To calculate

&~a(»y)= X X P„".'X„.(x y),
@=1v= 1

we must now specify the probabilities P„ofencounter-
ing ()M, v)-nucleonic combinations of the colliding objects.
This we do in a simple geometrical model, with both nu-
clei taken as rigid spheres of radii R =rod' and num-
ber density p=0. 17 fm . For each impact parameter b
we can then calculate the number of participating nu-
cleons p=p(b) (from A) and v=v(b) (from B) by just
counting the number of nucleons in the corresponding
overlapping volumes (in b space) Vz z(b):

V„(b)=2I d s[R —(s—b) ]'~

10000
)

1000—
II

100—

E 10—

~l~

0.1
0.0 0.8 1.6 2.4

e {GeVlfm')
3.2

FIG. 9. Comparison with energy density from Ref. 34. The
value of g is 0.026 GeV~ fm2.

X e[R „' —(s —b)2]e(R,' —s') (41) of boundary conditions for hydrodynamical fiow) (R«.
37)

and similarly for V~(b) Th. en p(b) =p V& (b) and
v(b) =p V~(b).

Because of the one-to-one correspondence between the
number of participants )u+ v and the impact parameter b
of the reaction, Eq. (40) becomes

y„~(x,y) =Id b f(b)y„(b)„(I,)(x,y) (42)

with the weight factor f (b) being equal to

f (b)
1 b b(b)

AB RAB
(43)

where RzB =R~+RB arid o. ~B is the nucleus-nucleus to-
tal inelastic cross section which we take to be
o „~=mR„~. b, (b) is the increment of impact parameter
b leading to an increase of the number of participants,
p+v, by unity [actually from ()M+v —

—,') to (p+v+ —,')],
such that fd b f (b)=l. Now our interacting gluon
model for AA collisions is fully specified. Actually the
simplified weight factor f (b) =1/cr „z leads to the same
numerical results. This is so because the region of b
where differences occur (i.e., b ~R „+Rz ) is excluded by
the experimental cuts (it corresponds to very small ET ).

As in the NA case in most experiments only da ldEz.
has been measured (Refs. 34—36), cf. also "Quark Matter
'87,"Ref. 1), so that the qualification made in Sec. III ap-
plies here, too. However, in the WA-80 experiment the
initial local energy density c is also provided by using the
relation (where ro is an initial proper time for imposition

I

R'&o dy
(44)

with so= 1 fm and R =R(' O)=3.0 fm.
In our approach we can directly determine the (global)

energy density:

M~B

mR hz
(45)

=const/(Y, ) . (46)

Keeping the value of the parameter Mo the same as for
the pp case we have then two parameters: g and b.z
which are obtained from a best fit. In Fig. 9 we show the
results of such a fit corresponding to

where M„a =K+s„z is the invariant energy deposited

into the CF (Qszz being the total invariant energy of
the AB collision, K the inelasticity defined with respect
to this energy), and b,z is the longitudinal dimension of
the CF in its rest frame (which for all practical purposes
can be identified with the NN c.m. frame where the calcu-
lations of Mza are performed). In our approach (as in all
other approaches) this is a free parameter which we shall
determirie as follows. We assume that c.=c and identify
the e distribution d(r/de measured in Ref. 34 with the 'E

distribution giveri by our calculation, i.e., with

mR Az A B E'Z =2ABI(. g g P„".e X— '" e
SAB &AB

' 1/2

X~
PV K AB /pv X @VX

(47)

where bz =1.9 fm and /=0. 026 GeV fm [if one
chooses ap~ =ap and takes this last quantity the same
as for the pp case, this value of g corresponds to y'= 1.38
in Eq. (39)]. The fit is a rather sensitive function of the
parameters (see Fig. 9), and for the values given above for
g and b,z, it is quite good. This suggests that our ap-

I

proach can be used to estimate both the shape of do. /dc
and the value of Az. We also find that in the present en-

ergy range (60 A —200 A GeV) hz is practically un-
changed. From the above considerations it follows that
hz is the impact parameter averaged longitudinal dimen-
sion of the CF. The mean mass (averaged over b) of the
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100 i I I )
(

I I I I 1 I I I l

(K)c=0.&a

(K),„=0.&7

I ~ I )0
tll

1~)

of Eq. (44), and of our method, is the separation of the
central and fragmentation regions, which, at least at
present energies is at best only approximately satisfied.

In Fig. 10 we present —as a prediction —y[K(b =0)],
i.e., the inelasticity distribution for central collisions,
with K defined with respect to the available invariant en-

ergy &s(b =0)=+2pvp»„at this impact paramet'er.
Table III summarizes the mean values of K and M in this
case.

0.01
0.00 0.10 0.20

I I

0.30

FIG. 10. The inelasticity distribution for b =0 [K is defined
now with respect to the &s(b) at b =0, cf. Table III]. The pa-
rameters are as in Fig. 9.

CF for the ' 0+ ' Au collision at 200 A GeV is

(M„~)=Qs„~J, dEKy~~(K)=84 GeV (48)
min

and the mean energy density is ( e) = 1.56 GeV/fm . On
the other hand, for central collisions (M„z(b =0) ) = 140
GeV and correspondingly (e(b =0) ) =2.6 GeV/fm (as-
suming that bz does not change very much with b).

We would like to stress here that our model providing
directly the distribution of the total (invariant) energy de-
posited in the central region of rapidity is especially suit-
ed for an estimate of the energy density, if the volume is
known, or of the volume of interaction V =~R Az, if the
energy density is known. In a11 other models used for
nucleus-nucleus reactions one assumes that A A col-
lisions are just a superposition of XN collisions and there
is no natural way to introduce a volume. This point of
view, however, has been criticized because it is contra-
dicted by many simple estimates and observations (cf.
Ref. 40).

One should also bear in mind that the data of Ref. 34
which we have used, have riot been corrected for longitu-
dinal expansion. Equation (44) is only an approximation
to the initial energy density since, after all, the data refer
to the final state. The correction necessary to account
for this can be done using the results of Ref. 41, but for
the moment we shall accept Eq. (44), bearing in mind that
it will lead to an overestimate of the initial Az. It should
also be added that the main condition of the application

V. DISCUSSION

We have shown that a model which used as input
gluon-gluon interactions at nucleon-nucleon level can
provide a satisfactory description of inelasticity distribu-
tions in nucleon-nucleon reactions, the leading particle
spectrum in nucleon-nucleon and nucleon-nucleus reac-
tions, and of the energy distribution in nucleus-nucleus
reactions.

The main limitations of the present approach follow.
(a) It is restricted to the central rapidity region. (b) It is
based on a very simple geometrical interpretation of nu-
clear collective elan'ects. Both these limitations can be
overcome and work along these lines is in progress.
However, the results obtained already are in our view in-
teresting because they not only show that a collective re-
action mechanism can be at work, but also because they
provide the first distribution of initial energy density and
the 6rst estimate of the initial volume in heavy-ion reac-
tions.

These quantities have not been determined so far by
other models like the dual parton model and the Lund
model which are often quoted in the literature, among
other things, because they do not emerge in a natural way
from these approaches, which are based on the idea of
fragmentation of noninteracting strings. It is diNcult to
see how the energy stored in the central region can be
calculated consistently in a string approach without al-
lowing for an interaction between the strings, a point
raised recently also by Shuryak in a dift'erent context.
As a matter of fact the statistical model of the Berlin
group comes closer to our approach in the sense that it
also calculates the energy stored in the central region.
However, this model, like all the other models quoted,
neglects the momentum of the central fireball and there-
fore cannot calculate the invariant energy distribution
which is a necessary ingredient for the determination of
the energy density.

TABLE III. Mean values of inelasticity (K) and of the central fireball mass (M) for central col-
lisions of ' 0 on ' C and ' Au. The parameters for ' 0+' Au collisions are obtained from the data on
energy density as in Fig. 9. Because of the lack of such data for ' 0+ ' C collisions, we used in this case
the same parameters as in the collision of ' Au. The number of participants from each nucleus is also
shown together with the available invariant energy i/s (b =0)=+2pvp„b.

16O+ 12C

16O+ 197A

(K(b =0))
0.14
0.17

I b=0

15
16

12
53

&s(b =0)
(GeV)

268
582

(M(b =0))
(aeV)

37
140



INTERACTING GLUON MODEL FOR HADRON-NUCLEUS AND. . . 1229

The Grst numerical estimate of initial longitudinal di-
mension of the order of 2 fm at 200 GeV/nucleon ob-
tained here, with all its limitations is certainly of impor-
tance for future theoretical and experimental work. The
energy distributions obtained in the present paper can be
used among other things for the calculation of multiplici-
ty and rapidity distributions, a subject which will be ad-
dressed in further publications.

y(x,y)= f dt f du e' '+~"'
(2n. )

X exp ~
—g in[1+ n; (1—e ' ' )]

(A2)
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APPENDIX A: INELASTICITY
FROM CHAOTIC SOURCES

P(n, )=
l

n.
iV;

(1+n;) '
(A 1)

and repeating the steps in the derivation of g(x,y) we get

Although we do not know in detail the dynamics of
mini6reball production, quantum statistics provides us
with some constraints on their multiplicity distribution.
The minifireballs are produced by sources which can be
either coherent, chaotic, or of mixed distribution type. '

The first case was already discussed in the text. Here we
investigate the consequences of replacing the Poisson dis-
tribution [Eq. (2)] by a Bose-Einstein which is expected in
the case of chaotic production.

Assuming that P (n; ) has the form

APPENDIX B: DERIVATION OF y(x, y)
BY THE SADDLE-POINT INTEGRATION METHOD

The accuracy of the approximations involved in the
calculation of y(x, y) can be improved if one applies the
method of saddle-point integration. To implement this
formalism, first replace the 5 functions on the right-hand
side (rhs) of Eq. (1) by the integral representations:

5 x —gnx = da'exp a x —gn x
J J

(B1)

5 y —g n~y~
J

f dP'exp P y —g njy~

where a=a+ia', /3=/3+i/3', and a, a', /3, /3' are arbitrary
real numbers. Carrying out now the sums and products
in Eq. (Bl) and going to the continuum limit as before,
one immediately obtains

where N is the number of cells in phase space.
Going now to the limit in which W is infinite and the

size of each cell goes to zero, n; is small (actually vanish-
ing) everywhere except in a small region around the
phase-space origin (x~0, y~0). Inside this region n;
could be large due to the divergent behavior of Eq. (S).
However, in our case precisely this region of the phase
space is cuto6' by the condition E )K;„ imposed on
inelasticity E. As the function multiplying n; oscillates
between 0 and 1, one can then expand the ln . term
and (A2) becomes identical to [Eq. (3)] in Sec. II.

y(x,y)= f +"da' f +"dP'exp[ax+Py+F(a, P)]
(2m ) oo

with

(82)

F(a,/3)= f dx' f dy', ', Iexp[ —(ax'+Py')] —lI . (B3)

[Note that one recovers Eq. (3) if one puts a=P=O in Eqs. (B2) and (B3)]. Expansion of the terms in the exponent on
the rhs of Eq. (B2) to second order in a', P' around a'=/3'=0 yields

ax +Py+F(a, /3) =ax+/3y +F(a, /3)+i (C,0+x )a'+i (Co, +y)/3' —
—,'C20(a') —

—,'C02(/3') —C„a'/3',

where

&""F(a,P) i „. . ., , ,.+I ' . i«(x' y') -~-+o&
dx dp

(B4)

Substitution of Eq. (B4) into Eq. (B2) permits an analytic evaluation of the integral on the rhs of Eq. (B2). However, for
a given point (x,y) the approximation (B4) may be improved if a =a(x,y) and /3=p(x, y) are chosen in such a way that
the coefficients of the linear terms in a and P in (B4) vanish, i.e., a and P are required to satisfy the coupled equations:
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x = dx' dy'e(x'y' —X',„)x', , e ' '+@',
0 0 dX dy

y =f dx' f dy'e(x'y' E—';„)y',",e
o o

'" dx'dy'

With this the final result is (modulo a normalization constant)

(86)

p(x,y)= exp ax+Py+ f dx' f dy'e(x'y' —E;„), , (e ' " +~~ ' —1)1

2ir( C2() Coz —C )
' 0 0 dx dy

(87)

It is easy to show that the earlier result, Eq. (13) is
recovered from Eq. (87) if one approximately solves (86)
for a,P by linearizing and expanding the functions
exp[ —ax' —Py']x' "y'' in (85) and (87) up to second
power in x' and/or y' around x' =y'=0.

APPENDIX C: MODEL (B)
FOR A A COLLISIONS

max()M, v) ~n ~pv . (C 1)

The case n =pv corresponds to the situation when each
of the participating p nucleons of A interacts with each
of the participating v nucleons of 8 (maximally inelastic
event). The case n =max(v, p) corresponds to the situa-
tion when the number of MF's is just the minimally pos-
sible one.

Let us define the matrix

Suppose that we have a situation in which in the
scattering of two nuclei A and B, p nucleons from A and
v nucleons from B participate in the collision. In order
to write down y„we need to know the minimal number
n of MF's to start with [cf. Eq. (25)]. Contrary to the sit-
uation in NA scattering this number is now not fixed and
can be

P V

n= X &CkI ~

k =11=1
(C3)

Let xk1 be a fractional momentum of the nucleon k in nu-
cleus A which collides with a nucleon l in nucleus B and
yk1 be a fractional momentum of the nucleon l in nucleus
B which collides with a nucleon k in the nucleus A.
Then

Xk X Xkl
1=1

is the total momentum loss of the nucleon k in nucleus A,
and similarly

P
yl= g ykI

k=1

is the total momentum loss of the nucleon l in nucleus B.
Let n, ' " be the number of gluon-gluon collisions of
gluons with momenta xi " and y

""which come from the
nucleons k and l. Let us finally assume that the probabil-
ity of n,.' "such collisions is given by

[
—( kl ) ] ( k I )

exp[ n';""—] if Ckl =1,
( kI)p(k!)[ (kl)]

1 if nucleons k and l interact,
C 0 otherwise . (C2)

5 (I,i) otherwise .
O, n.

(C4)

Obviously, Then

r

p V V p
( I

()J
I

()j)ggp(kl)(n(kl) ff px(k)ggnl(kl)x(kl)gpy(l)ggn(kl)y(kl)
ik, l k —1 i 1=1 1=1 i k=1

,
' n,.

(C5)

Using as before Fourier transform representations for the 5 functions we can perform the corresponding summations
and get

X„.(I '"'],[y"I)= '„.g f'"«k ~ f+"du, p y I„(")+ y, y(I)
k =I l =i k=1 1=1

Xexp g g Ckl f dx f dye(xy —K;„) (e
' '""+"' —1)

k=11=1 0 . , 0 dx dy
(C6)

Using a Gaussian approximation [cf. Eq. (12)] one gets
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+~ P V

X..(I '"'j.Iy"j}= '„..~ f "«, ~ f "du, -p y t, x'"' —yC„, & &

k=i k=1 1=1

Xexp t y u, y'" —y C„,&y &

1=1 k=1

V

Xexp g g Ckt( —
—,'&x &tk

—
—,'&y &ut —&xy &tkut)

k =11=1
(C7)

In order to proceed further one has to de6ne the coefficients CkI. It can be shown that for the case of

Cki=l, k =1, . . . , p; 1 =1, . . . , v

(which corresponds to n =pv —maximally inelastic event),

(C8)

X exp

+OPV

(2 )[p D (2n &x &)" '(2mp&y &)' ']

&xy &'
y (x —V&x &)'—,, y (x„—V&x &)

, 2

g (y —p&y &)'—,, g (yt —p&y &)
2p, 3' i=i 2pv 3' Dxy

2

+ ', y y (,—&x&)(y, -&y&)
PVDxy k=1I =1

(C9)

where all definitions and the parametrization of &x "y & and D,~ are the same as in Sec. II; yo&, is a normalization con-
stant (every y„ is separately normalized to 1). For p= 1 we recover the formula for hA scattering [Eq. (29}]and for
p=v= 1 that for hN scattering [Eq. (13)].

As we are interested only in y„„(x,y) where x and y are the energy-momentum fractions of nuclei A and B deposited
in the central region, one has to integrate over Ix'"' j, Iy" j to get

P P V V

y„(x,y)= ff f dxk5 x —g x; g f dy, 5 y —g y, y„,(Ix("'j, Iy'"'j)
k=1 i =1 l=1 j=1

and finally to sum with corresponding nuclear weights P&, (Ckt ):

g„a(x,3 ) —g P„"„(Ckt)y»(x, y) .

(C10}

(C 1 1)

In addition to the great complexity of Eq. (C10) the problem of calculating P„"„ is not yet entirely solved.
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