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We implement a simple approach to the inclusive cross section for single nucleon removal by rel-
ativistic nucleons and nuclei. We first develop the projectile and target dependence of the mean
number, N (b), of nucleon-nucleon collisions as a function of impact parameter in the peripheral re-
gion. Using the Glauber approximation, we obtain a simple parametrization for a critical impact
parameter b, such that the reaction cross sections for both N-B and A-B collisions are well
represented by wb2. Further study of the b dependence of N (b) around b =b, allows us to develop a
parametrization of single nucleon abrasion cross sections. Next, we employ the Weizsacker-
Williams approximation with b, as the cutoff impact parameter to calculate the Coulomb contribu-
tion to the single nucleon removal process. The results are compared with recent data which sug-
gest that the Weizsacker-Williams approximation is inadequate for heavy projectiles. Using our es-
timates for the nuclear contribution, we find that the data yields good agreement with the
Weizsacker-Williams results for virtually all projectile-target combinations. We therefore conclude
that the measured deviations from the Weizsacker-Williams results do not represent new physics,
but rather reflect uncertainties in the estimation of the nuclear contribution to the single nucleon re-
moval process. As an elementary example of the possible new physics that may be observed in this
process, we calculate the contributions from a coherent nuclear process and the possible interfer-
ence effects. For heavy projectiles, we find that the interference effects are comparable to the
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present experimental uncertainties.

I. INTRODUCTION

Single nucleon removal by a high-energy particle has
long been studied with radiochemical techniques, and the
Coulomb dissociation cross section has been inferred.!
Simple models® for these large cross sections have been
developed in order that deviations from the model predic-
tions may be isolated. Recently, deviations from model
predictions have been reported for high-Z projectiles.®
These measurements seem to indicate that the simple
Weizsacker-Williams (WW) approximation used to calcu-
late the Coulomb contribution to the cross section is
inadequate for heavy projectiles. In this paper, we exam-
ine the sensitivity of these results to the model used to
calculate the nuclear contribution to the cross section,
and develop an approach capable of addressing coherent
Coulomb-nuclear interference effects.

The plan of this paper is as follows. Section II reviews
the Glauber approximation for the mean number of
nucleon-nucleon collisions. A simple parametrization of
the incoherent abrasion component of the single nucleon
removal cross section emerges. In Sec. III, we describe
the corrections to the Glauber treatment arising from
final state interactions (FSI) and present comparisons
with model results at 400 MeV and 2.1 GeV. Section IV
consists of a presentation of the Weizsacker-Williams ap-
proximation, and a simple WW inspired model for calcu-
lating nuclear-Coulomb interference effects. In Sec. V,
we compare model calculations with experimental data,
and find that reasonable agreement is obtained. Finally,
in Sec. VI, we discuss these results and present our con-
clusions.

II. SYSTEMATICS OF THE
GLAUBER APPROXIMATION

A. Reaction cross sections

As a well-known approximation to nucleon-nucleus
and nucleus-nucleus cross sections, the Glauber ap-
proach*® obtains the reaction cross section 0% as an in-
tegral over impact parameters

oRp=2m [bdb{1—exp[—4Imy 45(b)]} , )

where A and B represent the atomic number of the pro-
jectile and target, respectively, and

)(AB(b)=(i+B)%T(b) 2)
with
T(b)= [dz [d%'p ,(t—1)py(r) . (3)

In the above equation, o represents the nucleon-nucleon
cross section taken at the same incident laboratory ener-
gy per nucleon, (3 is the ratio of the real to imaginary for-
ward nucleon-nucleon scattering amplitude, and p 4, and
pp are the projectile and target mass densities normalized
to A and B, respectively. Throughout our calculations,
we will neglect the differences between neutron and pro-
ton density distributions.

A number of studies® 2 have employed (1) to discuss
the geometrical aspects of nucleon-nucleon collisions. In
particular, it has been quite popular to compare the re-
sults of (1) with the classical geometric cross section
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oSt =m(r+rg?=mr}(A'*+B?)? . @

A fit to a variety of Glauber results at 2.1 GeV/nucleon
gave ry=1.27 fm.!° It should be noted, however, that
this parametrization is inadequate for cases involving
lighter nuclei. In addition, it does not correspond to the
A —1 limit, where cosmic ray results have been used to
determine the parameters of the Bradt-Peters formula'?

oRy=mr3(1+B3—¢)? . (5)

The corrections to (4) involve overlap considerations and
have been discussed in some detail in Ref. 12. Here, we
prefer to take a simple, physically intuitive approach to
the geometrical parametrization of the results of (1). We
will then employ these results with densities taken from
electron scattering data to provide the actual parameters
of the geometrical form.

To accomplish this, we first recall that nucleon-nucleus
and nucleus-nucleus collisions have long been interpreted
in optical model studies as highly absorptive interactions.
That is, little transparency is evident. In the multipole
scattering picture, we argue that there is a critical impact
parameter b, inside which nuclear reactions will occur
with high probability. This is controlled by the mean
number N(b) of nucleon-nucleon collisions as a function
of impact parameter

N(b)=0T(b) . (6)

The function N(b) should rise very rapidly from
N(b)<<1for b>b, to avalue N(b)>1 for b <b.. Thus,
we argue that N(b.)=0.5 indicates the vicinity of a criti-
cal impact parameter b, inside of which nearly all col-
lisions will be inelastic. The reaction cross section is then
expected to be

of8=mb? . (7

We now seek a functional form of b, motivated by the
geometrical form (3) that fits a wide variety of projectile
target combinations. For two identical, constant density
spheres, Eq. (3) yields, in the limit 4 >>1,

b,=2ro( AV3—ad~1), (8)

where R =r, A'/3 is the radius of each sphere and « is a
numerical constant. This limit is realized very slowly,

however, and a much better parametrization to the solu-

tions of N(b)=0.5 for A <200 is given by
b, =2ro(A'3—a’' 471/10) . )

For more realistic matter distributions, we expect b, to
have an expansion in integral powers of the projectile and
target radii and to be symmetric under interchange of the
two. Thus, we postulate that, for large 4,

Czro[A1/3+Bl/3__x(A——1/3+B-l/3)] . (10)

The parameters r, and x will be treated as adjustable and
determined by fits of (10) to actual calculations performed
with Egs. (1)=(3). We note in passing that analogous ar-
guments have been made to obtain the “proximity type”
optical potential between two nuclei.!*
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To obtain the best-fit values of the parameters 7, and x
we utilize all the nucleon-nucleus cases at 1,5 GeV of Ref.
11 and added eight more nucleus-nucleus cases at inter-
mediate to large values of 4!/3+B!/3. The densities are
taken from the tabulation of fits of electron scattering
data in Ref. 15 with the exceptions as noted in Ref. 11.
The best-fit values obtained were r,=1.34 fm and
x=0.75. The calculated results of Egs. (1)-(3) are
displayed as discrete values in Fig. 1 as a function of
b./ry. We also show a smooth curve resulting from the
parametrization (10). Overall, a very satisfactory fit from
the lowest cross section (p+3He) through the largest
(B8U+28U) is obtained. In addition, we display three
nucleus-nucleus experimental results at 2.1 GeV/nucleon
since negligible changes in the calculated results occur
with increasing energy.!” This independence of o #? to
changes in o on the order of 25% and large changes in 3
has been discussed in Refs. 12 and 13. Thus, for our pur-
poses we will consider o #2 as energy independent.

Having achieved a simple parametrization for o #2, we
have defined a scale on which to study the function N (b)
that enters the Glauber calculations. This function
differs markedly for the p+*He and *Ne+2®U cases
shown in Fig. 2. In the region around b., however, they
are strikingly similar, as illustrated in Fig. 3. What is
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FIG. 1. Total reaction cross section for nucleon-nucleus and
nucleus-nucleus interactions at 1.05 GeV/nucleon as a function
of b./ry. The parameters r, and x are determined by a least-
squares fit to the cross section taken from Ref. 11. The solid
squares represent new results obtained for this paper. The ex-
perimental results are from Ref. 16. '
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more impressive is that these two cases are not typical,
and in fact represent the two cases chosen to be as
different as possible. The absolute magnitude and slopes
of N (b) are nearly equal in both cases, and serve as indi-
cations of the typical behavior over a 1 fermi interval
range around b.. Our next task is to explore the possible
universality of N (b) and its first derivative around b =b,.
Physically, one might expect to find such universality as a
consequence of the constancy of the central density and
surface thickness for a wide range of nuclei. In Fig. 4, we
have plotted the quantities T(b,) and T'(b.)=93T /db |,,C,

with b, =(og8/m)!?, for all cases displayed in Fig. 1.
Note the greatly expanded scale. Within 5%, these quan-
tities are the same for all projectile-target combinations
studied. [A slight decrease of T'(b,) is evident for b, > 8
fm, but this effect is small.] The p +*He and *°Ne+23%U
cases of Fig. 3 represents the two cases with the largest
slope difference of all the cases studied. It is noteworthy
that the average result for T(b,) corresponds to
N (b,)=0.56 for 0 =44 mb, in rough agreement with the
classical expectations described previously.

The conclusion we reach from these systematics is that
the geometrical behavior of o #Z can be used to determine
a scale b, useful for systematizing the results from peri-
pheral collisions of a wide variety of projectile-target ar-
rangements.
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FIG. 2. Thickness functions T(b) and average number of
nucleon-nucleon collisions N(b) as a function of impact param-
eter for two widely different projectile-target arrangements.
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FIG. 3. The same two functions of Fig. 2, but plotted as a
function of a shifted impact parameter b —b,. Here, b, is taken
as (o®/m)!/%, where o® is calculated as from Eq. (1) of the text.

B. Single nucleon removal in the Glauber picture

We now focus on the case of single nucleon removal,
which begins to occur when b <b,. For such a simple
partial reaction cross section o, we use the parametriza-

2,18
tion”

Ab

og=2m bc“—T Ab (11)

with the classical argument that impact parameters cen-
tered on b, —Ab /2 with a width Ab contribute strongly
to this channel, and other impact parameters contribute
primarily to other channels. From Fig. 3, we crudely es-
timate Ab~0.4-0.5 fm, since N(b)> 1 implies increas-
ing probability for two nucleon-nucleon collisions. To
see this, we write the two collision probability P, as'®!°

Pyme N®(1—e~NOI2 (12)
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FIG. 4. Thickness function and its first derivative at b, for
the cases shown in Fig. 1. The average values are indicated by
the dashed lines and the variances are given.
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We find it peaks at b—b,~—0.6 fm. The analogous
peak for the single nucleon-nucleon collision probability
function occurs at b —b, =~ —0.2 fm. So, for the purpose
of our simple geometrical model, it seems quite reason-
able to take Ab=0.5 fm. One could criticize the purely
geometrical picture since the probability functions such
as (10) are overlapping so that a single impact parameter
has a distribution of channels to which it contributes.
While this is true, the near constancy of T'(b,) and T'(b,)
suggests that the relative contributions to all channels are
the same in peripheral collisions. Thus, (9) should be a
valid first approximation to o, where the method of
picking the constant Ab is, perhaps, subject to debate.
We feel that the model is incomplete at this stage, as no
attempt has been made to correct for final state interac-
tions (FSI). The FSI for single nucleon removal cross sec-
tions are a large correction to the Glauber model, and are
therefore more significant than minor adjustments to the
value Ab. In Sec. III, we develop a simple parametriza-
tion for this correction.

III. FINAL STATE INTERACTIONS

An important feature of nuclear reactions which is ab-
sent from the Glauber model is the role for final state in-
teractions. To be specific, we address here the question of
whether a nucleon struck on the surface of the nucleus
escapes, and leaves the residual nucleus in a bound state.
The incident nucleon is, therefore, believed to possess a
reasonably straight trajectory and its FSI, if any, are
neglected. We will make a rough estimate of the FSI of
the struck nucleon based on geometrical considerations
since we feel that a realistic calculation would require a
Monte Carlo effort and would be well beyond the spirit of
the present efforts.

Consider the possible recoil paths of a nucleon struck
at radius b and the point P indicated in Fig. 5. We take P
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FIG. 5. Representation of the target nucleus with a nucleon
struck at point P. The recoil paths included by the cone with
angle 6 between the surface and central axis are subject to
corrections for FSI as discussed in the text.
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at the most probable collision point z=0, and let it define
the vertex of a cone with its symmetry axis going through
the center of the nucleus and its perpendicular intercept
from the center of the nucleus equal to b —Ab. The line
PR shows the edge of the cone with peak angle viewed in
the y-z plane. When the nucleon recoils into the cone we
say it will have the possibility of undergoing FSI. For a
rough estimate, let us assume that a struck target nucleon
can recoil isotropically in the z part of three-dimensional
space. First, we need to know what fraction of this space
is occupied by residual target matter. Let f represent
this fraction of space. We then have

_ 1 2T emax .
f=a-fTde [ "sinode
=1(1—cosO,,) - (13)’

For our estimates we will consider typical values and for
single nucleon knockout we will take
b, —Ab
sin@ ,,=——— . (14)
bC
Conversely, (1—f) is the fraction of space free of FSI
corrections.

Next, we consider the fact that the recoiling may not
knock additional nucleons out of the target. This factor
is dependent on the “thickness” of the target along the
path taken by the recoiling nucleon. We approximate it
by using the value of the average number of nucleons en-
countered in an inelastic nucleon-nucleus collision, which
is defined by

_ Bo

R
918

v (15)

The average probability for a struck nucleon to escape
the target without knocking out additional target nu-
cleons is given by

P =[(1—f)+fe™"]. (16)

For very light targets, this tends towards unity, while for
heavy targets it approaches 0.5. Thus our simple model
cross section, including FSI, is given by

0k =0GPe. - (17)

We now apply this simple version to the experimental
data for (p,pn) at 400 MeV (Ref. 20) and at 2.1 GeV.!”
In these cases, we find the Coulomb dissociation contri-
bution to be less than 3% of the Glauber result and there-
fore negligible. Figures 6 and 7 display calculated results
from Egs. (11) and (17) using Ab =0.4 fm and experimen-
tal (p,pn ) data from Ref. 16. In order to apply the model
to this channel we have multiplied o5 and of by the
neutron to baryon ratio N /B of the target nucleus.

The basic parametrization No /B is approximately
correct only for the lightest nuclei. For the heaviest tar-
gets it exceeds the data by roughly a factor of 2. The in-
clusion of FSI through P, provides a dramatic improve-
ment so that the general trend of the results is now
reasonably reproduced. We still overpredict the cross
section for heavier targets, but due to the limited data
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FIG. 6. Cross section for (p,pn) at 400 MeV as a function of
target atomic number B. The data are taken from Ref. 21. The
dashed curve represents the results of Eq. (11) scaled to the neu-
tron removal channel as discussed in the text. The solid curve is
the result when FSI are included.

and the simplicity of the model, we will now draw any
strong conclusions from this discrepancy. It is interest-
ing to note that the factor NP /B used to modify o is
approximately constant (0.41+0.04) for all the targets we
have studied.

Note that the curves drawn in Figs. 6 and 7 are the
same since there is no energy dependence in our simple
model for the strong interaction processes except for
variations in the nucleon-nucleon cross section which are
weak. Furthermore, the changes in the nucleon-nucleon
cross section enter only logarithmically and therefore we
have felt free to neglect them here. In this regard it is en-
~ couraging that the data are also approximately energy in-
dependent.

The experiments at 400 MeV display sizable fluctua-
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FIG. 7. Cross section for (p,pn) at 2.1 GeV as a function of
target atomic number B. The data are from Ref. 17, and the
dashed curves are the same as shown in Fig. 6, since negligible
energy dependence is predicted by the model.
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tions in the vicinity of the magic and semimagic targets.
Definite shell closure effects would be obtained within the
Glauber model if more realistic neutron densities were
employed. Such effects in the Ni isotopes were discussed
extensively in Ref. 20. It remains to be shown that a
more elaborate Glauber calculation with a Monte Carlo
calculation of FSI will reproduce these fluctuations in de-
tail.

A more detailed study should also address the FSI due
to pion production. Since the data show little energy
dependence, one might deduce that pionic effects are
small. On the other hand, the mean number of pions pro-
duced in nucleon-nucleon collisions at 2.1 GeV is of order
1. Thus, there is a nonnegligible probability that a pro-
duced pion will pass through the residual target matter.
The interesting kinematical effect to note here is that the
struck target nucleon will recoil with substantial longitu-
dinal momentum when a pion is produced and this will
greatly reduce its chance of undergoing FSI. Neverthe-
less, additional reductions in 0%, of order 20% may occur
at high energies.

IV. COHERENT COULOMB/NUCLEAR DISSOCIATION

In this section, we review the Weizsacker-Williams
(WW) approximation for the coherent dissociation of the
target nucleus in the Coulomb and nuclear fields of a rel-
ativistic projectile. We shall present the derivation for
the Coulomb piece in some detail, as we shall need some
of the intermediate results in order to calculate interfer-
ence effects later.

A. Review of the Weizsacker-Williams approximation
for Coulomb fields

For our purposes, we assume that the projectile follows
a straight line trajectory with impact parameter b > b,.
Under these conditions, the field of one nucleus at the
center of another is primarily that of a photon, namely a
transverse electromagnetic wave. We approximate the
induced photoneutron cross section by

Cww= waN(E)oy,,(E)dE ) (18)

Here, N (E)dE is the effective number of photons with
energy between E and E +dE taken in the WW approxi-
mation, and o, is the cross section for photodisintegra-
tion resulting in the removal of one neutron from the tar-
get. The properties of these cross sections have been ex-
tensively studied. They are dominated by the giant di-
pole resonance (GDR) centered at 12 MeV in the heaviest
nuclei, and increasing to 28 MeV in “He. Typically, the
width of the resonance is 4-6 MeV. For light nuclei, the
GDR deexcites by emission of a single neutron or proton,
while for heavy nuclei, single and double neutron emis-
sion predominate. In the following, we shall exploit the
fact that the GDR dominates the cross section in order to
make a model for calculating nuclear-Coulomb interfer-
ence effects. First, following Jackson and others,?! we
write the electric field seen at a point (7,8,¢) in the target
when a projectile of charge Z is incident with impact pa-
rameter b in the x direction and velocity v in the z direc-
tion
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E (r,t)= yZ(r51n3;:os¢—b) > (19)
— YZrsin6 cos¢
Ey(r,t)—— ert;lsecos ) (20)
E,(r,1)= Z(’°:§9+”” , @D
where
d?=(r sinf cos¢ —b )>+r>sin?@ sin’p +y 2(r cos@+vt )* .
(22)
Performing a Fourier transform in time, we get
1/2
Zow
E (r,0)= |— ———————(r sinf cos¢)
© T yv2B(6,4) ¢
><e—ia)rcose/ul<1 (UB(B, ) , (23)
Yv
1/2 7
w
E (r,0)= ——————r sinfsin
y L@ 702B(6,8) n ¢
><e—ia)rcos6/uI<1 wB(G:?) ) (24)
Yv
2 iz B(6,4)
E(ro)= |2 | Z2g, 2884 ‘ 25)
™ Yv Yv

where B2(6,¢)=(r sin@ cos¢p — b )>+r2sin’0 sin’p, and
K,,K | are modified Bessel functions.

Finally, we may break the field into its multipole com-
ponents using the expansion

’

E(r,0)= 3,

Im

iVX[a,}fn(r,m)X,m]+a,”,,f(r,w)X,m

(26)

where X,,, is a vector spherical harmonic. The
coefficients we are interested in are the a,f,,’s, which may
be calculated using the formula

af (r,0)= [dayyrEroe). 27)

R
VI(I+1)
For the problem at hand, wr <<1, so we may expand
around r =0 to obtain

£ _ 2iZo%r b
ap=— \/_3721)2 0 YV (28)

The effective intensity, as a function of frequency, is
given by

dl,, 1 ak(r,0) |

N E— 3
do2wbdb 27w (30)

E
alm;PW(r’w)
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where

aE :i1_1 \/27T(2l+1)
Im;PW QI+1)

is the appropriate expansion coefficient for a plane wave
(PW) of unit intensity. Thus, we obtain

(wr)

dly+ 1 Z20? (o | @b 31)
do2rbdb 72 y2* | yv

dIl,O =—1_~ ZZCOZ 2 __622 (32)
do2rbdb 72 yh*  *lyv |’

in agreement with the usual result.?! The function N(E)
appearing in Eq. (18) is then given by

272

7TCOU2

N(a))=—(i—l(a))= (xK o(x K (x)

—v2x?[K3(x)—K32(x)]} (33)

with x =wb /yv.

We shall evaluate the cross section two ways. First, we
will use the experimentally measured yn cross section??23
to evaluate the integral (4.1) numerically. Alternately, we
will evaluate the cross section using matrix elements of
the Hamiltonian

_€

2
where p,=p, —p, for the target nucleus. To simplify
matters, the matrix elements will be evaluated using the
hydrodynamic model,”* and assuming that the GDR
dominates the cross section. The single neutron cross
section is then given by the cross section for creating the
GDR state multiplied by the branching ratio for the sin-
gle neutron decay of the GDR, which we obtain phenom-
enologically from Ref. 22 as the ratio

H,=—= [dp,(x)x-E(r,0), (34)

O yn

=_r (35

§Br Uy )

This procedure enables us to gauge the reliability of the

matrix elements we shall use in Sec. IV B to calculate
Coulomb-nuclear interference effects.

B. Coulomb-nuclear interference

While the Glauber model described in Sec. II is useful
as a guide for estimating the incoherent contribution to
the single nucleon removal cross section, it is unable to
yield any information on the size of the interference be-
tween the Coulomb and strong amplitudes. In this sec-
tion, we shall argue that such interference must occur,
and that the size of the interference terms are not neces-
sarily small for heavy projectiles. We shall then present a
simple WW-based model for calculating the interference
terms in heavy nuclei.

To begin, we simply note that the nucleon-nucleon in-
teraction has an isovector component with range ~0.6
fm. Calculations of the N-N potential®® yield coupling
constants of order unity. In optical models, an isovector
interaction is responsible for part of the symmetry energy
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in nuclei. If one assumes that the fields responsible for
these forces are coupled to the isovector density p, via a
Klein-Gordon equation, one finds that the coupling pa-
rameter is again of order unity, and that the field itself is
proportional to (N—Z). The existence of this field,
whose /=1 component has the same quantum numbers
as the photon, opens up the possibility that the nuclear
and Coulomb amplitudes will interfere with one another.
Physically, we expect to find interference even in the in-
clusive process we are studying here, as the electromag-
netic contribution proceeds primarily through the decay
of the intermediate GDR state, which may be excited by
either the strong or Coulomb field of the projectile.
Furthermore, it is not immediately obvious that the in-
terference terms will be small, as they involve the product
of a small strong interaction amplitude with a potentially
large WW amplitude.

To model this, we assume that there is an interaction
Hamiltonian of the form

Hy= [ d*x®s(x,0)p,(x,1), (36)

where the field @y is the isovector field, which we assume
transforms as a Lorentz scalar. We shall proceed to cal-
culate the field seen by the target by a procedure formally
identical to the WW method outlined previously. In the
projectile rest frame, we assume that the field outside the
projectile is given by a Yukawa form

~u(r—Rp)

; .
sl = 2 (37

where gp is a strength parameter, r=0 at the projectile’s
center, Rp is the projectile radius, and the prime indi-
cates that we are in the projectile rest frame. Boosting to
the laboratory frame, the target sees a field given by
—wd—R,)
8p€ ! ’
d ’
where d is defined in Sec. V. Fourier transforming in
time, we get

Dy(r,t)= (38)

e~iwrc059/7UKo[mB(9,¢)] , (39)

where m2=u?+o*/y*>
As we discussed previously, we expect u=~300 MeV,
and

TABLE I. Weizsacker-Williams and hydrodynamic model
cross sections for single neutron removal from !’Au. Also
shown is the Coulomb-nuclear interference term for A=1—2.

TABLE II. Single neutron removal cross sections for '*C
projectiles at 2.1 GeV/nucleon.

Target of (mb) oww (mb) O1o (mb) Texp
2¢ 64+3 0.51 65+3 60.91+0.6
¥Co 91+£5 8 99+5 89+t5
8y 102+5 17 119+£5 115+6
97 Au 128+6 40 168+6 178+7
238y 136+7 24 160+7 173+22

TABLE III. Single neutron removal cross sections for 2°Ne
projectiles at 2.1 GeV/nucleon.

Target ok (mb) Oww (mb) 010t (mb) Texp

2¢ 7144 1.3 7244 7842
$9Co 98+5 21 109+5 13247
8y 109+5 42 151+5 160+7
197A4 1347 104 238+7 268+11
By 14247 63 205+7 192+16

TABLE IV. Single neutron removal cross sections for “°Ar
projectiles at 1.8 GeV/nucleon.

Target ok (mb) Oww (mb) O 1ot (mb) Texp
8y 121+6 115 23616 283+11
YTAu 146+7 295 441+7 463130

TABLE V. Single neutron removal cross sections for **Fe
projectiles at 1.7 GeV/nucleon.

Target ok (mb) Oww (mb) O1or (mb) Texp
2c 9145 7 98+5 94+2
Co 117+6 113 230+6 19419
8y 127+6 222 349+6 353+14
197Au 1537 569 722+7 707+52

TABLE VI. Single neutron removal cross sections for '*La
projectiles at 1.26 GeV/nucleon.

Target ok (mb) Oww (mb) Or1or (mMb) Oexp
2c 119+6 24 143+6 14842
¥Co 148+7 376 524+7 450+30
197 Au 183+9 2058 224149 2130+120

Energy/nucleon Tww Ohya T int

Projectile (GeV) (mb) (mb) (mb)

2c 2.1 40 25 0

Ne 2.1 104 920 0

AT 1.8 295 316 0.3-0.6

6Fe 1.7 569 650 0.5-1

13912 1.26 2058 2188 5-10

238y 0.96 4148 3779 13-25

TABLE VII. Single neutron removal cross section for 2**U
projectiles at 0.96 GeV /nucleon.

of (mb) oww (mb)

AU 198+10 4148 4346 NA

Target O1or (mMb) O exp
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with A=~1-2. The exponent of Ap in this equation is
determined by the precise form of the source term in the
equations that determine ®g. For a Klein-Gordon equa-
tion coupled to a uniformly distributed, spherical density
P =[(N,—Zp)/A,]peO(R, —r), we obtain a=4%. For
the more realistic case with the neutron excess concen-
trated near the surface of the nucleus, we obtain a=1.
We shall use this value in the calculations that follow.

Using the hydrodynamic model, we calculate the WW
cross section and the interference term. The results are
shown in Table I for a variety of projectiles on a Au tar-
get. Also shown is the standard WW: cross section. We
see that the simple model described here reproduces the
WW results to within 5-10 %, and that the interference
terms are less than 25 mb even for the heaviest projec-
tiles. The uncertainties in the measured cross sections for
heavy projectiles are roughly 100 mb, and we therefore
conclude that the interference terms cannot be seen in the
current experiments. In Sec. V, we shall neglect the in-
terference terms.

V. RESULTS AND CONCLUSIONS

In this section, we compare the results of our calcula-
tions with experimental data taken from Ref. 3. The data
are compared to the sum of the WW cross section ob-
tained by evaluating Eq. (18) numerically with the tabu-
lated values of o, from Ref. 22 and the Glauber cross
section taken from Sec. I with Ab=0.5 fm+5%. The
results are shown in Tables II-VII for a variety of projec-
tiles and targets. We find good agreement between

theory and experiment for nearly all cases considered,
with the notable exception of cases involving *°Co tar-
gets. It is encouraging that we are able to obtain this lev-
el of agreement with the very simple models we have
used.

The fact that the deviations occur almost exclusively in
the 3°Co targets suggests that the problem does not lie in
the WW approximation, but rather in a source specific to
Co. One possibility is that there is a normalization error
in the tabulated yn data, similar to the 7% error in the
normalization of the '“’Au cross section.?® This notion
receives some support from the fact that the ratios of the
observed Coulomb dissociation cross sections roughly
agree with the ratios predicted by the WW approxima-
tion. We therefore conclude that the WW approximation
provides a reasonable description of the data, and that
the apparent deviations measured in Ref. 3 are not a sig-
nal of new physics, but rather reflect the uncertainties in-
herent in the separation of the nuclear contribution to
single nucleon removal cross section, and possible sys-
tematic errors in the yn cross sections used to calculate
the WW cross section.

Finally, we would like to emphasize the possibility that
the interference effects calculated in Sec. II of this paper
are comparable to the uncertainties in the current round
of experiments. This raises the possibility that improved
experiments may be able to measure these terms, provid-
ing useful information on the isovector components of
the nuclear field.
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