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A microscopic Green s function doorway formalism is used to study Coulomb sum rule satura-
tion in inclusive quasielastic electron scattering as a function of momentum transfer. Form factor,
kinematical restriction, and final-state interaction effects on the approach to saturation are exam-

ined in detail, as are the roles of nonhermiticity, energy dependence, and the analytic behavior of
the final-state interactions. The implications of relativistic kinematics and dynamics for the ap-
proach to saturation at not-too-high values of the momentum transfer are assessed. Because the

pair production of relativistic treatments destroys the asymptotic nature of the nonrelativistic
Coulomb sum rule, the degree to which a regime of validity can be expected for this sum rule, and

its location, is considered. The breakdown of the sum rule as the momentum transfer increases is

also examined. Similar theoretical studies of an analogous nonrelativistic transverse sum in its satu-
ration region are developed as well. Theoretical predictions are compared with the experimental
data for Ca both directly and using a variety of theoretical prescriptions and limits. Neutron
knockout contributions and associated uncertainties due to ambiguity in the free neutron form fac-
tors are examined.

I. INTRODUCTION

Unitary properties and especially sum rules serve an
important function in providing a forum for theoretical
and experimental model-independent comparisons. A
longstanding discrepancy exists in quasielastic electron
scattering in that the nonrelativistic Coulomb sum rule'
(NCSR) significantly overestimates the integrated experi-
mental (e, e') longitudinal response. Basically the NCSR
states that, as the momentum transfer ~q~ increases
beyond the point where correlations are significant, the
(e, e') energy-integrated longitudinal response Xl (~q~)
should converge to the number of protons Z in the nu-
cleus. The experimental data is not at present consistent
with this limit, in some cases apparently being suppressed
by as much as a factor of 2. A number of theoretical al-
ternatives have been offered to explain this inconsistency,
including modifications to nucleon size in the nuclear
medium, quark clustering exchange effects, " and
relativistic dynamical effects. ' Although it remains
to be seen whether or not a significant part of this prob-
lern is simply associated with the limited experimental
data set available, it has certainly become clear over the
last few years that there are significant theoretical prob-
lems associated with the NCSR itself. The purpose of the
studies reported in this paper is to resolve or at least to
clarify some of these issues.

The derivation of the NCSR is an unambiguous nonre-

lativistic construction, depending only on the complete-
ness relation, the nonrelativistic charge operator, and the
use of pointlike electromagnetic couplings. In comparing
the idealized NCSR with the data a number of complica-
tions arise, not the least of which is that the response in-
tegral XL (

~ q ~
) is not fully accessible experimentally.

Currently, basic kinematical and practical restrictions on
the experimental data impose the limitation co( —', ~q~.

Also, finite-size form-factor corrections must be taken
into account before comparing theoretical constructions
with experimental data. Nonrelativistic final-state in-
teractions, although often neglected in theoretical analy-
ses, redistribute the quasielastic strength in the ~q~ co-
plane and so affect both the predicted approach to sum
rule saturation and the quasielastic strength hidden in the
experimentally inaccessible region. More importantly,
the nonrelativistic nature of the derivation of the
Coulomb sum rule (CSR) has itself recently been recog-
nized to be a central issue. ' Quasielastic (e, e') and
the NCSR are often analyzed within the context of
effective one-body models, including the plane-wave im-
pulse approximation (PWIA), the random-phase approxi-
mation (RPA), the second RPA (SRPA), ' rela-
tivistic RPA, ' and most recently the optical mod-
el. ' ' ' Hermitian nonrelativistic models automatically
preserve the asymptotic value of Z for the CSR in the
relevant limit. However, these models also suggest that
sum rule saturation takes place for ~q~

)500 MeV/c so
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that the nonrelativistic expansion of the current operator
in powers of ~p~ /m, where p is a typical nucleon momen-
tum and m the nucleon mass, is no longer adequate and
relativistic considerations are necessary. Even if virtual
pair effects are neglected, the corresponding relativistic
sum rule converges asymptotically to Z/2 rather than to
Z due to the fact that the Dirac positive-energy sector
spans only half the Hilbert space. ' ' Of course, pair
effects cannot be neglected asymptotically and this fur-
ther obscures the issue. Similarly, the unknown charac-
ter of the off-shell current operator introduces further un-
certainty concerning the CSR. ' It is apparent that there
are a number of theoretical issues which must be exam-
ined before a clear understanding of the CSR is obtained.

In seeking a resolution of the apparent disagreement
between the quasielastic data and the CSR, it is necessary
to reexamine the basic theoretical foundation for the sum
rule itself. Rather than j.ntroduce additional complexities
associated with subhadronic degrees of freedom, it is
preferable to first characterize explicit hadronic in-
gredients and degrees of freedom. Within this context,
the theoretical issue is whether or not there exists a re-
gion of approximate validity of the NCSR or some exten-
sion of it. If there exists such a region, then where in ~q~

is this region located and to what extent can the sum rule
be expected to be obeyed? It is apparent that long-range
correlations, kinematical restrictions, and experimental
realities necessitate ~q~ ~400 MeV/c, at least, whereas
relativistic, exchange current, and form-factor effects im-
ply some maximum value for q~. Pair effects together
with the relativistic Z/2 lmit indicate that the NCSR sat-
uration value of Z is itself in doubt. In this paper the ap-
proach to CSR saturation as ~g increases is studied
theoretically. Particular attention is given to the region
in q~ of sum rule stability, its associated CSR prediction,
and to the eventual relativistic breakdown of the NCSR
as ~q~ is further increased.

To numerically examine these aspects of the quasielas-
tic reaction and the CSR it is necessary to simplify the
enormous complexity associated with the nuclear many-
body problem. In this paper the Green's function door-
way approach (GFDA) of Refs. 12 and 38 is employed
for this purpose. This formalism permits a relatively
clear (nonrelativistic) transcription of the essential
features of the many-body quasielastic reaction to an
effective one-body problem. Final-state inelastic channels
are readily described by means of non-Hermitian poten-
tials, while also preserving the sum rule. The relativistic
extension of this formalism parallels that of elastic proton
scattering. In short, the GFDA provides an advanta-
geous framework for examining the main physical ques-
tions of the many-body quasielastic reaction.

The complement of ingredients needed to fully analyze
the sum rule and its saturation can be broadly divided
into three categories: (1) nuclear structure, Pauli and
long-range correlations, (2) final-state interactions (FSI),
relativistic Hilbert-space effects, and relativistic FSI, and
(3) the off-shell current operator, exchange currents, and
relativistic current corrections. In this paper neither
category (1) nor category (3) is addressed. Because our
focus is on dynamics we'restrict ourselves to larger values

of
~ q ~

so that nuclear correlations can be reasonably ex-
cluded from our investigations. It is tacitly assumed that
the redistribution of quasielastic strength caused by such
long-range correlations is negligible at higher ~q and that
the net sum of any redistribution of strength is accounted
for and subsumed by the lower portion. of the energy in-
tegration. The low momentum transfer region has al-
ready been investigated by a number of random-phase-
approximation calculations. The main effects of
RPA correlations occur at lower ~q~, although nonnegli-
gible effects can also be seen at the higher momenta of in-
terest with respect to CSR saturation. ' Short-range
correlations have been shown in a nuclear matter calcula-
tion to have an effect at q~ =400 MeV/c. RPA ex-
tensions to include some 2p-2h contributions have also
produced some effects at all values of ~q~.

' However,
residual hole contributions tend to cancel exchange con-
tributions from the RPA sum, thus leaving self-energy in-
sertions on the particle line or equivalently FSI to dom-
inate the 2p-2h RPA effects.

Relativistic nuclear structure effects have also been in-
vestigated by recent relativistic RPA calculations, '

where the isoscalar effective field theory of Ref. 43 is used
to determined the p-h residual interactions. Dirac sea
correlations originally neglected in relativistic RPA cal-
culations have also led to a linear response for infinite nu-
clear matter which displays a large suppression (on the
order of 30%) of the CSR at all values of ~q~.

' These re-
sults are very interesting, but they must be viewed with
some caution. For example, it is not yet clear whether
these results will persist if a more sophisticated represen-
tation of the X-X interaction is used. Also, it has recent-
ly been shown that the theory of Ref. 43 is not even
qualitatively stable with respect to the loop expansion:
results at the one-loop level may be misleading. All of
these 1p-1h RPA effects are, of course, in addition to the
saturation effects studied here.

Throughout this paper the usual form of the free Dirac
current operator is exclusively employed. This choice is
motivated on the basis of simplicity and convenience
only. It ignores gauge invariance and current conserva-
tion constraints as, well as the ambiguity in the relativistic
off-shell extension of the current operator associated with
the Gordon identity. More importantly, the considerable
ambiguity associated with the general structure of the
off-shell current operator is left unaddressed. ' This is
primarily because the off-shell current operator appropri-
ate for a given circumstance depends not only on hadron-
ic dynamics but also on the detailed substructure and ele-
mentary internal currents of the hadrons themselves.
The ambiguity in electron scattering analyses which is a
direct result of the uncertainty in the off-shell current
operator is a subject which has begun to receive increas-
ing attention. ' ' This is clearly an intricate problem
which deserves careful attention in its own right. Here,
however, all such corrections to the usual current opera-
tor are neglected and instead the complementary set of is-
sues in category (2) are focused upon.

The main focus of this paper is thus on the relevance
and importance of final-state interactions, and especially
relativistic Hilbert space and FSI effects, for understand-
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ing CSR saturation and deviations from it. In studying
the effects of nonrelativistic FSI on the approach to CSR
saturation several models are examined, including micro-
scopic multiple-scattering impulse approximation (IA)
optical potentials, a local density approximation (LDA)
optical potential, and phenornenological optical poten-
tials. Relativistic FSI are examined through a number of
Dirac potentials including IA optical potentials, a phe-
nomenological optical potential, and a real Hartree po-
tential. The roles of non-Hermiticity, energy depen-
dence, and analytic properties of the FSI are examined.

Finally, most of the theoretical issues above are of in-
terest to the integrated transverse response as well, al-
though there happens to be no simple limiting value
analogous to Z. Thus, a transverse sum "rule" (TSR) is
defined and studied in parallel to our studies of the
CSR 46

Section II briefly reviews the nonrelativistic CSR and
relevant aspects of the GFDA to inclusive quasielastic
(e, e'). The relativistic extension of the formalism is de-
scribed and the TSR is defined. Representative results of
our studies of sum rule saturation are presented in Secs.
III—V. In Sec. III nonrelativistic and relativistic FSI
along with relativistic Hilbert-space effects are studied
theoretically in the limit of point form factors and in the
absence of kinematical restrictions. Section IV then ex-
amines finite-size form-factor corrections, neutron contri-
butions, and the numerical significance of kinematical re-
strictions. Form-factor and kinematical corrections turn
out to be important but play only a restricted role in the
outcome of our studies, since they can be largely taken
into account via specific procedures described in Sec. V.
Section V compares our theoretical predictions with the
experimental data. Several model-dependent prescrip-
tions have also recently been suggested ' ' for "com-
pensating" the experimental data for a subset of the
NCSR violating contributions, specifically the form-
factor dependence. Thus, we also compare the results of
applying prescriptions to the data and to the theoretical
predictions with the appropriate theoretical limiting cal-
culation. A summary of our results and conclusions is
given in Sec. VI.

II. FQRMAL REVIEW

In the one-photon exchange approximation the quasi-
elastic (e, e ) differential cross section is traditionally ex-
pressed in terms of the longitudinal (RL ) and transverse
(Rz. ) response functions, so named because they involve
the coupling of the nuclear electromagnetic current to
longitudinal and transverse virtual photons, respectively.
The response functions are defined in terms of the nuclear
electromagnetic tensor W" (q, co) by

« fl» (q)ll & . (2)

where

T»(q, co)= g (ilJ "(q) C(co+E, )J "(q)li & . (4)
l

Here, G is the full many-body propagator for the final nu-
clear system.

Especially to the extent that bound-state independent-
particle motion and a one-body current operator
represent reasonable lowest-order starting points, a first-
order one-body approximation to (2)—(4) can be reliably
formulated' resulting in the replacement of ImC by the
appropriate one-body ejectile-nucleus optical theory
Green's function in each of the single-nucleon knockout
channels o. i

..

ImC = Im g If & &f 0
IJ & & yl

f
a.

l

=Im+P CP =Im+P G, ',P

Here li & is the full initial state of the A-body nucleus,
l f & denotes a particular final state of the full hadronic
many-body assembly, J "(q) is the nuclear electromagnet-
ic current operator, and g denotes an average.

The spectral sum in (2) runs over all possible final
states

lf & of the interacting many-body assembly so that
an exact evaluation of (2) lies well beyond current analyti-
cal methods. The treatment of complex reaction chan-
nels corresponding to the knockout of many nucleons or
clusters of nucleons is perhaps the most conceptually
difficult problem involved in applying practical approxi-
mations to (2). ' ' Because of this, and because this pa-
per mainly concerns itself with the behavior of quasielas-
tic scattering at larger momentum and thus energy
transfer, it is convenient to suppress the discrete final-
state contributions to (2) which occur at very low co. This
allows one to focus on the scattering spectrum in (2) and
leads to a continuum doorway approach to the quasielas-
tic contributions of this spectrum. ' Of course, in exam-
ining the summed quasielastic strength it is then neces-
sary, in principle, to appropriately incorporate the
discrete state strength by hand.

Suppressing the discrete state contributions to (2), the
nuclear response tensor 8'""can be expressed in terms of
the virtual Cornpton amplitude T"', which describes the
elastic forward scattering of virtual photons,

—1W»(q, co) = ImT™(q,&&&),

RL (q, co) = W (q, co),

Rz(q, co)= W"(q, co)+ W (q, ei),

where the nuclear tensor is given in terms of matrix ele-
ments of the hadronic current operator by

=Im+P G, ,P
a,.

(5)

In (5), l&&&& & denotes a plane wave coupled to the bound
l

residual-nuclear state of the one-body knockout channel
o;;, P the projector onto the corresponding one-nucleon
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ImT~)'=Im g g &ilJ "(q) P G, ',P J "(q)li &

r a.
l

(6a)

=Im g g &il J "(q)tlat &G, 't&P . li "(q)li & .
a.

(6b)

The actual computations reported in this paper are per-
formed assuming, for simplicity, a single Slater deter-
minant target wave function and correspondingly simple
one-body knockout states. Accordingly, (6) becomes

knockout space, and G,p, the optical Green's function
for this channel. In reaching the final equation of (5)
differences among the u;-channel optical potentials are
neglected and the optical potential for elastic scattering
from the target is employed. The formalism associated
with all of this is detailed in Ref. 12 and will not be re-
peated here. We only note that this approach represents
a continuum doorway approximation in which the door-
way space is the space spanned by the set of one-body
knockout subspaces. More complicated final states are
properly incorporated through the non-Hermitian optical
potential which redistributes flux and allows it to enter
and leave the doorway space. Thus the GFDA which we
employ consists of (1)—(4) and

ImT""=Imp &i())IJ~())(q) G,p, (E;+co)J~(i)(q)li()) &

(6c)
Thus the li(, ) & denote the single-particle states occupied
in the target. The inhuence of more sophisticated nuclear
structure models on quasielastic scattering and the CSR
have already been studied in detail. ' ' At the
momentum transfers relevant to this paper, it is assumed
that the dynamical issues of interest may be studied in-
dependently of any residual complications from more
realistic nuclear structure models. A more detailed
derivation and discussion of (6), its relativistic extension,
and the computational methods used in its evaluation can
be found in Ref. 12. Here it is noted that the relativistic
Dirac dynamical extension of (6) is obtained by replacing
the adjoint and adjoint states in (6) by their correspond-
ing Dirac adjoints and by replacing the nonrelativistic
G,p, by Dirac optical-model Green's functions derived
from elastic proton scattering analyses. ' '

An important formal property of the (nonrelativistic)
one-body GFDA outlined above is the fact that the spec-
tral sum in (2) reduces to a one-body completeness rela-
tion which parallels the many-body completeness relation
satisfied by the intermediate states in the full treatment of
(2}. This property is crucial because the completeness re-
lation is at the heart of the derivation of the NCSR. The
analog of (2) satisfied by (6a) and (6b) is'

w""= g g &'ilJ "(q) P g lg, &5(E, +co E, )&g, l
P—J "(q)li &

where the spectral sum runs over the full set of many-
body scattering states lg, &. The continuum doorway na-
ture of (6) also becomes clear in (7}. For example, let
l g, & denote a particular inelastic scattering state of arbi-
trary complexity, say a five-nucleon knockout state. In
the vicinity of the residual nucleus, lg, & consists of a
complicated superposition of components of many
asymptotic characters, including P -space components.

I

It is these latter components of lg, & which are coupled
directly to the ground state through the current operator
in (6) and (7). Thus quasielastic strength is fed into lP, &,

and into other open scattering channels of arbitrary corn-
plexity, through the continuum doorway provided by the
set of P . To the extent that the current operator has

the (approximate) one-body property that it only couples
li & to scattering states which lie in the P spaces any-

I

way, (7), and thus (6), essentially reproduce the actual dis-
tribution of the quasielastic strength in the q-co plane.
This same assumption also allows us to dispense with
the explicit appearance of the P projectors in (7). The
spectral sum in (7), and so in (6), then reproduces the
many-body completeness relation (assuming an appropri-
ate ancillary treatment of the discrete states) and a cru-

cial ingredient to the NCSR is maintained. From the for-
mal perspective of (6a) and (6b) this is completely satis-
factory.

However, for the actual computations using (6c),
which involve further approximations certain to
compromise the formal analytical properties of (6a) and
(6b), a more pragmatic view must be taken. As described
shortly, calculations performed on the basis of (6c) can be
tailored to take advantage of (7) and to maintain the
essential completeness property to good approximation.
Plane-wave and Hermitian potential models of the quasi-
elastic process limit the space of the final scattering
states, thus ensuring a completeness relation within the
model space. These approaches automatically maintain
the NCSR limit, but do so at the expense of not providing
a conceptually clear, realistic physical description of the
complicated inelastic final states of the system.

The mathematical CSR integral XL ( l ql ) is defined by

xI (lql)= J RL(q, co)dc@,

where 0+=lime~0+ excludes the elastic peak. Using
(1) and (2) in (8), and assuming a nondegenerate ground
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state li & leads to

&,(Iql) = &ilJ '(q)'J'(q)li &
—

I & ilJ'(q) li & I'

and it is from (9) that the NCSR

(9)

& (Iql)=z+c(lql) (10)

is derived. Here, C( lql ) is the usual two-particle correla-
tion function defined in a nonrelativistic framework by

C(lql)=(il f d xd x'e'q " *
p (x)p (x')e„e .p(x')p(x)li& —Z lf,h(q)l

where e„ is the charge operator, f,h(q) is the point pro-
ton charge form factor of the nucleus, and (I}(x) is the
usual field operator. By way of comparison, the corre-
sponding result for the optical theory Green's function
approach which follows from (7) and (8) is

&L,"(lql)= g &ilJ'(q)"P sP J'(q)l~ &, (12)
a,.

where S denotes the projector onto the space spanned by
the A-body scattering states. To recover (9) some ap-
proximations are necessary. Noting that S contains no
li & bound-state component, assume P SP =0, for i',

l J
thus leading to

y P. SP. = y P. S y P. =IISII,

where II is the projector onto the Hilbert space spanned
by the set of P . Since to lowest order J (q) has been

J
0 w0taken to be a one-body operator, SIIJ (q)=SJ (q) and

by including the discrete state contribution omitted in (2),
(9) is recovered. These approximations are discussed in
detail in Ref. 12. To the extent that they are reliable, the
optical theory GFDA provides an advantageous one-
body framework within which to study the dynamics of
sum rule saturation as well as the departures from it
which arise from physical effects which compromise the
applicability of the NCSR.

One such physical effect is due to the (ultrarelativistic)
kinematic restriction on (e, e') scattering, namely, co lql.
Because of this physical restriction, experimental access
to the response functions through electron scattering is
limited and an integral of the physical quasielastic
strength,

sI(lql)= f RL(q, co)dc',

is more directly related to experiment than is XL ( I q I
). In

addition, experimental practicalities have so far resulted
in the more stringent restriction co% —,'lql. Because FSI
redistribute the quasielastic strength in

I q I
-co, the

strength which is accessible to experiment, and hence the
degree of actual saturation of the NCSR which should be
observed, is dependent on the dynamics. The practical
implications and ambiguity introduced by these restric-
tions is studied in the following sections, along with non-
relativistic and relativistic FSI effects and finite form-
factor effects. The validity of the NCSR depends on (1)
nonrelativistic dynamics, (2) use of the free nonrelativistic
current operator, (3) point form factors, (4) neglect of any
effects from the kinematical restrictions, and (5) negligi-
ble impact of differing dynamics on (4). The basic aim of

this paper is to study the behavior of CSR saturation as
these assumptions are relaxed. This is done within the
context of the GFDA as characterized by (12). However,
none of the additional "internal" assumptions of this ap-
proach [for example, those listed after (12)] are them-
selves studied in this paper. Leading corrections to the
Green's function approach are discussed in detail in Ref.
12 ahd these certainly merit study in their own right.

At this point it is useful to realize that the dynamics of
the energy-integrated transverse quasielastic strength is
also of interest. Thus, in parallel to the longitudinal case,
one should also examine the behavior of

~,(lql)= f R,(q, ~)d~,

s,(lql)= f q&, ( q~) d~,
(14)

under variations in the underlying theoretical assump-
tions. Although there is no simple transverse analog of
the NCSR limit Z, and the enhanced role of meson ex-
change currents for the transverse response must be
borne in mind, (1) and (2) in (14) yield for the TSR

&r(lql)= g [&ilJ "(q) J "(q)l~ &
—

l&ilJ "(q)li&I'] .
k =1,2

where for the Hermitian potential case any bound-state
contribution has been restored, including that of the
ground state. The absence of a correlation term in (16) is
due to the fact that we have ignored any ground state or

Application of the Green's function approach to XT(lql)
and ST( lql ) parallels that already described for the longi-
tudinal case.

The numerical results of Secs. III—V were obtained us-
ing (6c) together with a variety of approximate theoreti-
cal and phenomenological optical potentials. Of course,
the exact formal optical potential of (6) is far beyond
current analytical methods. Because the approximate op-
tical potentials employed certainly do not precisely share
the analytical properties of the true optical potential, it is
necessary to consider to what degree numerical results
based on (6c) actually preserve the NCSR in the ap-
propriate limit. To examine this question consider the
CSR in (8) with W obtained from (6c) using some gener-
ic optical potential, g,z, . In the limit that g,„, becomes
either the free one-body Green's function g0, or a one-
body Green's function based on a Hermitian potential,
then (6c) in (8) yields

lim rP'(Iql)= g(i(, )IJ(,)(q) J(,)(q)li())&, (16)
)q/~ oo

(1)
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Pauli correlations. The important aspect of this limit is
that the combination of Im(g, , ) and the inclusion of any
bound states is tailored to yield the one-body complete-
ness relation,

(17)

thus maintaining for study a one-body analog of the
NCSR. In the case of a non-Hermitian and/or energy-
dependent potential, ignoring for now discrete state con-
tributions (for example, unphysical bound states in the
continuum),

I g, , 1, (18)

due to the approximate nature of available optical poten-
tials, so that a spectral analysis of (6c) does not result in
the completeness relation and as a consequence one does
not precisely obtain the NCSR. This is in contradiction
to the case for the exact 6 pt.

Thus arbitrary g,pt will generally not be fully con-
sistent with the NCSR. In high-~q~ studies of sum rule
saturation based on (6c) one can dispense with any
discrete state complications by requiring that realistic op-
tical potentials produce no discrete eigenvalues. Whether
h, , is energy dependent or not, the practical significance
of (18) then remains an issue and we must appeal to a
reasonable consistency between g,p, and G, , In the lim-

iting cases studied in this paper where the calculations
should unambiguously yield the NCSR limit Z but for
the presence of non-Hermitian and/or energy-dependent
effects, we find that the sum rule is saturated to within
5—10%. This is in agreement with the scale found in Ref.
38. Since the NCSR defect is small and the contribution
of the tail of the quasielastic distribution remains uncer-
tain, the optical theory GFDA is more than adequate for
the investigations of the CSR reported in this paper. Al-
though use of a Hermitian energy-independent potential
would avoid the above ambiguity, it would do so at the
expense of misplaced spectral strength, an unacceptable
omission of physically essential many-body final-state dy-
namics, and would substitute pure phenomenology in
place of conceptually clear physical theory.

Finally, it is important to emphasize the relativistic
Hilbert-space effect embedded in the relativistic extension
of (6c). This effect is most simply seen in the limit where
G, , —+go, the relativistic version of the free Green's
function, go =(P —m) . In going to this limit the Dirac
optical potential is set to zero, and we want to examine
(6c) in the limit of no virtual pair effects (because these
only serve to further complicate the sum rule). Thus go is
restricted to its positive-energy plane-wave spectrum. In
this limit, for low ~q~, the nonrelativistic version of (6c) is
obtained by restricting the ~i~, ~) to have Fourier com-
ponents only in the positive-energy Dirac space and re-
ducing the Dirac matrix elements (Dirac operators and
wave functions) to the form of a Pauli matrix element. '

This requires only a nonrelativistic expansion of the
resultant Pauli current operator in powers of ~p~ /m and
assumes that ~q~ is small on the scale of m as well. At

this point a considerable inconsistency develops, since the
NCSR is now obtained by examining the nonrelativistic
version of (6c) in the limit that ~q~ grows to values large
on the scale of m, thus contradicting the nonrelativistic
nature of the development. If one avoids the nonrela-
tivistic reduction and directly evaluates the relativistic
plane-wave version of (6c) as ~q~ goes asymptotic, instead
of Xl (~q~)~Z one finds XL(~q~)~Z/2. ' ' The
operational reason for this is the normalization factor
Nn=[(E+m)/2E]'~ which appears in the Dirac plane
waves: nonrelativistically ND ~ 1, whereas relativistical-
ly ND~ —,

' (the completeness relation is bilinear in the
wave functions so it is ND which is relevant). The nor-
malization factor cannot be avoided since it is essential to
the Dirac completeness relation and it is the fact that the
positive-energy Dirac states span only half of the relativ-
istic Hilbert space which is ultimately responsible for the
Z/2 limit. In view of this result, the NCSR can no longer
be characterized as an asymptotic limit in ~q~, but must
be confined to some limited region in ~q~ at best. Alter-
natively, were it not for the pair effects which further
complicate and obscure the issue, one could compensate
for XD effects algebraically. The CSR saturation effects
induced by the relativistic phase-space factor are numeri-
cally gauged in the next sections.

III. FSI AND RELATIVISTIC EFFECTS

In this section results are presented which elucidate the
effects of FSI, relativistic kinematics and Dirac dynami-
cal degrees of freedom on the NCSR. In order to isolate
and clearly identify these effects the computational re-
sults of this section are obtained using point proton form
factors as assumed in the derivation of the ideal NCSR:
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FIG. 1. The Coulomb sum rule curve (integrated longitudinal
response} for Ca as a function of momentum transfer ~q~. Cal-
culations assuming point proton form factors are shown for the
nonrelativistic plane-wave approximation (dotted line), the non-
relativistic LDA optical potential from the Bonn N-N interac-
tion (solid line), the nonrelativistic IA optical potential using
Franey-Love N-N amplitudes (long-dashed line), and the nonre-
lativistic .optimally factorized IA optical potential using
Franey-Love amplitudes (short-dashed line). The data are from
Refs. 52—61, where the de Forest prescription is used to remove
form-factor effects from the data.
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FIG. 2. The CSR curve is displayed for pointlike protons in
the nonrelativistic plane-wave (dashed line) and the relativistic
plane-wave (solid line) approximations for - Ca. The dotted line
corresponds to a relativistic plane-wave approximation in which
only the positive-energy components of the initial bound-state
wave functions are included.

FIG. 4. Point proton CSR Ca predictions which isolate
various negative-energy contributions using Dirac global phe-
nomenology for the FSI are shown. The full Dirac calculation
(solid line), the pure positive-energy NP calculation {short-
dashed line), and the NEP calculation with no explicit
negative-energy couplings (long-dashed line) are compared,
along with the relativistic plane-wave approximation (dotted
line) as a reference.

F, =
—,'( I+r3), F2=0 .

12 40 48~Also shown in Figs. 1—6 is the data for C, Ca, Ca,
and Fe ' For the sake of direct comparisons finite
form-factor effects are approximately removed from the
displayed "data" using a prescription due to de Forest '

which is described in Sec. V. In addition, there are some
important inadequacies in the available data set which
must be pointed out. The CSR values and the total ex-
perimental integrated responses are obtained by integrat-
ing the available data, ignoring strength in the higher-
energy tail region where there is presently no data.
Hence the CSR integrals are effectively evaluated for
co=0+~=—'IqI. This implies that the actual, physical3

CSR values will be somewhat larger than the data pic-

tured. Crude estimates of the amount of strength missing
from the data can be made by taking our calculations and
integrating in co from —',

I qI ~ I qI into the high-energy tail
region. What is found from our calculations is that the
CSR data should be increased by about 10%. Recent es-
timates, in which the response in the high-energy tail
region is assumed to have an co falloff, also find the
contribution of the unmeasured region to be about 10%.
This should be considered when comparisons are made
between the data and theoretical predictions, since we
have not "corrected" the data for this missing strength in
any of the figures. Another dichotomy between the
definition of the NCSR and the experimental data is
that the NCSR assumes the integral extends from
co =0+—+ oo, whereas physical electron scattering is limit-
ed to co (

I qI. We have estimated the quasielastic
strength in the region co =

I qj, m by extrapolating the
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FIG. 3. The CSR curve for Ca is shown for several relativ-
istic FSI using point proton form factors. The relativistic
plane-wave approximation (dotted line) is shown along with
Dirac global phenomenology (solid line), the Dirac IA (short-
dashed line), and Dirac Hartree (long-dashed line) FSI calcula-
tions.
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FIG. S. The same as Fig. 4, except that the calculations em-
ploy the optimally factorized Dirac IA optical potential to de-
scribe the FSI.
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theoretical response curves. It is found that negligible
quasielastic strength exists in the physically inaccessible
region and any e6ect on the CSR can be ignored. The er-
ror bars in the CSR data are obtained by using the experi-

FIG. 6. Predictions for Ca using the nonrelativistic LDA
with Bonn N-N interactions (long-dashed line) and relativistic
Dirac global phenomenological (short-dashed line) FSI are
shown. The dashed-dotted curves are predictions obtained us-
ing only the real part of the non-Hermitian optical potential in
the FSI calculations.

mental uncertainty in the responses to dictate worst case
scenarios. It is assumed that if a least-squares type of ap-
proach were used, the error bars in the CSR data would
be slightly smaller.

Of the four nuclei for which data is shown, the carbon
experimental values are somewhat higher than the rest.
One would expect the medium size nuclei to give con-
sistently similar values, but the " Ca data is significantly
and systematically lower than the Ca and Fe data as is
evident in Fig. 1. No obvious theoretical reason for this
behavior immediately suggests itself, and this must also
be borne in mind when comparisons are made between
the data and theoretical predictions.

The GFDA calculations of the CSR are performed us-
ing Eq. (13) including FSI, with the integral extending
from co=0+ —+ IqI, the physical region. Calculations are
made at three discrete values of the momentum transfer,
IqI =410, 550, and 700 MeV/c, so that curves shown in
the figures are meant to guide the eye. In Figs. 1 and
3—12 plane-wave approximation results are shown as a
reference. These correspond to replacing G,~, in (6c)
with the free noninteracting Green s function go in some
particular dynamical limit. All of the theoretical results
presented in this paper are for scattering from Ca.
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FIG. 7. (a) The same as in Fig. 1, except free electromagnetic
form factors are included in the calculation, resulting in the to-
tal physical integrated longitudinal response. No attempt is
made to remove the form-factor dependence from the calcula-
tions or from the data. (b) The same as in (a), except the results
are for the integrated transverse response and the relativistic
plane-wave result (dotted line) is shown as a reference.

FIG. 8. {a) The same as in Fig. 4 except free electromagnetic
form factors are included in the calculation, resulting in the to-
tal physical integrated longitudinal response. No attempt is
made to remove the form-factor dependence from the calcula-
tions or from the data. (b) The same as in (a), except the results
are for the integrated transverse response.
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FIG. 11. The same as in Fig. 8(a) except the form-factor

dependence and some relativistic effects are approximately re-
moved from the data and the calculations (including the plane-
wave case) using the de Forest prescription.

Ca40

400 500
(MeV)
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A. Nonrelativistic and ylane-wave results

In Fig. 1 calculations of the Ca integrated longitudi-
nal response for a variety of nonrelativistic FSI are com-
pared. The nonrelativistic plane-wave approximation

FIG. 9. (a) The same as in Fig. 5 except free electromagnetic
form factors are included in the calculation, resulting in the to-
tal physical integrated longitudinal response. No attempt is
made to remove the form-factor dependence from the calcula-
tions or from the data. (b) The same as in (a), except the results
are for the integrated transverse response.

(dotted curve) is shown along with nonrelativistic FSI
calculations based on the LDA using a Bonn X-X interac-
tion (solid curve), the IA with Franey-Love N-N
amplitudes (long-dashed curve) and the optimally factor-
ized IA (Ref. 66) with Franey-Love N Namplit-udes
(short-dashed curve) optical potentials. As is expected
from the discussion in Sec. II, the plane-wave approxima-
tion nicely obeys the NCSR. This is not the case for the
various FSI calculations, where nonrelativistic FSI effects
on the NCSR are apparent in the figure. The FSI cause
the NCSR predictions to be considerably suppressed at
lower momentum transfer, modifying the nature of the
asymptotic approach to CSR saturation. As IqI increases
to ~ 500 MeV/c the theoretical predictions tend to ap-
proach the NCSR saturation value. The LDA-Bonn
CSR results differ from the IA curves by a non-negligible
amount, and this can be traced to differences in the
nonhermiticity of the optical potentials used to describe
the FSI. The LDA-Bonn optical potential contains local
density corrections, which cause a suppression of the
strength of the potential in the nuclear interior, thus lead-
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FIG. 10. The same as in Fig. 7(a) except the form-factor
dependence and some relativistic effects are approximately re-
moved from the data and the calculations (including the plane-
wave case) using the de Forest prescription. The relativistic
plane-wave calculation (dotted line) is shown as a reference.

FIG. 12. The same as in Fig. 9(a) except the form-factor
dependence and some relativistic effects are approximately re-
moved from the data and the calculations (including the plane-
wave case) using the de Forest prescription.
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ing to a much smaller imaginary potential. The GFDA is
found to be especially sensitive to the non-Hermitian
character of the optical potential used. In general a large
imaginary potential causes a relative suppression of the
CSR integral at lower ~q shifting strength to higher
~q~.

' In Fig. 1 the solid curve corresponds to an optical
potential with a much smaller imaginary part than is the
case for the two IA calculations.

A curious effect takes place in Fig. 1 near ~q~ =600
MeV/c in that the nonrelativistic FSI predictions turn
over and begin to decrease away from the NCSR asymp-
totic limit of 1. The reason for this behavior can be
traced to the "nonrelativistic" reduction performed in
our calculation of nonrelativistic FSI. Instead of using
nonrelativistic wave functions with the nonrelativistic
form of the electromagnetic current operator (as is done
for the nonrelativistic plane-wave result shown), our non-
relativistic FSI predictions are obtained by taking our rel-
ativistic framework and reducing it to the positive-energy
sector, implicitly recovering an approximate two com-
ponent Pauli-like current operator and wave func-
tion. ' ' ' ' The positive-energy sector of the bound-state
and ejectile wave functions are projected out and decom-
posed into a Pauli wave function times a Pauli-Dirac con-
version matrix. ' ' ' ' These matrices sandwiching the
Dirac current operator produce an equivalent Pauli or
"nonrelativistic" current operator. Unlike Eq. (19) this
transformation includes relativistic corrections due to
Darwin-like terms. In particular, no ~p~/m or small ~p
reduction is performed, and the Dirac normalization fac-
tors ND =[(E+m)/2E]'~ are maintained in the relativ-
istic form. Because of this, the Dirac Hilbert-space
effects mentioned earlier are not removed from our non-
relativistic FSI calculations. The importance of this XD
factor is seen in the discussion of Fig. 2, where effects due
to ND arise at larger values of

~ q ~. Hence, the effect
clearly seen beyond about ~q~ =600 MeV/c is due to rela-
tivistic Hilbert-space contributions.

The nonrelativistic plane-wave approximation (dashed
curve) is compared to a relativistic plane-wave approxi-
mation (solid curve) in Fig. 2. As described earlier, the
relativistic plane-wave approximation contains a normali-
zation factor ND = (E& +m ) /2E&, where in the nonrela-
tivistic limit XD —+1, but in the relativistic limit XD~ 2.
This factor rejects the fact that the sum over final states
in the relativistic case only spans the positive-energy sec-
tor of the Hilbert space. In fact, the solid curve in Fig. 2
can be seen to be asymptotically approaching —,'. The im-
plication of this is that there are at least two types of
convicting behavior one must consider for the CSR. In
the purely nonrelativistic case as ~q~ becomes large, the
NCSR limit must be approached. However, to the con-
trary, as ~q~ becomes large relativistic effects must be in-
cluded, thus causing the CSR predictions to asymptoti-
cally approach —,

' (on the basis of the phase-space factor
alone). This phase-space effect, graphically illustrated in
Fig. 2, is responsible for the downward trend seen in Fig.
1 for larger ~q~. Because the data shown in Fig. 1 are
compensated to negate this effect (see Sec. V), while the
nonrelativistic FSI calculations are not, one must take ac-

count of Fig. 2 when making a precise comparison of
data and theory in Fig. 1. This increases the disagree-
ment between purely nonrelativistic theory and experi-
ment. For example, on the basis of Fig. 2 one can obtain
approximately the purely nonrelativistic limit of the re-
sults shown in Fig. 1 by raising the predictions at
~q~ =500 MeV/c and ~q~ =700 MeV/c by about 5 and
10%%uo, respectively. Our results for the relativistic phase-
space effect are consistent with those reported in Ref. 22.

Also making use of the renormalizations implied by
Fig. 2, one sees that the purely nonrelativistic limits of
the FSI predictions shown in Fig. 1 are very Aat beyond
about ~q~ =600 MeV/c, and are very nearly converged.
Thus it seems that realistic, purely nonrelativistic FSI
yield sum rule convergence beyond about 600 MeV/c.
As detailed earlier, the formally exact optical potential
has the appropriate analytic behavior necessary to recov-
er the spectral completeness relation (17), which practical
optical potentials can be expected not to automatically
reproduce. Because the NCSR is essentially derived from
the completeness relation and because the nonrelativistic
FSI employed in the calculations do not perfectly mimic
the correct unitary character, the results for nonzero FSI
do not uniformly tend to the NCSR limit of unity. This
is a defect of optical-potential theory and the associated
models and not of the calculations. At the present time it
is a defect which must be accepted as the price of dealing
with a physically acceptable theory of many-body FSI.
The spread of CSR results at ~q~ =700 MeV/c is about
10%, consistent with the scale of analytic effects de-
scribed near the end of Sec. II, although the convergence
of all three FSI predictions at 700 MeV/c may also not
yet be complete. On the basis of Figs. 1 and 2, the op-
timally factorized IA optical potential yields CSR predic-
tions which tend nicely to unity and thus appears to have
a better analytic character than do the other two nonrela-
tivistic optical potentials, as might be expected on the
basis of off-shell unitarity considerations.

An issue to be addressed is at what point, if any, the
NCSR can be expected to be obeyed. Solely on the basis
of the theoretical predictions of Fig. 1, FSI and relativis-
tic Hilbert-space effects do not allow us to unambiguous-
ly choose such a point. The nonrelativistic FSI predic-
tions do appear to reach an extremum near ~q~ &550
MeV/c, which is approximately twice the Fermi momen-
tum for Ca. This same limit has also been suggested by
others, but at this momentum transfer ~q~/m is no
longer negligible and relativistic effects must surely be
considered. At this point, however, there does appear to
be a small region (5505 ~q~ ~650 MeV/c) in which the
NCSR limit is obeyed in a very rough sense. However,
from the combined results of Figs. 1 and 2, the region
~q~ ~600 MeV/c seems to lie within the domain of the
NCSR, so long as the experimental data can be compen-
sated for the relativistic phase-space effect in the same
spirit as was done for the predictions of Fig. I above. Of
course, it remains to be seen what the full effects of rela-
tivistic FSI dynamics really are. This is detailed in the
next subsection. Finally, the dotted curve in Fig. 2,
which is essentially indistinguishable from the solid
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curve, represents a relativistic plane-wave approximation
in which the negative-energy components of the initial
Dirac bound-state wave functions are neglected. As is
apparent, the effects of such negative-energy components
in the initial-state wave functions are extremely small and
are completely negligible, and this is true in general; no
further distinction between relativistic initial-state wave
functions is made in this paper.

B. Relativistic dynamical and non-Hermitian effects

Relativistic FSI calculations are shown in Fig. 3, where
Dirac global phenomenology ' (solid curve), Dirac IA
(Ref. 49) (short-dashed curve), and Dirac Hartree
(long-dashed curve) potentials are used. In comparing
these curves with the relativistic plane-wave approxima-
tion (dotted curve), it is evident that relativistic FSI
suppress the CSR predictions toward the data. (Again,
we remind the reader that the relativistic phase-space
effect is compensated for in the data shown, but not in
the theoretical results, as is evident from the behavior of
the relativistic plane-wave result. The same is true of
Figs. 4—6.) Also apparent in Fig. 3 is the fact that at
~q~ =700 MeV/c all three FSI calculations are beginning
to parallel the relativistic plane-wave calculation. This
suggests that except for the relativistic phase-space effect
all three curves have reached "saturation" and are essen-
tially horizontal. However, the three FSI curves are all
distinct from the relativistic plane-wave calculation so
that, even if the relativistic phase-space effect were to be
removed, none of the FSI calculations would saturate at
the NCSR value of unity.

The two non-Hermitian calculations shown in Fig. 3,
global phenomenology and the Dirac IA, appear to con-
verge to a common value at about

~ q~ =700 MeV/c, while
the Hermitian Hartree calculation is much closer to the
relativistic plane-wave result. Although the Hartree po-
tential is real and energy independent, it does shift
strength to some degree, and we see that the sum rule
limit represented by the plane-wave calculation is not
precisely reproduced even at 700 Me/c. Such Hermitian
calculations represent well-behaved, but physically and
conceptually unclear, results from the standpoint of mul-
tichannel reaction theory. In parallel to what was al-
ready seen in Fig. 1 for the nonrelativistic theory, the glo-
bal and the Dirac IA results display differences at lower
~q~ because of differing strengths of the imaginary part of
the optical potential. The global phenomenology has a
smaller imaginary part, characteristic of phenomenologi-
cal optical potentials relative to their IA counterparts.
A closer examination of non-Hermitian effects is given
later.

The overall effect of relativistic non-Hermitian FSI is
to reduce the CSR theoretical predictions at all

~ q~ shown
in Fig. 3. The relativistic predictions significantly deviate
from the NCSR, indicating that a more sophisticated in-
terpretation of the sum rule is necessary. An asymptotic
character similar to the NCSR is readily apparent in Fig.
3 (beginning at ~q~

~ 700 MeV/c) as long as the relativis-
tic phase-space effect is compensated; however, the re-
sults tend to converge to a value about 15%%uo below the

idealized NCSR limit. The effects of relativistic FSI ap-
pear to preclude a region in ~q~ for which the unrenor-
malized NCSR is reasonably applicable, but suggest that
for ~q~ ~700 MeV/c there may be a relatively model-
independent relativistic sum rule limit.

The physical difference between the nonrelativistic and
relativistic FSI calculations presented here arise generally
from two sources: (I) differences in the optical potentials
in the positive-energy space (which can be considered to
be differences in effective nonrelativistic optical poten-
tials ' ' ') and (2) the presence in the relativistic case of
negative-energy contributions resulting from couplings to
the Dirac sea. ' To better understand how Dirac dynam-
ic degrees of freedom affect the CSR predictions, the next
two figures isolated specific negative-energy contribu-
tions. Figures 4 and 5 display predictions based on Dirac
global phenomenology and a relativistic impulse approxi-
mation, respectively. In both figures the short-dashed
curves represent calculations where only positive-energy
matrix elements are retained in the FSI. This implies
both that the current operator in (2) and (6c) couples the
ejectile directly into the positive-energy sector of the Hil-
bert space only, and that the ejectile then only interacts
with the residual nucleus through positive-energy inter-
mediate states. In other words, the outgoing ejectile
wave function effectively lies wholly in the positive-
energy Dirac space and the optical potential which yields
this wave function is not allowed to couple to negative-
energy intermediate states (Z graphs are precluded). The
long-dashed curves labeled "NEP" (no explicit pairs) in-
clude a restricted class of negative-energy effects. The
NEP calculations differ from the purely positive-energy
calculations in that while the current operator is still al-
lowed only to couple the ejectile directly into positive-
energy knockout states, the Dirac final-state interactions
are permitted to couple to negative-energy intermediate
states. These curves thus include the Z-graph-type
negative-energy contributions which seem to be impor-
tant in elastic proton scattering. The solid curves
represent full Dirac calculations which also include direct
couplings of the current operator to negative-energy
components of the final ejectile scattering states.

In Fig. 4 various predictions obtained using the Dirac
global phenomenological optical potential are displayed.
The purely positive-energy result lies just below the rela-
tivistic plane-wave approximation, and differs consider-
ably from the nonrelativistic behaviors seen in Fig. 1.
This is to be expected since it is the full phenomenologi-
cal optical potential which fits elastic scattering data and
not just its positive-energy sector, which is what is em-
ployed in obtaining the short-dashed curve. Thus part of
the difference between the full relativistic predictions of
Fig. 4. and the nonrelativistic predictions of Fig. 1 reAect
not virtual pair effects but just differences of an essential-
ly nonrelativistic nature in the optical potentials used. '

This complication is eliminated in the relativistic IA cal-
culations shown in Fig. 5 where the pure positive-energy
IA calculation is the same as the optimally factorized
nonrelativistic IA calculation by definition. Therefore,
comparisons between the relativistic results shown in Fig.
5 and the nonrelativistic results of Fig. 1 are physically
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much clearer than for comparisons using the somewhat
arbitrary positive-energy Dirac global calculation of Fig.
4. However, from both figures it is clear that as
negative-energy contributions are allowed to contribute
to the FSI, the CSR predictions are reduced toward the
data by a nonnegligible amount. The negative-energy
contributions uniformly suppress the CSR predictions so
that the theoretical predictions approach the data and
this is true for all of the cases we have treated. As can be
seen clearly from Fig. 5 the Dirac sea effects are very
large, causing a large suppression of the CSR predictions
over the whole range of ~q~ shown. The main suppres-
sion arises from virtual pair effects due to secondary
scattering of the ejectile to virtual negative-energy inter-
mediate states as it proceeds though the nucleus. The ex-
plicit pair effect, which arises from the current operator
coupling directly to the negative-energy component of
the ejectile final-state wave function, provides a smaller
but non-negligible contribution. Thus the major relativis-
tic effects on the CSR result from the relativistic phase-
space factor and from Z-graph-type optical-model contri-
butions. Relativistic effects on the CSR are large.

To explicitly observe the effect of the non-Hermitian
character of the optical potential on the predictions made
in the context of the GFDA, calculations are presented in
Fig. 6 where the full (complex) result is compared to cal-
culations in which only the real part of the optical poten-
tial is retained. The short-dashed (long-dashed) curve
represents the full Dirac global phenomenology (nonrela-
tivistic LDA-Bonn) result. The dot-dashed curves
represent corresponding calculations using only the real
parts of the optical potentials. As is apparent from Fig.
6, the imaginary part of the potentials causes the CSR
predictions to be appreciably lower for both the relativis-
tic and nonrelativistic cases over the range ~q~ ~410
MeV/c shown. The fact that the long-dashed-dotted
curve is so high is interesting, especially since the poten-
tial used is real, but energy dependent, so that it has a
somewhat unusual analytic structure and also does not
obey (17). From this figure it is apparent that the physi-
cal content of the non-Hermitian part of the optical po-
tential is essential for realistic theoretical calculations.

IV. FORM FACTORS
AND KINEMATICAL CORRECTIONS

This section presents theoretical calculations in which
the current operator incorporates physical free-nucleon
form factors as taken from Hohler ' and as modified in
Ref. 72. In, Figs. 7—9, the total integrated theoretical
response is compared directly with the data, where no at-
tempt is made to divide out any relativistic or form-factor
dependence in the calculations or in the data. Figures
7(a), 8(a), and 9(a) display the total integrated longitudi-
nal response, while Figs. 7(b), 8(b), and 9(b) show the to-
tal integrated transverse response.

Figure 7(a) is the same as Fig. 1 except that free elec-
tromagnetic form factors are included in the calculation.
As is readily apparent, the form factors cause dramatic
changes in the behavior of the integrated response and
lead to a very different character than is found when

form-factor effects are divided out or when the idealized
NCSR is considered. The nonrelativistic FSI calcula-
tions tend to converge toward a common value at higher
momentum transfer, implying a consistent nonrelativistic
FSI result, but this result overestimates the Ca data by
a large amount, in agreement with the comparisons of
Fig. 1. Even considering the uncertainties in the data,
the nonrelativistic results are clearly not able to provide a
reasonable description of the data.

The nonrelativistic predictions for the total integrated
transverse response are depicted in Fig. 7(b). In this case
the data is underestimated by a very large amount. This,
is in agreement with what was found in Ref. 12 for the
(unintegrated) transverse response, where the GFDA cal-
culations were found to significantly underestimate RT.
The obvious inference is that the transverse quaiselastic
data rejects the presence of some (unknown) many-body
mechanisms which are not included within the one-body
GFDA formalism, that these mechanisms act predom-
inately in the transverse channel and that they account
for the transverse discrepancy. This interpretation is
supported by recent (e, e*p) data showing anomalous
transverse strength in the dip region and also by recent
inclusive (e, e'p) data showing unexplained transverse
strength above two-particle threshold. Of course, one
must keep in mind that the present calculations also
neglect transverse contributions from 5 and other ex-
change currents. For example, including 6—h excita-
tions would likely improve comparison of theory and ex-
periment, although it is also known that the b, —h mecha-
nism underestimates the 6-resonance peak.

Figures 8(a) and 9(a) are the same as Figs. 4 and 5, re-
spectively, except for the inclusion of finite form factors.
The relativistic FSI results (solid curves) show CSR pre-
dictions which are suppressed a great deal more than are
the nonrelativistic FSI calculations shown in Fig. 7(a),
providing a much more reasonable description of the
data, especially at higher ~q~. As was found earlier,
negative-energy contributions systematically cause the
CSR theoretical curves to be suppressed towards the
data. However, Figs. 8(a) and 9(a) also indicate a more
pronounced role for explicit pair effects than was ap-
parent in Figs. 4 and 5. The full Dirac calculations are
much closer to the data than are the nonrelativistic FSI
calculations, but the relativistic results still greatly
overestimate the Ca CSR data.

Predictions for the corresponding transverse sum using
relativistic FSI are shown in Figs. 8(b) and 9(b). In Fig.
8(b), where Dirac global phenomenology is used, the
negative-energy contributions play an entirely different
role than that observed for the longitudinal case. When
the negative-energy FSI effects present in the NEP calcu-
lation (long-dashed curve) are added to the purely
positive-energy NP calculation (short-dashed curve) a
significant suppression of ST occurs. However, when
direct coupling to negative-energy states is included to
give the full Dirac calculation, the net result (solid curve)
is an enhancement of the NEP result, back up to the NP
curve. This distinctive behavior of the transverse sum
(relative to that observed for the longitudinal case) is in
keeping with the trend of the transverse data, which lies
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TABLE I. Fraction of fRI dc' due to direct ejection of a
neutron from a single-particle bound state.

FSI type 410 MeV/c 550 MeV/c 700 MeV/c

Global phenomenology
Full Dirac
NEP
NP

0.014
0.009
0.009

0.032
0.019
0.019

0.065
0.036
0.035

considerably above the theoretical predictions. This
same sort of behavior is also found for the IA in Fig. 9(b)
where the NEP result is suppressed compared to the
physically realistic nonrelativistic NP curve, while the
full Dirac calculation is enhanced compared to the NEP
result. However, for the IA case the full Dirac transverse
calculation remains somewhat suppressed compared to
the nonrelativistic IA result, although not to the same de-
gree as was seen for the longitudinal case. The Dirac cal-
culations continue to underestimate the data for the
transverse sum, much more so than do the nonrelativistic
FSI predictions. All of these observations concerning the
relativistic transverse and 1ongitudinal sums shown in
Figs. 8 and 9 reflect analogous effects already seen in the
corresponding unintegrated quasielastic (e, e') response
functions. ' The question of a missing many-body trans-
verse mechanism remains.

Recently it has been pointed out that ambiguity in the
free neutron form factors can cause nonnegligible uncer-
tainties in theoretical predictions of the quasielastic
response functions. ' To gauge this effect we have iso-
lated from our calculations the contribution due to direct
knockout of a bound neutron. By comparing the quasi-
elastic strength due to neutron knockout with the total
CSR predictions, a measure of the sensitivity of the quasi-
elastic predictions to variations in the free neutron form
factors can be obtained. The direct neutron knockout
contributions to the CSR predictions are displayed in
Table I, given as the fraction of the (corresponding) total
CSR prediction. For the plane-wave impulse approxima-
tion, as IqI increases from 410 to 700 MeV/c, the frac-
tional neutron contribution to the CSR, or what will be
referred to as "neutron fraction, " increases markedly
from about 1% to over 3%. This is due to the fact that
the coupling between the virtual photon and the neutron
ejectile states grows with IqI. The pure positive-energy
NP results and the NEP calculations which contain no
explicit couplings to the negative-energy space tend to
mimic closely the neutron fraction observed for the
plane-wave approximation. The NP, NEP, and plane-
wave-approximation calculations all share the property
of incorporating direct coupling of the current operator

to positive-energy final states only.
Larger neutron fractions are found for the full Dirac

calculations. Inclusion of explicit pair effects produces a
much larger neutron fraction, ranging from increases of
50—80% over the NEP results; the larger fractions occur
as IqI increases. For the explicit negative-energy channel
contributions there is a strong coupling through the
anomalous magnetic moment, and neutron and proton
contributions are more nearly on par for the magnetic
coupling. The importance of this coupling grows with
Iq I

and we see that as I qI increases, the neutron fraction
also increases.

The neutron fractions shown in Table I are somewhat
different from those found in Ref. 22, where long-range
correlations are included in nuclear matter but there are
no FSI. The neutron fractions given in Table I are larger
than those discussed in Ref. 22, suggesting a greater sen-
sitivity to neutron form-factor variations. The relativistic
FSI calculations reported here are sensitive to variations
in the neutron form factors, especially to F2. However,
the fractions overall are of small magnitude, being no
larger than 6.5%, and thus realistic neutron form-factor
variations should not have a large effect on the overall
response in the range of IqI of interest here. One expects
I'2 to be much better determined than I'& and effects
dependent on the uncertainty in the neutron form factor
to be smaller than the calculated neutron fractions.
Direct neutron ejection and associated form factor effects
merit further investigation.

V. THEORY VERSUS EXPERIMENT

To recover the CSR in a reasonable form from the data
and from realistic theoretical calculations it is necessary
to use some specific prescription for removing the form-
factor dependence and the relativistic phase-space effect.
The usual goal is to recover the idealized predictions of
the NCSR, where point protons and nonrelativistic dy-
namics are assumed. Although this is clearly a model-
dependent process, it is one that can be done in the same
way for both the data and the theoretical calculations.
This should reduce the model dependence to a large de-
gree. A specific prescription developed by de Forest, '

which is motivated by a reduction of the free relativistic
single-nucleon electromagnetic current operator to an
effective nonrelativistic form, is often used. Some relativ-
istic effects, notably the relativistic phase-space effect, can
also be approximately included in this prescription.
The result, which redefines the CSR integral, is '

sc(IqI)= f dcoRL(q, co)/9'(q ), (20)

where

DIA —Love-Franey
Full Dirac
NEP
NP (nonrelativistic IA)

Plane-wave impulse
approximations

0.015
0.009
0.009

0.010

0.034
0.019
0.019

0.019

0.065
0.036
0.036

0.033

&(q') =
I Gg (q') I'

+—IGg(q )I

and

2

4m~2
1— q

22m~

(21)
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r

p, proton
GE(q )=F'&(q )+ Fz(q ), i = '

mN

As seen shortly, this method does a very good job of re-
moving relativistic form-factor and phase-space effects in-
corporated in the relativistic plane-wave calculation up to
momentum transfers ~q~ =1 GeV. The Dirac dynamical
degrees of freedom included in the FSI calculations are
not compensated by the de Forest prescription, so that
FSI and negative-energy channel effects will cause devia-
tions from the idealized NCSR.

The "data" shown in Figs. 1, 3—6, and 10—12 were ob-
tained by integrating the experimental longitudinal
response according to (20) using the de Forest prescrip-
tion (21) to remove the form-factor dependence. It
should also be recalled that, since the experimental values
of RL ( q~, co) range only from 0~ —,

'
~q~, the true physical

values of the CSR integral are crudely estimated to be
about 10% higher than the data shown in the figures, due
solely to unmeasured strength in the high-energy tail re-
gion.

In Fig. 10 the nonrelativistic results of Fig. 7(a) are
presented with form-factor and relativistic phase-space
effects approximately removed according to (21). The
three nonrelatistic FSI curves are calculated as discussed
after Fig. 1, using free electromagnetic form factors, and
the de Forest prescription is then applied. The dotted
curve is the relativistic plane-wave calculation treated
with the same prescription. In comparing Fig. 1 with
Fig. 10 it can be seen that the de Forest prescription re-
moves the characteristic relativistic phase-space effect of
Fig. 1 and that the nonrelativistic FSI predictions now
asymptote to a value grater than 1. It has been previous-
ly noted that the de Forest prescription causes CSR re-
sults to asymptote to a value greater than 1 (Ref. 23) and
from Fig. 10 this appears to be the case. In fact, the devi-
ation of the optimal factorization curve of Fig. 10 from
unity at -700 MeV/c is due to this effect, as can be ap-
preciated from the parallel behavior of the de Forest
compensated relativistic plane-wave calculation. This
effect does not fully account for the other two curves
shown in Fig. 10: the IA curve is not yet converged, but
is decreasing toward unity, whereas the LDA curve is
growing. The data, which has also been "treated" with
the de Forest prescription, is significantly below the non-
relativistic predictions. Even considering the inadequa-
cies associated with the data, the nonrelativistic FSI cal-
culations do not appear reasonably close to the data.

Figures 11 and 12 consist of the same curves as shown
in Figs. 8(a) and 9(a), respectively, except that the de
Forest prescription has been used to approximately re-
move some relativistic and form-factor effects. The rela-
tivistic plane-wave approximation (dotted curve) is treat-
ed very well by the de Forest prescription with the net re-
sult almost consistently equal to 1, differing by only about
3% at the highest ~q~ shown. In Fig. 11, as negative-
energy effects are systematically included in the Dirac
global phenomenological predictions, the CSR results are
suppressed more and more toward the data. The net
suppression of the NCSR by relativistic FSI, after remov-

ing relativistic and form-factor effects by the de Forest
prescription, is about 20%. The net result of relativistic
effects on the comparison of theory and experiment is
somewhat larger, —30% (see Fig. 2), owing to the relativ-
istic phase-space factor. Superficially, and esp ecia11y
after taking into account the needed upward shift of the
data by —10%%uo, these Dirac FSI predictions appear to be
in reasonable accord with the data. However, in
specifically comparing with the Ca data, the predictions
are off by a non-negligible amount, even given a 10%%uo

enhancement of the data.
In Fig. 12 an optimally factorized relativistic IA calcu-

lation using Franey-Love N-N amplitudes is used to de-
scribe the FSI. In this case the pure positive-energy
(short-dashed curve) calculation is, by construction, the
equivalent nonrelativistic IA calculation, thus allowing
for a more direct physical comparison between the rela-
tivistic and nonrelativistic approaches. Of course, a pure-
ly nonrelativistic prediction would not need to have the
relativistic phase-space effect removed from it as is the
case for Fig. 12. The nonrelativistic IA asymptotes to 1

(at least to the degree consistent with the de Forest com-
pensated plane-wave result), while as Dirac sea effects are
added the CSR predictions are systematically suppressed.
The suppression is larger than that seen in Fig. 11 at
lower q~ bringing the relativistic FSI predictions closer
to the Ca data, but at ~q =700 MeV/c the full Dirac
FSI predictions of Figs. 11 and 12 are in very good ac-
cord. The two relativistic non-Hermitian FSI calcula-
tions consistently produce 1arge suppressions relative to
both the nonrelativistic FSI and the relativistic plane-
wave results at ~q~ =700 MeV/c. Because of the reduced
model dependence displayed by these suppressions, ob-
taining higher-~q~ data would help discriminate between
the relativistic and nonrelativistic theories. The quasi-
elastic results obtained with relativistic FSI appear to
preclude a region in which the NCSR is reasonably valid.
The relativistic FSI suppress the CSR for all values of ~q
considered and the CSR integral no longer asymptotes to
the ideal limit of 1.

VI. SUMMARY

This paper reports the results of a systematic study of
the modifications to the nonrelativistic Coulomb sum rule
induced by form factors, kinematical restrictions, relativ-
istic effects, and realistic final-state interactions. FSI are
included via a one-body Green's function doorway ap-
proach. An assortment of relativistic and nonrelativistic
non-Hermitian optical potentials are used to properly de-
scribe the FSI. The reactive content incorporated
through the non-Hermiticity of the optical model pro-
vides a physically realistic description of the FSI and is
shown to have important implications for the NCSR. An
analogous transverse sum is also defined and examined,
and comparisons are made with existing data.

The physical relativistic kinematical restriction on ex-
perimental measurements, ~q~ )co, is predicted by theory
to be irrelevant to CSR saturation. The practical restric-
tion co ~

—,
'

~ q~, however, is predicted to cause the observed
experimental quasielastic strength to underestimate the
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actual strength by about 10%, in agreement with previ-
ous estimates. Neutron knockout contributions are
found to be at the level of -6%, indicating neutron
form-factor ambiguities bounded by this figure.

Form-factor and relativistic phase-space effects are
large, but are found theoretically to be amenable to reli-
able compensation via a prescription due to de Forest.
With corrections and caveats for the foregoing effects,
the NCSR is predicted to be well obeyed for momentum
transfers beyond about 600 MeV/t." in the absence of rela-
tivistic final-state interactions.

Nonrelativistic FSI dynamics change the character of
the approach to saturation, reducing the integrated
response at lower ~q~, but allowing convergence to the
sum rule in the region ~q~ ~600 MeV/c. However, this
result is not complete: whereas important relativistic
effects have been acknowledged and compensated, rela-
tivistic FSI dynamics are not yet taken into account. In-
corporation of virtual pair effects, the essential com-
ponent of relativistic dynamics, compromises the NCSR.
Pair effects induce a large suppression over the entire
range q ~ 410 MeV/c. Such pair effects may only be ex-

pected to further increase in importance for ~q~ values
larger than those explicitly considered here, so that rela-
tivistic dynamics appear to preclude any reasonable re-
gime of validity for the (de Forest compensated) NCSR.
However, the full Dirac predictions are consistently and
significantly below the NCSR limit, thus bringing the
theoretical predictions much closer to the data. To fur-
ther clarify the dynamics and kinematics responsible for
the behavior of the integrated longitudinal response as a
function of the momentum transfer ~q~, higher momen-
tum transfer data (e.g., Ca at ~q~ ~700 MeV/c) are
needed.
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