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Configurational quasidegeneracy and the liquid drop model
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Zamick et al. recently reported on a series of Hartree-Pock calculations of light nuclei with
Skyrme interaction in which they observed a near degeneracy of states corresponding to different
fillings of the single-particle levels. We will present here a possible explanation for these facts using
very simple arguments based on the liquid drop model.

Zamick et al. ' (see also Ref. 4) asked the following
question: Let us consider difFerent fillings of the single-
particle level scheme and perform a Hartree-Fock calcu-
lation of the corresponding configurations with a Skyrme
interaction, allowing deformation for such nuclei as He,
' 0, and ' Ca, which traditionally are regarded as
spherical. What excitation energies correspond to such
states as 1p-lh, 2p-2h, . . . , 8p-8h, etc.? The first and
wrong guess would be that the excitation energy must be
of the order of nfico, where n is the number of particle-
hole pairs excited. Obviously such a rough estimate is
wrong, since one has to include the residual interaction
among particles and holes, which will be different for
I.,S, T quantum numbers of the p-h pair, and also a rela-
tively large rearrangement energy, when the number of
p-h pairs is large. Then one has something which can be
dubbed as a p-h condensate. A typical example is ' 0, in
which the configuration 4p-4h has an unexpected low ex-
citation energy in a self-consistent treatment, about 10
MeV. ' Such a state, strictly speaking, is not a pure
4p-4h excitation of the ground state, since the nucleus is
strongly deformed in this case. The corresponding occu-
pied single-particle orbitals states are only generically as-
sociated with the particle states characteristic for the
ground state, in the same way as are the single-particle
levels in a Nilsson scheme for different deformations.
The same kind of behavior has been put in evidence in
several nuclei and for different such np-nh "excita-
tions. "' It is unlikely that the effective Skyrme interac-
tion used in such calculations fails to describe the physics
of such states and one has to take these results at face
value. Nevertheless, the nagging question "Why does
this happen?" remains unanswered.

It was remarked a long time ago by Hill and Wheeler '

that nuclei behave in a different manner under small and
large deformations. In order to find the stiffness of nuclei
for small deformation, one usually applies the linear-
response theory to small external fields. Under the action
of small external fields, the nuclear density is slightly de-
formed through the excitation of 1p-1h pairs. However,
the distribution of nucleons over the single-particle levels
remains, loosely speaking, unchanged. This situation
corresponds to what Hill and Wheeler called rapid defor-
mations of the single-particle field, and the corresponding
stiffness and excitation energies are computed in random

phase approximation (RPA). The response of nuclei to
small external fields amounts to a local deformation of
the Fermi sphere and the corresponding type of excita-
tions in an infinite system is the so-called zero sound.
For a proper estimate of the excitation energies and.
strengths one has to take into account the residual in-
teraction among the 1p-1h excitations. If the amplitude
of the external field becomes too large, then deforming
the Fermi sphere is energetically too costly ' ' and a
more favorable configuration corresponds to a redistribu-
tion of the nucleons among the single-particle levels. For
different single-particle configurations one obtains, a
linear-response approach, what Hill and Wheeler called
potential curves for rapid deformation. The curve ob-
tained by smoothly joining the minima of these potential
curves for rapid deformations will give the potential
curve for slow deformations. The mechanism envisaged
by Bertsch for switching from one single-particle
configuration to another was through the pairing interac-
tion, which takes two particles from one orbital and
transfers them to another one. One can think also of
transferring at once particles from different orbitals, and
probably such a process has a slightly less but compara-
ble amplitude in the absence of a pairing condensate.
Bertsch derived a simple formula for the required
"jump" or "hopping" in deformation, needed to switch
from one configuration to' another:

n =P&5/12m A, (1)

where A is the atomic number. The potential curve for
slow deformations of the nucleus has been identified '

with the potential energy of the liquid drop model.
Since the parameters of the liquid drop formula are

known very well, and from them one can also easily find
the stiffness of the potential energy of a given nucleus for
slow deformations, a natural approach will be to estimate
the excitation energies corresponding to different defor-
mations p and by using Bertsch's formula, Eq. (1), to
determine the corresponding number of particie-hole "ex-
citations. " The same quantity can be roughly determined
from a Nilsson scheme. " One can determine for which
deformations one has a level crossing and, consequently,
when a particle transfer from one orbital to another be-
comes "easy." For the total energies we used the liquid
drop formula
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E=—
c& A+c2A +c3Z /A ' —c4Z /A TABLE II. The same as in Table I but for Ca.

X —Z
2 PHF PLDM EHF ELDM (2) ELDM (6)

ci 2=ai 2

a, =15.677 MeV, a2 =18.56 MeV,

c3=0.717 MeV, c4=1.21129 MeV,

~=-1.79,

0
0.12
0.13
0.32
0.44
0.55

0
0.14

0.27
0.41
0.55

—341.3
—330.8
—331.8
—329.2
—327.8
—329.9

—337.4
—336.8

—335.2
—332.6
—328.9

—337.4
—336.8

—335.4
—333.1
—330.3

The results for deformations and binding energies us-
ing the preceding formulas for ' O and Ca are given in
Tables I and II. The overall agreement with the results of
the Hartree-Fock calculations is good. From the
Nilsson scheme, " the values for P in Ca for n =4 and 8
are approximately equal to 0.3 and 0.6, respectively. In
the light of these numbers, the real question seems to be
not why the n p-n h states with large values of n are so
low, but rather, why, e.g. , the 2p-2h states are so high in
the Hartree-Fock approximation in comparison with the
liquid drop formula.

The differences between the Hartree-Fock and liquid
drop model energies are of the order of the corresponding
shell corrections and pairing energies in this mass re-
gion. We did not take into account the odd-even effect
in the liquid drop model (LDM), which has an amplitude
of a few MeV in these nuclei. ' One can improve the
agreement between the Hartree-Fock (HF) and LDM
values for the ground states by doing this; however, it is
not very clear to us how to compare the corresponding
numbers for finite deformations. The magnitude of these
corrections depends strongly on the nuclear shape and
single-particle level densities, which can be determined in
a quite sophisticated numerical approach only, which
must include the determination of an optimal shape for
each deformation. For large deformations, the single-
particle level distribution is more uniform than for small

TABLE I. Deformations and total energies (in MeV) in ' 0
according to Hartree-Fock results with Skyrme III interaction
and liquid drop model, corresponding to n excited p-h pairs.
The deformation used in the liquid drop model was computed
according to Eq. (1). ELDM(2) was computed using only the
quadratic term in deformation P. ELDM(6) was computed using
terms up to sixth order in P."

PHF

0
0.24
0.63
0.73
0.82

PLDM

0
0.34
0.69
1.03
1.37

EHF

—128.0
—112.9
—112.5
—96.3
—85.5

ELDM(2)

119.3
—117.2
—111.1
—100.9
—86.6

ELDM(6)

—119.3
—117.3
—112.8
—107.7
—103.3

where the first term is the volume contribution, the
second is the surface contribution, the third is the
Coulomb energy, and the fourth is a correction to the
Coulomb energy due to the diffuseness of the nuclear sur-
face. The deformation energy for quadrupole deforma-
tion is (y =0 and only quadratic terms in p)

E =(2c A &c Z /g ) p
5

def g C2 4~

deformations, which implies that the amplitude of these
microscopic corrections will diminish as one will ap-
proach the saddle point corresponding to fission. For
such nuclear shapes, the classical single-particle trajec-
tories become chaotic, due to the presence of the neck,
which at the quantum level corresponds to a more or less
constant single-particle level density and absence of shell
effects. The shell effects will become important again
when the two fragments will separate. Qn the other
hand, the pairing can play a relatively important role
near the saddle point, due to the relatively high single-
particle level density (no shells), but the overall gain in to-
tal energy will amount only to a few MeV as usual. This
qualitative argument agrees with the numbers obtained in
Ref. 3.

One can see from Tables I and II that there is a better
agreement among the two sets of numbers at finite defor-
mations, which fact seems perfectly reasonable in such a
case. The agreement is also better for calcium, where one
can expect that the LDM is a more reasonable approxi-
mation. In estimating the LDM deformation energies we
did not take into account terms beyond second order in
p. Considering higher-order terms in p along with higher
multipoles will only make the liquid drop even less stiff
and, consequently, the LDM estimates in Tables I and II
are only upper estimates for large enough deformations.
The main correction term is very likely to be due to the
appearance of the saddle point along the path leading to
fission, and the energy deformation curve will be bent
downward. To a certain extent, all corrections beyond
second order in deformation, shell, and pairing contribu-
tions are model dependent. Their accuracy is defined by
the degree of sophistication of the theoretical scheme
used to estimate them, like particle-number projection,
projection of the total angular momentum, two-particle
interaction used, etc. The amplitude of the quadratic
term in deformation is, however, rather well defined by
the liquid drop model only.

In order to have an idea about the role of higher-order
terms, in the last column of each table we included also
the total energies calculated, using a sixth-order formula
in P due to Swiatecki. ' One must not take these num-
bers too seriously, since the relation between the quadru-
pole moment and P is not any more a linear one in such a
case, even though we used it implicitly, and also one can-
not expect the simpler formula (l) derived by Bertsch to
ensure a good estimate of the positions of level crossings.
As one sees, the higher-order terms in p correspond to a
certain softening of the deformation energy for large de-
formations. It is not obvious to us that such large defor-
mations can be accurately described in a Hartree-Pock
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calculation in a limited spherical basis, which can explain
why the deformations for large numbers of particle-hole
states are so different in HF and LDM calculations. The
energies agree much better, which can be attributed to
the fact that the HF method gives a variational estimate
of the energy. This will not ensure that the wave func-
tions will be accurately reproduced in a HF method.

A comparison between the liquid drop mass energy
formula and the Hartree-Fock results is perfectly in
place, since the last has been shown to reproduce the first
accurately, ' when using the Skyrme interaction. One
may think of performing a cranked Thomas-Fermi calcu-
lation for these nuclei and in this way to "reproduce" the
liquid drop energies for these deformations. In our
opinion, such a calculation is unlikely to change the con-
clusions which one can draw from the preceding esti-
mates. If one will consider corrections in A up to fourth
order, as M. Brack et al. ' did, practically the only con-
tribution to the total energy left unaccounted for will be
due to shell corrections. In order to make the calcula-
tions easier, one can first do a "standard" extended
Thomas-Fermi calculation' and, if desired, include the
higher-order terms perturbatively. Next, one can use the
Thomas-Fermi density in order to define the Hartree-
Fock potential and in this field compute the single-
particle wave functions. As shown by Bohigas et al. ,

'

such single-particle wave functions are practically identi-
cal to the Hartree-Fock ones.

We would like to make one more comment concerning
the deformability of the Fermi sphere in a real nucleus.
The qualitative analysis of Hill and Wheeler and
Bertsch was done within the Fermi-gas approximation.
However, one can expect a contribution to the stiffness of
the Fermi sphere from the interaction term too, due to
the finite range of the latter. In the Skyrme force, this is
accounted for through the so-called velocity-dependent
terms, which in turn lead to a renormalization of the nu-
cleon mass inside the nucleus. ' For most Skyrme sets,
the effective nucleon mass in nuclear matter is roughly
between 0.6 m and 0.9 m, where m is the free nucleon
mass. In this way one models with a zero-range force the
effects of a finite-range interaction. Since the effective

mass is smaller than the free nucleon mass (this is true at
least for the Hartree-Fock approximation with the
Skyrme interaction, which was used in Refs. 1 —3), the
corresponding local Fermi energy is higher in nuclear
matter than in a Fermi gas of the same local density,
which will make the Fermi sphere stiffer. One can fairly
well expect that the np-nh states found in Refs. 1 —4, if
they are optimal, must be characterized by a spherical
Fermi surface.

As one can see from our simple estimates using the
liquid drop model, the deformation energy increases
mainly parabolically with the number of particle-hole ex-
cited pairs. Higher-order terms in )33 do not lead to
dramatic changes, except for very large deformations in
the case of ' O. Shell effects and pairing are completely
neglected by us, but we do not expect it to modify largely
the main trend. Shell effects are present in a HF calcula-
tion and one has to have this in mind when comparing
the HF with LDM results. Shell corrections can lead to
the appearance of "yrast traps" and therefore to even
lower excitation energies in some cases. Pairing can play
a major role in lowering even more the excitation ener-
gies of certain states. This can lead to a near degeneracy
of states with significantly different deformations, and
one sees such effects in the calculations of Zamick et al.
One cannot expect to reproduce such fine effects within a
liquid drop model approach. However, mass formulas in-
cluding A, A, A ', and 3 terms seem to be able to
reproduce the total energy of nuclei extremely accurate-
ly' ' and the significant lowering of the potential energy
for large deformations, which can be generically thought
of as n p

—n h excitations, can be understood quite simply
within the LDM.
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