New rotational bands in $166H_0$

R. K. Sheline

Florida State University, Tallahassee, Florida 32306 and Physics Department, University of Kinshasa, Kinshasa XI, Zaire

P. C. Sood*

Florida State University, Tallahassee, Florida 32306

Baluba Mutshil, Butsana bu Nianga, and Lufungula Nkwambiaya Physics Department, University of Kinshasa, Kinshasa XI, Zaire (Received 24 March 1989)

The $K^{\pi}=1^-$ and 0^- bands from the $(\frac{1}{2}+1)$ [1] $\pm \frac{1}{2}$ [521]) configuration, and the $K^{\pi}=1^-$ and 2⁻ bands from the $(\frac{3}{2} + [411] \pm \frac{1}{2} - [521])$ configuration have been identified for the first time largely using known but previously unused gamma transitions from the 165 Ho(n, γ) reaction. A remarkable similarity is shown to exist between the level structures of the $K^{\pi}=1^{-}$ and 0^{-} bands from the $(\frac{1}{2}$ ⁺[411] $\pm \frac{1}{2}$ ⁻[521]) configurations in ¹⁷⁰Tm and ¹⁶⁶Ho.

Holmium in nature is monoisotopic ¹⁶⁵Ho. Therefore the odd-odd nucleus ¹⁶⁶Ho has been conveniently studied using neutron insertion reactions, such as the (d,p) reaction^{1,2} and especially the (n, γ) reaction, ³⁻³ using thermal neutrons, average resonance capture, polarized neutrons, and the (n, e^-) reaction. It has also been possible to study ¹⁶⁶Ho using the (t, α) proton pickup reaction¹⁰ on the stable target 167 Er. Finally the low spin states in ¹⁶⁶Ho have been characterized following the β ⁻ states in ¹⁶⁶Ho have bee:
decay of 81.6 h ¹⁶⁶Dy. ¹¹⁻

This prodigious experimental effort has led to the observation of 309 levels from which it is possible to construct 18 rotational bands.¹⁶ In this investigation we report on three more rotational bands or band heads involving 11 additional new levels and the reassignment of one rotational band. The rotational level structure for 166 Ho below 1250 keV, which includes all except two of these rotational bands, is presented in Fig. 1. The three new rotational bands and the reassigned band are shown in the shaded rectangle in the center of the diagram. The energies of the states, except those in the shaded area, in Fig. 1 are from Nuclear Data Sheets¹⁶ and the twoparticle configurations are from our recent analysis.¹⁷ The negative parity bands, shaded in Fig. 1, are-presented in more detail in Fig. 2.

Two quasiparticle states in an odd-odd deformed nucleus are created by adding an odd proton (Ω_n) and an odd neutron (Ω_n) to the deformed even-even core (with $Z - 1$ and $A - 2$). Each combination of Ω_p and Ω_n gives two rotational bands with $K^{\pm} = |\Omega_{n} \pm \Omega_{n}|$. The calculated energies of these rotational bands are approximately given by the expression

$$
E_K(\Omega_p, \Omega_n) = E_p(\Omega_p) + E_n(\Omega_n) + (\hbar^2/2 \mathcal{I}) [I(I+1) - K^2] - (\frac{1}{2} - \delta_{\Sigma,0}) E_{\text{GM}} - \delta_{K,0} (-1)^{\pi} \pi E_N .
$$
 (1)

The level structure in neighboring odd-proton and

odd-neutron nuclei is used to evaluate E_p and E_n , respectively. The inverse moment of inertia $(\hbar^2/2\mathcal{I})$ is obtained by adding small incremental contributions determined from neighboring odd-proton and odd-neutron nuclei to the inverse moment of inertia of the even-even core. The Gallagher-Moszkowski GM splitting energies E_{GM} between K^+ and K^- , and the Newby splitting energy E_N for the $K = 0$ bands can be obtained from existing experimental values, or if necessary, calculated assuming a zero range interaction.

Using this formalism for calculating the position of two-quasiparticle states in 166 Ho, we obtain 52 twoquasiparticle bands from the single-particle orbitals with the summed neutron and proton energies up to 1 MeV .¹⁷ The number of observed rotational bands is therefore even less than half of which we might expect in 166 Ho. This suggests that, within the existing data, there may be previously unidentified levels and rotational bands. It is quite clear where we might expect to find this additional level structure. Since reaction spectroscopy populates either neutron excited configurations or proton excited configurations, but not both neutron and proton excited configurations, we can expect that the most likely configurations to be missed would involve both excited proton and neutron configurations. All configurations in Fig. 1, except those in the shaded rectangle, which are first observed and/or assigned in this paper, involve either ground-state proton or neutron configurations.

If we look at the excitation spectrum in 165 Dy we find the two lowest neutron configurations are the 108-keV [521] and the 184-keV $\frac{5}{2}$ [512] above the $\frac{7}{2}$ ⁺[633] ground state. Similarly in ¹⁶⁵Ho the two lowest excited proton configurations are the 362-keV $\frac{3}{2}$ ⁺[411] and the 429-keV $\frac{1}{2}$ ⁺[411] above the $\frac{7}{2}$ ⁻[523] ground state. In zeroth order, therefore, the lowest-lying configurations with both excited neutron and proton configurations would be $(\frac{3}{2} + [411] + \frac{1}{2} - [521])$ at 470 keV with $K^{\pi} = 1$

FIG. 1. The band structure of ¹⁶⁶Ho below 1250 keV. Energies of most of the states are from Ref. 16. However, three of the bands in the shaded rectangle in the center of the figure are observed here for the first time and are presented in more detail in Fig. 2. The fourth band in the shaded area had previously been observed, but is reassigned in this paper. K^{π} values and Nilsson configurations are given under each band.

FIG. 2. The energies and γ decay patterns of the $K^{\pi}=1^-$ and 0^- bands from the $(\frac{1}{2} + [411] \pm \frac{1}{2} - [521])$ configuration and the $K^{\pi}=1^-$ and 2^- bands from the $(\frac{3}{2}+111+\frac{1}{2}-1521)$ configuration. The 373.1-keV $K^{\pi}=1^-$ band, assigned here as $(\frac{3}{2} + [411] - \frac{1}{2} - [521])$, had previously been assigned the $K^{\pi} = 1 - (\frac{1}{2} + [411] + \frac{1}{2} - [521])$ configuration. See text for details. An asterisk after a transition indicates that it has also been used elsewhere in the total ¹⁶⁶Ho decay scheme.

and 2⁻; ($\frac{1}{2}$ ⁺[411] $\pm \frac{1}{2}$ ⁻[521]) at 537 keV with K^{π} =1
and 0⁻; ($\frac{3}{2}$ ⁺[411] $\pm \frac{5}{2}$ ⁻[512]) at 546 keV with $K^{\pi}=4$ and 1⁻; and $(\frac{1}{2}$ ⁺[411] $\pm \frac{5}{2}$ ⁻⁻[512]) at 613 keV with K^{π} =2⁻ and 3⁻. The first-order calculations of the energies for the band heads, as determined using Eq. (1), are given in Table I.

It is interesting to note that the $K^{\pi}=1^-$ band beginning at 373.¹ keV with rotational band members up to 'the 4⁻ has been assigned^{6,16} as the $(\frac{1}{2}+[411]+\frac{1}{2}[-[521])$ configuration of Table I. However this band is seen to have very regular energy spacings, whereas we find that in the ground state of ¹⁷⁰Tm the $K^{\pi}=1^-$ band with the configuration $(\frac{1}{2}$ ⁺[411]+ $\frac{1}{2}$ ⁻⁻[521]) coriolis couples with, and therefore mirrors to some extent, the energy staggering caused by the Newby shift of the $K^{\pi}=0^{-}$ band having the same configuration but with antiparallel coupling. We expect a similar effect for the corresponding band in 166 Ho. In consequence this configurational assignment

 (5°) 559 (5°) 575.0

$$
1/2^+[411] \pm 1/2^{-}[521]
$$
 $1/2^+[411] \pm 1/2^{-}[521]$

FIG. 3. Comparison of the level structure of the $K^{\pi}=1^{-}$ and 0⁻ bands of the $(\frac{1}{2}$ ⁺[411] $\pm \frac{1}{2}$ ⁻[521]) configuration of ¹⁷⁰Tm (left) with 166 Ho (right). To facilitate the direct comparison 350.61 keV has been subtracted from all of the level energies in 166 Ho in this figure.

for the 373.1-keV $K^{\pi} = 1^{-}$ band must be seriously quesor the 373.1-kev $K = 1$ band must be seriously questioned, although the existence of this $K^{\pi}=1^-$ band is not in doubt.

One way to confirm this suspicion of a wrong configurational assignment for the 373.1-keV $K^{\pi} = 1$ band is to identify the correct $K^{\pi} = 1^{-}$ band. Since the low-energy (n, γ) and (n, e^-) studies are expected to populate states with excited neutron and excited proton configurations, we look at the existing low-energy γ and electron transitions following neutron capture in ¹⁶⁵Ho. The unusually high precision and reasonable completeness of the low-energy bent crystal γ -ray transitions³ can be used to determine new energy levels especially when they are based on the firmly established existing levels in 166 Ho. The energy coincidences of a number of energy loops give us confidence in the method.

The application of this method resulting in three new bands or band heads is shown in Fig. 2. Also shown is the existing $K^{\pi} = 1^{-}$ beginning at 373.1 keV. All γ -ray transitions are shown, including those previously and newly assigned in the $K^{\pi}=1^-$ band beginning at 373.1 keV. Figure 2 identifies the configurations and the corresponding bands for all four level structures. They are $\frac{1}{2}$ +[411] $\pm \frac{1}{2}$ -[521]) with a $K^{\pi}=1$ band beginning at 350.61 keV and a $K^{\pi}=0^-$ at 525.37 keV, and $\frac{3}{2}$ ⁺[411] $\pm \frac{1}{2}$ ⁻[521]) with a K^{π} =1⁻ at 373.08 keV and a K^{π} = 2⁻ band head at 562.94 keV.

In Fig. 3 the level structure of the $(\frac{1}{2} + [411]\pm \frac{1}{2} - [521])$ configuration for the nucleus 166 Ho, observed and assigned for the first time in this study, is compared with that for the nucleus 170 Tm where it is the ground state configuration and has previously been assigned.¹⁸ In order to make a direct comparison with 170 Tm, 350.61 keV has been subtracted from all 166 Ho level energies. The similarity between the level structures in 166 Ho and 170 Tm in Fig. 3 is indeed remarkable, and gives us additional confidence in the 166 Ho assignments. The Gallagher-Moszkowski splittings between the $K^{\pi}=1^{-}$ and 0^{-} bands in the two nuclei differ by only 25 keV. Even more remarkable is the extremely similar Newby splitting between the odd and even members of the $K^{\pi}=0^-$ bands. Finally, this Newby splitting is transferred into the $K^{\pi}=1^-$ bands via the Coriolis force resulting in an almost identical staggering in both nuclei.

The success in identifying these three new bands gives us hope that we might find other low-lying configurations with both excited neutron and proton configurations. The best opportunities for these observations probably lie in the third and fourth configurations listed in Table I, namely the $(\frac{3}{2}^{+}[411]\pm\frac{5}{2}^{-}[512])$ with $K^{\pi}=4^{-}$ and 1 and $(\frac{1}{2} + [411] \pm \frac{5}{2} - [512])$ with $K^{\pi} = 2^{-}$ and 3^{-} . All four of these bands are reasonably expected to be strongly populated in the (n, γ) reaction and their band heads should be observed in the energy region between \sim 400

- *Permanent address: Physics Department, Banaras Hindu University, Varanasi 221005, India.
- ¹G. L. Struble, N. Shelton, and R. K. Sheline, Phys. Lett. 10, 58 (1963).
- ²G. L. Struble, J. Kern, and R. K. Sheline, Phys. Rev. 137, B772 (1965).
- ³H. T. Motz, E. T. Jurney, O. W. B. Schult, H. R. Koch, V. Gruber, B.P. Maier, H. Baader, G. L. Struble, J. Kern, R. K. Sheline, T. von Egidy, Th. Elze, E. Bieber, and A. Backlin, Phys. Rev. 155, 1265 (1967).
- 4I. V. Estulin, A. S. Melioransky, and L. F. Kalinkin, Nucl. Phys. 24, 118 (1961).
- 5M. K. Balodis, V. A. Bondarenko, P. T. Prokofjev, and L. I. Simonova, Nucl. Phys. 66, 325 (1965).
- L. M. Bollinger and G. E. Thomas, Phys. Rev. C 2, 1951 (1970).
- ⁷K. D. Schilling, L. Kaubler, W. Andrejscheff, T. M. Muminov, V. G. Kalinnikov, N. Z. Marupov, F. R. May, and W. Seidel, Nucl. Phys. A299, 189 (1978).
- 8J.J.Bosman and H. Postman, Nucl. Phys. A320, 260 (1979).
- ⁹T. J. Kennett, M. A. Islam, and W. V. Prestwich, Phys. Rev. C

and \sim 750 keV. However, in the absence of any distinctive or corroborative features for these bands, their identification from the presently available data alone can only be speculative and is not attempted here.

Support of the National Science Foundation under Contract PHY86-05032 with Florida State University is gratefully acknowledged.

30, 1840 (1984).

- 0R. A. Dewberry, R. K. Sheline, R. G. Lanier, and R. Lasijo, Z. Phys. A 307, 351 (1982).
- ¹¹R. G. Helmer and S. B. Burson, Phys. Rev. **119**, 788 (1960).
- ¹²J. S. Geiger, R. L. Graham, and G. T. Ewan, Bull. Am. Phys. Soc. 5, 255 (1960); in Proceedings of the International Confer ence on Nuclear Structure, Kingston, 1970 (University of Toronto, Toronto, Canada, 1960), p. 610.
- ¹³R. Gunnink and A. W. Stoner, Phys. Rev. **126**, 642 (1962).
- ¹⁴V. Brabec, O. Bergman, Y. Grunditz, E. Aasa, and S. E. Karlsson, Ark. Fys. 26, 511 (1964).
- ¹⁵T. Badica, C. Ciortea, A. Petrovici, and I. Popescu, Nucl. Phys. A331, 75 (1979).
- ¹⁶A. Ignatochkin, E. Shurshikov, and Yu. Jaborov, Nucl. Data Sheets 52, 365 (1987).
- ¹⁷P. C. Sood, R. K. Sheline, and R. S. Ray, Phys. Rev. C 35, 1922 (1987).
- ¹⁸R. K. Sheline, C. E. Watson, B. P. Maier, V. Gruber, R. H. Koch, O. W. B. Schult, H. T. Motz, E. T. Jurney, G. L. Struble, T. von Egidy, Th. Elze, and E. Bieber, Phys. Rev. 143, 857 (1966).