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We present a statistical approach to the problem of multifragmentation in heavy-ion collisions.
We begin with a generalized Sakur-Tetrode expression for the entropy. Through it we find expres-
sions for the configuration weight functions. Fluctuations in the configurations are shown to be
Poisson-like. Fragmentation yields are calculated by minimizing the total information subject to
conservation of energy and baryon number. We work within the framework of a liquid-gas phase
transition, and include a study of the effects of the nuclear surface (including a surface curvature
correction), the Coulomb energy, and the internal excited states of the drop. Coulomb effects are in-

vestigated using both a simple A ' ' dependence (as in the liquid-drop model} and a more complete
expression which includes the presence of the surrounding vapor. We adopt a virial expansion for
the equation of state and have found an analytic solution for the coexistence curve in infinite, un-

charged rnatter. The case of charged, finite matter is also discussed. . By identifying the clusters with
the nuclei which are detected experimenta11y we can calculate fragment yields over a range of tern-

peratures. We do so for a representative case and discuss the results.

I. INTRODUCTION

Heavy-ion collisions offer the possibility of studying
new phases of nuclei ~ Two new phases are of current in-
terest. One phase is the low density, moderate tempera-
ture region near a liquid-gas phase transition. Medium
energy heavy-ion collisions, in which the excitation ener-

gy per nucleon is near the separation energy, are a useful
probe of this region. The other phase is the high-density,
high temperature region around a quark-gluon plasma-
hadron phase transition. Ultrarelativistic heavy-ion col-
lisions are being used to study such a transition. In both
cases one can study the transition by looking at the distri-
bution of products in composition and momentum space.
This paper is concerned with the liquid-gas transition,
and we wi11 be concerned primarily with the distribution
in composition of the final products.

Recently, considerable interest has centered around the
idea of nuclear multifragmentation. ' Properties of nu-
clear drops in the presence of a vapor of nucleons are also
of interest in astrophysics. ' For systems whose temper-
atures are far below the critical point one has the
Weisskopf evaporation picture, recently extended by
Friedman and Lynch. " For temperatures above the crit-
ical point one has a gas of nucleons plus recombined clus-
t $12-15

Two key papers on multifragmentation came from a
Purdue-Fermilab collaboration, ' which discovered a
power law falloff in the distribution in composition of the
observed species as a function of mass number. This
power law falloff had been predicted by a droplet model
theory of condensation developed by Fisher. ' In
Fisher s model the droplet mass distribution near a criti-
cal point fell as 2 ' where ~ is the critical exponent.
This similarity has prompted much activity in models of
heavy-ion collisions based on phase transitions.

In the transition region between liquid evaporation and

gas recombination, the nuclear system has a critical
point. Near the critical point the droplet yield distribu-
tion should show the phenomenon of critical opalescence,
and many nuclear fragments of varying sizes should be
present in the distribution in composition. Fluctuations
wi11 also be large in this region of temperature. A theory
which bridges the gap between the results of the evapora-
tion model and the gas recombination model is of impor-
tance for medium energy heavy-ion collision. Several ap-
proaches to this problem are now being developed, in-
cluding thermodynamic models.

If one assumes that the colliding ions form a thermal-
ized vapor of nucleons, then one can apply a statistical
analysis to describe the composition of the system. In
this paper we discuss nuclear multifragmentation within
the framework of a grand canonical model. We then find
the distribution of nucleons which maximizes the entropy
as it is given by a generalized Sackur-Tetrode law includ-
ing internal excitations of the clusters, and show that
Auctuations around this most probable distribution are
given by a Poisson-type expression. Our model includes
volume, surface, and surface curvature correction terms.
In addition we have calculated the Coulomb energy in a
mean-field which includes the effects of the vapor. We
discuss the form for each of these terms. To r'elate densi-
ty and temperature we start with a virial expansion for
the equation of state. Applying the Gibbs criteria for
phases in equilibrium allows us to find the coexistence
curves. It turns out that at the critical temperature these
curves are identical to those in a ferromagnetic transi-
tion.

Conservation of energy and mass number are incor-
porated through the method of Lagrange multipliers.
Using our constraints and the requirement that the entro-
py be maximized we have calculated the expected yields
in a heavy-ion collision as a function of fragment mass
number. Our calculations were done with different forms
for the Coulomb energy so that we could study the im-
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portance of the Coulomb term in determining fragment
yields. The results show the importance of including the
vapor and the effects of temperature on the yields.
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e~ (kT)

kT
(2.1)

II. MAXIMUM ENTROPY APPROACH

We begin with a gas of Ao nucleons and ask how it will
partition itself into clusters. These clusters we shall asso-
ciate with bound nuclei. Figure 1 is a schematic illustra-
tion of this process. From within a gas of radius R and
charge density g~(z) forms a cluster of nucleons of radius
R& and charge density g&(z). This cluster is a liquid drop
immersed in a vapor. The gas density does not change,
so that the radius of the system shrinks to A . Although
the figure shows only one cluster forming, we assume the
process of clustering occurs simultaneously throughout
the gas. This allows us to assign the same temperature to
every cluster. Eventually all the nucleons in the gas are
contained in clusters from size one to A o.

Whether or not clustering is actually a prompt process
is an open problem which we do not consider here. In
this paper we restrict ourselves to the question of which
size clusters tend to form. We shall try to answer it by
identifying the most probable of all the multitude of
configurations into which the gas could cluster. This we
can accomplish by maximizing the entropy subject to
conservation of baryon number, charge, and energy. (In
this paper we will assume Z = A /2 so that conservation
of charge and baryon number are equivalent. ) The
answer will give us the relative yield of nuclei produced
in heavy-ion collisions. By repeating the calculation over
a range of temperatures and by using different forms for
the energy we hope to unravel some of the physics in-
volved in nuclear multifragmentation.

We begin with the entropy as given by the Sackur-
Tetrode expression, ' which we have generalized to in-
clude internal excitations of the clusters. The generalized
form is

n=0
(2.2)

with e„(A) =0 for the ground state and the sum over the
n =0 ground state and the n = 1,2, . . . , excited states of
the cluster A. g, (n) is the spin degeneracy factor, which
is related to the spin J of a given state n by g, ( n ) =2J + 1.
A.T=h /(2rrM„kT) / and comes from the translational
motion of the cluster. The mass of the cluster is
Mz =m A. The mean excitation energy e z ( T) is

—E„(T) /hTee "
g, n

e g(T)= —~„{T)/kT
e "

g, n

(kT) d
Z;„, d (kT) (2.3)

Both Z;„, and e * are required in Eq. (2.1) in order to
get the correct behavior of the specific heat. The specific
heat at constant volume is

BS'a. ,=gN„—k+

(2.4)

The first term is the ideal gas specific heat while the
second term is the contribution from internal excitations.
For example, for an oscillator spectrum the mean excita-
tion energy is

g~p Ve
—nbv/kT

V is the volume of the system and X~ is the number of
clusters of A nucleons which are present. Z,„,( A) is the
internal partition function of the cluster and e„(T) is the
energy of internal excitations. The partition function is
given by

Without drop With drop

—nh v/kTe
(2.5)

Eo= E&(vo .) E = E (eked)+E (d@v)+E (vyv)

where x =e " " . For kT)&hv, e*„=kT and
Cv=g~ ,'N„k, as are wel—l known from equipartition ar-
guments.

The value of n runs from 0 to [ A /N~ ] where [x] is
the integer part of x. The choice of the set of %~ 's is ob-
tained by maximizing S subject to two constraints. The
first constraint fixes the nucleon number to be A o

BE =E —E
o

Ao= g AN„,
3 =].

(2.6)

FICx. I. Cluster formation in a vapor of nucleons. (a) shows a
gas of nucleons with no clusters. In (b) a cluster of nucleons has
coalesced into a liquid drop. When the cluster forms, the aver-
age density of the system increases so that the new radius R~ is
smaller than the initial radius R~.

Ao

E= g ( ', kT+M„BF( A)+—e*„(T))N„—.
2 =1

(2.7)

while the second constraint fixes the total energy to be E
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BE( A) is the ground-state binding energy of nucleus A.
To obtain the maximum entropy we form

1 — N ~
—).A 0 +E / T0

A.
(2.12)

h =S —X A() —+AN~ (2.8)

and find that choice of NA's for which the variations
6h =0 and 6E =0. The result is

P A. A —(M~ —Be( A))/T
A e int

T
(2.9)

The Lagrange multiplier k is determined by the con-
straint equation (2.6).

At this point we pause to mention fluctuations. Be-
cause the number of particles in our system is small on a
thermodynamic scale, there may be large Auctuations in
the value of the thermodynamically determined variables.
To get some measure of their importance we look at the
multiplicity weight function, ~, which is a measure of the
probability that a certain configuration will occur. The
entropy S and weight function co are related by co=e
Substituting Eq. (2.1) for S we obtain

5 /2 1n't
exp(e*„(T)N „/k T ) .

(2.10)

The term 1/A, T( A ) is the translational partition function.
Using Stirling's approximation N!=+2mNN e, the
weight function ~ can be written as

e ~ (. T))/T vN. „~2~N
co — e VZint Ztrans

A N„t
(2.1 1)

The above choice of N„s which maximizes S [given by
Eq. (2.9)] also maximizes a).

The N~! in Eq. (2.11) is a counting factor associated
with the correction for the Gibbs paradox. Volume, tem-
perature, internal excitations, binding energy, and spin
effects are also present in this expression. They will be
discussed further in the next section.

Neglecting +2mN„compared to N„! and using the
result of Eq. (2.7) for F., Eq. (2.9) for N„, and the con-
straint condition Eq. (2.6), we have rewritten co in a
Poisson-type formula. ' Specifically, co is

This form for co makes it easy to study the relative impor-
tance of Auctuations away from the most probable parti-
tion. Again, using Stirling s approximation we get

—N~ —
A, Ao+E/kTa)= e e

= rrN. exp —gN~ —
A, A o+

Finally, since AN& =m (the multiplicity)

N—XAO+E/kT

Thus, the ratio of the relative weight of a configuration
with NA nuclei of size 3 to the maximum weight of all
possible configurations is

e
coI Na I „N~

= rIN. „" p —g(N„N)—
(2.13)

III. ENERGY OF A NUCLEUS

To explicitly find the NA's we need to know the energy
of a nucleus. The free energy F=U —TS, so that at
T =0 the energy and free energy are equal, and the inter-
nal free energy of a nucleus becomes the binding energy
of a nucleus with 3 nucleons. For the T =0 binding en-
ergy we will take the Myers-Swiatecki expression for a
spherical nucleus

Here Am is the change in the multiplicity:
Am =g(N„N„). Thu—s, we can determine the relative
importance of a particular configuration of NA's knowing
only the NA's. One must remember that changes in the
cluster numbers are linked by over-all baryon number
conservation: Ao=+ AN„. A fluctuation in the num-

ber of clusters of, for example, size three must be com-
pensated for by a change in the number of clusters of
another size (including free nucleons). Number fluctua-
tions of each cluster size are therefore linked.

—Z2 2

B (A)=a A —a A —a A' —a Z A ' — A — 'A
C sy + 2 sy (3.1)

where the volume term a, =15.96 MeV, the surface term
a, =20.69 MeV, the Coulomb term a, =—', e /ro=0. 73
MeV, the volume symmetry term a, =36.8 MeV and the
surface symmetry term asy 17 8 MeV. At T=O the
curvature correction term ak is very small and hard to
extract from known binding energies, therefore at T =0
it is set equal to zero. In this paper we will neglect the

I

effects of the symmetry terms and consider only volume,
surface, and Coulomb effects and the curvature correc-
tion term.

For a heated liquid drop the energy is replaced by the
free energy and the coefficients of the liquid drop expres-
sion become temperature dependent. Specifically we
write
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F(T)=Fi (T)+Fs( T)+Fc( T)+F1,(T),
where Fv is the volume free energy, Fz is the surface free
energy, Fc is the Coulomb free energy, and Fk is the cur-
vature correction term to the free energy. We now con-
sider each of these terms separately.

A. Volume term

Poadopt, includes an exponential decrease e where
13o=1/kTO is a limiting temperature. The partition
function then becomes

QkTTO /( T + To )

Z,„,= fp(e)e ~'e ' de=cv'~
akTTO/( T+ To)

(3.6)

The volume term represents all energies which go
linearly with A. In a Fermi gas model it includes the
internal energy of the nucleus as well as the binding of
the nucleons. To calculate the internal energy we start
with the level density of excited states of energy e in a nu-
cleus of size 3 (Ref. 21).

and the mean excitation e ~ is then

Tp
e *„=a(kT)

p

The bulk free energy is given by the expression

(3.7)

2&acp(e)=, ,~
e

a
(3.2) 2 ToFv= —a„A — (kT) T+ Tp

= —a, (T)A, (3.&)

Here c =&a/12. a = 2/eo is related to the density of
states at the Fermi energy by a =(~ /6)(dnjde),

F
For a Fermi gas (dnjde), , =32/2e~ so a =(~ /

F
4ep)A and e0=4e~ j'Ir . In a harmonic oscillator descrip-
tion dn /d e equals the degeneracy of the last shell divided
by the spacing hv and a = 3 /10 MeV. Surface correc-
tions to a have been discussed by Fai and Randrup, these
change a to

a= 1—
8 M.V

with

(kT)
a, (T)=a, +

Ep

TQ

T+ TQ
(3.9)

The temperature dependences of Z;„, and e * are now
bounded, reaching limiting values

akTO

lim Z;„,=c&~ and lim F*=a(kTO)r- '"' ak To 7 ~ oo

akT
Z = p(e)e ~'de=c&~int akT

(3.3)

The mean excitation energy is then

with k =0.8.
In a Fermi gas model the quantity ep is about twice the

experimental result, with op=16 MeV in the model and
up=8 MeV from experimental level densities. ep is also
related to the kinetic energy per nucleon through
ez =—', Ez. For a Fermi gas with Ez =20 MeV,
eo=(20/3~ )E~ =13.52 MeV.

From a saddle point integration we find the internal
partition function

B. Surface term

When a nucleus is heated, nucleons evaporate from it
and form a vapor; the boundary separating the nucleus
from this vapor has an associated surface energy. As the
temperature is increased, the density of nucleons in the
vapor increases while the density of the liquid decreases.
Eventually a temperature is reached where the liquid and
vapor densities are equal and a surface no longer exists
between the liquid and vapor. At this critical tempera-
ture T, the surface energy must go to zero. Furthermore,
in a mean-field theory it should go to zero as

~ T, —T
~

Here we take the surface free energy to vary with tem-
perature as

(kT) = A (kT), (3.4)
Z;„, Bp eo 4eF

where P= 1 /kT. The bulk free energy then goes to

(kT)~Fv= —a, A a(kT) = — a, +-
Ep

(3.5)

This is the expression for the bulk free energy used by
Bondorf, et al.

The level density as given by Eq. (3.2) has no cutoff,
with the result that the partition function increases ex-
ponentially with temperature as e' /akT. While this
may model the behavior of nuclei at low temperatures,
the behavior at high temperature requires the introduc-
tion of some cuto6' procedure. Most cutoA' procedures
are somewhat arbitrary. One prescription, which we

Fs=4~R o(T),

with the radius of the nucleus R =rp A ' and the surface
tension coefficient o(T) given by

4mroo (T)=a, 1+—3 T T
2 T. T.

(3.10)

For low T the surface free energy varies quadratically
with T, as predicted by Thomas-Fermi theory. For T
near T, it goes to zero as ~T, —T~ . At T =0, Fs
equals the surface energy term in the liquid drop binding
energy, thus a, in Eq. (3.10) is the same as a, in the
Myers-Swiatecki mass formula, Eq. (3.1): a, =20. 69
MeV.
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C. Curvature energy term

In the Myers-Swiatecki generalization of the
Weissacker mass formula, the term proportional to A '

is a curvature correction term. We note here that
= lnA for A =10 to 300, so that one could have

used a ln 3 behavior as well. At low temperatures these
higher order terms, either A'~ or lnA, are hard to ex-
tract from known binding energies since the larger
volume and surface terms dominate the mass formulas.
Near a critical point, however, the higher order terms be-
come important.

In the Fisher droplet model the curvature energy near
a critical point is taken to be

drop charges interacting with each other is still

E (dd)= — =—g'(Z)3 Z2e2 3 2 4m
c 5 R g

1 3 1R (3.12)

Ec(u u ) = —g, (Z)gs(Z)
3 2 4m

2

XRI (R —RI)(2R +3RI), (3.13)

and the Coulomb energy of the vapor charges interacting
with each other is

The Coulomb energy of the charges in the drop interact-
ing with those in the vapor is

Ik =~kT lnA (3.11)

and results in a curvature correction to the entropy S.
(Recall F=U —TS.) r is not a free parameter, but is
determined by critical exponent theory. In a mean-free
theory z=2 —,'.

D. Coulomb term

For an isolated sphere with uniform charge Ze, the
Coulomb energy is simply

3 Z e

with R =r0A ' . When a charged nuclear liquid drop is
heated, a vapor forms and surrounds the drop. Since the
vapor contains protons, the Coulomb energy is modified
by the interaction of the localized liquid drop with the
vapor. The total Coulomb energy involves the interac-
tion energy of charges inside the drop with each other,
Ec(dd), charges inside the drop with charges in the va-
por, Ec(d v), and charges in the vapor with each other,
Ec(uu). Let g&(Z) be the charge density of the liquid
drop, g (Z) the charge density of the gaseous vapor, RI
the radius of the liquid drop, and R the radius of the va-
por, as shown in Fig. 1(b). The Coulomb energy of the

Ec(uu) =—gs(Z)
3

(R —Ri)

X(Rg+R()(Rs+R RI+2R( ) . (3.14)

Z0eE (uu )=-c 0 0
g R0

2

=—g'(Z) (R')' .
g 3 g (3.15)

The vapor density is understood to be the same with and
without the drop. Since the drop is more dense than the
vapor Rg )Rg The fluctuation in the Coulomb energy
caused by the formation of the drop is then
5Ec =Ec(dd )+Ec(du )+Ec(uesv ) —Ec(uouo),
which can be rewritten as

The total Coulomb energy is Ec =Ec(d d )

+Ec(du)+Ec(uev). In Eqs. (3.13) and (3.14) we let
the nucleus form at an arbitrary point inside the vapor
and then average over the volume of the vapor.

Figure 1 also illustrates the Coulomb energy Auctua-
tion when a drop is formed from and in a uniform vapor.
Let R be the radius of the vapor without the charged
drop and Z0e be the total charge of the vapor, as shown
in Fig. 1(a). Then the Coulomb energy of the vapor alone
is

5Ec=—(ye )'
I R,'(p, —

p )[R,'p, +p (R '+ R R, —2R,')]—p'[(R )' —R ']I, (3.16)

p1 and pg are the matter densities in each phase, and
y=Z/A so that g&=yepi and gs=yepg. In this paper
we will take y= —,

' for simplicity. Note that in the limit

p1=pg, then R =Rg and 6Ec—+0, thus the Coulomb
Auctuation goes to zero at the critical point.

The temperature dependence of the Coulomb energy
can be established by considering p1 and p to be the den-
sities in a liquid-gas phase transition. For such a situa-
tion p1 and p are determined as the endpoints of a
Maxwell construction in a pressure versus volume per
particle (1/p) plot of the nuclear equation of state. In
Sec. IV A we present a simple analytic model of such a
phase transition. For now we give the results for p1 and

pg

pi = =—', —
—,'-T+ —,'t/( I —T)(1+T/3)

C

(3.17)

ps = = —,
' —

—,
' T —

—,'+( I —T)(1+T/3),

where the reduced temperature T=T/T, and p, is the
critical density of the system. These results are discussed
further in Sec. IV A. Note that they depend only on the
ratio of T/T, .

Using the above equations we calculate the Coulomb
energy of a drop imbedded in a vapor as follows. Cziven
the reduced temperature T and critical density p„ the
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2Z/—'mR l
pcpt

Once R& is determined, we can find R from

(3.18)

—4~(R ' —R,') =

To get R we solve

2(ZO —Zi )

pcpg
(3.19)

drop and vapor densities p& and p are determined by the
coexistence curve endpoints. R& is determined by

energy of a nucleon, and pp=0. 16 fm for the ground-
state density of a nucleus, then ap=266. 7 MeV-fm and
a3 =572.92 MeV-fm, so kT, =20.69 MeV and

p, =0.078 fm
The endpoints of the Maxwell construction line are

easily determined. In a P-V diagram, it is drawn so that
the shaded areas are equal, as illustrated in Fig. 2. The
Gibbs condition of phase equilibrium, equality of the
chemical potentials and pressures between the phases, is
automatically satisfied by this construction. The pressure
equality gives

2Zp—'~(R ) =
3 g

pepg

P kT —apP +2a3P =P(kT —app)+2a3p(,
(3.20)

while the chemical potential equality results in

(4.2)

In these equations we have let y=Z/A =
—,'. Then the

Coulomb energy Ec and Auctuation 6EC when a drop of
charge Z& forms in a vapor of charge Zp —

Z& follow from
Eqs. (3.12) through (3.16).

IV NUC. LEAR LIQUID-GAS PHASE TRANSITIONS

A macroscopic description of the appearance of a
liquid-gas phase transition appropriate for heavy-ion col-
lisions has been discussed by Bertsch and Siemens. In
their approach, a nuclear collision first produces
compressed and heated nuclear matter. The matter then
expands isentropically until the system enters the unsta-
ble region of the pressure-density phase diagram. At this
point instabilities can grow and split the system into a
liquid and gas phase, the endpoints of the Maxwell con-
struction line in the phase diagram. Again, a state of
lowest free energy is produced. In our scenario the sys-
tem never enters the unstable region. Instead it expands
into the metastable region, at which point we get a
liquid-gas phase transition.

A. A simple model and its ferromagnetic correspondence

We start with a very simple expression for our equation
of state, which is both easy to work with and useful in il-
lustrating the gross behavior of the system. The equation
of state that we use contains three terms. One term
represents the pressure from the kinetic motion of the nu-
cleons and is taken to be pkT, where p is the density. The
other two terms come from the interaction energy, with
one term attractive and the other term repulsive. (The
repulsive term manifests itself at higher densities and
represents the short range repulsion between nucleons. )

Specifically, we have

pt +pg~ 2 l pt pg (4.4)

allows us to rewrite the pressure and chemical potential
equations as

i1~=3[o.(2 —o. )
—T], (4.5)

—=tanh (2 —o. )

CT T
(4.6)

Here we have used the equality ( —,')ln[(1+x)/(1 —x)]=
tanh 'x.

The coupled equations for g and o. can be solved nu-
merically and the results used to find p& and pg. The nu-
merical solutions are plotted as solid lines in Fig. 3. The
dashed lines are plots of the equations

kTlnps —2aops +3a3ps = kTlnp& —2aopi+3a3p&, (4.3)

l stands for the liquid phase, g for the gas phase. In the
last result we have used the Gibbs-Duheim equation
dp=(1/p)dP for dT=0. Defining reduced quantities
p =p/p„T= T/T„and

P —pkT apP +2a3P (4.1)

ap and a3 are parameters of the theory. If we assume a
Skyrme interaction among the nucleons we can write
ao=(2E&+4Ez)/po and a3=(E&+ ,'Ez)/po. (This—
equation of state and the parameters ap and a3 are dis-
cussed more fully in Ref. 22. ) The critical point occurs at

p and T for which BP/Bp=0 and 3 P/0 P=O. The criti-
cal temperature is kT, =ap/6a3 and the critical density
is p, =ap /6a 3. If we take Ez = 8 MeV for the binding
energy per nucleon, E~ =-20 MeV for the average kinetic

FIG. 2. P-V diagram for a liquid-gas phase transition. The
Maxwell construction line is parallel to the volume axis and is
drawn such that the areas of the shaded regions are equal. It
gives the pressure PT at which the phase transition occurs. The
intercepts of the Maxwell line with the pressure volume curve
give the volumes of the liquid ( V& ) and gas ( Vg ).



STATISTICAL MODEL OF NUCLEAR MULTIFRAGMENTATION

o =
—,
' ,'—T—, rl=+ —„'(1—T)(3+T) . (4.7)

M @AM=tanh-
Xp T

As can be seen, these approximate solutions are exceed-
ingly accurate. [In fact, they exactly satisfy Eq. (4.S), but
only approximately satisfy Eq. (4.6). The solutions have
the added feature that the behavior of o and q near
T= 1, the critical point, is that which is predicted by crit-
ical exponent theory in a mean-field approximation. ] If
we use Eqs. (4.7), then p& and pg are given by

(4.8)

m
m =tanh

r
(4.9)

Comparing Eqs. (4.6) and (4.9) shows that for o =1
(T=T), il and m obey the same equation. Thus, there
exists a strong correspondence between g, the cord length
between the Maxwell endpoints, and m, the spontaneous
magnetization. The behavior of o. is actually
cr =3/2 —T/2 over a large range of T, so the liquid-gas
transition equations are somewhat more complicated.

Defining a reduced magnetization m =M/Np and a re-
duced temperature t = T/p, AN =T/T„ the previous
equation becomes

These are the equations introduced in Sec. III D.
Equation (4.6), for the behavior of the cord length rl, is

in many ways similar to that for the magnetization M in a
ferromagnet. By letting X be the number of atoms which
can have magnetic moment +p in the presence of an
external field B, the net magnetization M is

B. Surface and Coulomb eft'ects

Surface effects can be included in the above prescrip-
tion by considering the change in the Ciibbs conditions
due to the finite size of nuclei. Specifically, the
differences in liquid and vapor pressures across the
boundary are related to the surface tension by

M =Xptanh pB
T

In a mean-field theory of ferromagnetism B =A,M and the
equation that governs the spontaneous magnetization is

(4.10)

where R is the radius of the drop and o ( T) is the temper-
ature dependent surface tension. No change in chemical
potential across the surface occurs in this case. When we
include Eq. (4.10) in the right-hand side of Eq. (4.2) then
the equations for g and o. become

~=tanh (2—cr )

0 T
(4.1 1)

and

T 2cr+cT + —=
i

(cr+g)'icr( T) (4.12)

M
Q)

C

C)

0.2 0.4 0.6 0.8

FIG. 3. Reduced densities g and o. vs T/T, in an uncharged
vapor with no surface energy. The solid lines show the numeri-

cal solutions of the transcendental equations for q and o., the
dashed lines plot the approximations to g and o given in the
text.

Here A is the mass number of the drop and o(T) is
a dimensionless surface tension given by cr( T)
= cT( T)(4m. /3)' /( T,p, ) Near the. critical point
o ( T)~0 and one recovers the earlier results as required.
The finite size effects change the shape of the coexistence
curve, as was first noted by Bonche and Levit. Our
analysis gives an explicit expression for this change. Fin-
ite size effects on the critical point were discussed in Ref.
22.

One can also consider Coulomb effects on the coex-
istence conditions ' and on the critical point. If we
ignore interactions with the vapor and take the Coulomb
energy of a nuclear drop to be that of an isolated sphere,
then E&=3/5Z e /R. The analysis in this case is sim-

ple, but the final equations for q and o. are somewhat
complicated. The Coulomb interaction produces a con-
tribution to both the chemical potential and pressure
differences across the surface. The equation coming from
the chemical potential and involving the hyperbolic
tangent now reads
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gg —2g+ Ttanh
0

2

C

4m

3
p Z2

(o.+g)' (4.13)

The pressure equation now becomes

2

T—2o. +o +
3

1/3
o(T) 1 4~
A!/3 +n

2 3
(4. 14)

where the first term on the right-hand side of the previ-
ous equation comes from the surface tension, while the
second term is the Coulomb contribution.

In the analysis of Bonche and Levit, based on this sim-
ple form for the Coulomb interaction, the system devel-
ops a Coulomb instability before the critical point is
reached. Their solution shows a system of bound neu-
trons left behind with a vapor of protons pressed against
the walls of a box in which the calculations are per-
formed. Here we point out that symmetry forces, which
want to restore the equality of protons and neutrons, will
resist this type of solution. Moreover, symmetry forces
make a system of neutrons unbound, as can easily be seen
from the Weiszacker mass formula. An analysis of the
effect of Coulomb forces including drop-vapor interac-
tions on the coexistence curve will be given in a future
study. Now, however, we shall study their effect on nu-
clear clustering and fragmentation yields.

X P z
T

eff
(5.2)

where

x = exp

—P, ( T))/kTy=e
/3c /k T

z —e

m —a, kT
kT E'p

(5.3)

I

the temperature dependent surface tension coefficient.
pc(T)/I / is the Coulomb energy with pc =(—,'y e /ro).
The internal partition function is given by Eq. (3.3),
Z;„,=(c')/rr)e'" /akT. Thus, we can write X„as

V. GROWTH OF LARGE CLUSTERS
IN A MAXIMUM ENTROPY APPROACH

A. Conditions for growth

A model for finding the composition of a nuclear sys-
tem is terms of nucleons and clusters in an approach
which maximize the entropy was established in Sec. II.
A condition for the system to favor the formation of large
clusters is Xz+&/Xz + 1, where Xz and Xz+, are the
number of clusters of sizes A and 3 +1 which maximizes
the entropy as given by Eq. (2.9). If this condit!on is
satisfied then a cluster of mass number 3 +1 will be
more abundant than one of mass number A. If N~ were
given by a power series in 3, so that Xz -x, then x ) 1

would be the condition necessary to favor the formation
of large clusters. In this section we shall use this condi-
tion to analyze the system in the case where the Coulomb
energy is treated as an isolated, uniformly charged drop,
and the presence of the vapor is ignored [i.e.,
Ec(d u ) =Ez(u u) =0].

We start by writing

k' 3 —(P, ( T) 2 —P~ ( T) 2 )/kT —F,„,( 2)/kT
e

(5.1)

where we have used the connection between the internal
free energy Flnt and the internal partition func-—F,„,/kT
tion, Z;„,=e '"' . k'=A, —(m„—a, )/kT and P,
=4rrroo(T)=a, (1+3T./2T, )(1—T/T, )3/ with o(T)

1

jeff 7
2

~

The "—
—,
'" in z,~ comes from the thermal motion of the

clusters, which produces the 1/kT factor in X~ of Eq.
(2.9) and the 1/a behavior of the internal partition func-
tion. Thus, the translational and internal excitation
effects act to reduce the critical exponent by 0.5. When
the evaluation of the internal partition function includes
an exponential cutoff, k T/e p is replaced by
k T ( T() /T + T() ) /e(), so that

m —a, kT To
x = exp A, — -+

kT eo T+ Tp
(5.4)

Since y and z are always less than unity, x & 1 implies
that X~+, /X~ will always be decreasing. Therefore, a
necessary (but not sufficient) condition for the system to
favor the presence of large cluster is x ) 1, or

m —a, + f(T) &0.
kT ep

(5.5)

Here f (T)=1 with no cutoF and f (T)=TO/(T+T„)
with an exponential cutoff in the evaluation of Z;„,. A
sample calculation of the relative yield of clusters as a
function of 3 is presented in Fig. 4 and discussed further
in the next section.

The critical size cluster is that for which X~ is a
minimum. So long as this is much less than the total size
of the system there will be a good probability for the for-
mation of large clusters. Neglecting for a moment the
Coulomb term, the critical size droplet has a mass num-
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FIG. 4. Cluster production from a system of 200 nucleons as
a function of the cluster nucleon number. The results are plot-
ted for the case in which only the charge of the cluster is con-
sidered (dashed curves) and the case in which the complete
Coulomb energy is used (solid curves). Results are plotted for
k T = 10, 15, and 20 Me V. (At k T =20 Me V pg /p( 2 )

B. Numerical studies

In this section we repeat the analysis of Sec. V A, now
including the eA'ects of the vapor on the Coulomb energy.
In this case E~ is no longer a simple sum of powers of 3,
so we can no longer write iV~ as a power series in A.
Thus, we replace the analytical expressions of the previ-
ous section with numerical solutions for N~. Briefly, we
use our expressions for the complete Coulomb energy
with Eq. (2.9) for X„ to find W„ in terms of A. and T. Us-
ing this result in the constraint equation Ao =g „3&„
gives us X, we then have X„as a function of T. A more
detailed explanation of this procedure can be found in
Ref. 8. We have improved the calculations done in that
paper by including the surface curvature term in the en-
ergy and a cutoA'in the internal partition function at the

ber A, given by

(W, +i)'/3
XP —1,)2/3

which, for 3, &) 1, can be reduced to
—', 1ny

g 1/3
lnx

When the expressions for x and y are substituted into the
right-hand side of the last equation, we recover the
results of classical nucleation theory,

20.( T)
"o(Vq pt )PI

where ro = ( 3/4~p~ )
'

critical temperature. We have also allowed the densities
of both the vapor and cluster to vary with temperature
according to Eqs. (4.8).

Figure 4 shows the results of our calculations for a sys-
tem of 200 nucleons at various temperatures. The figure
plots the number of clusters of size 3 which are formed
in one collision as a function of A. The solid lines are our
results using the complete Coulomb energy. For compar-
ison we also plot, as the dashed curves, the same calcula-
tions using the isolated drop Coulomb energy.

At temperatures up to T= 3 T, /4 both forms of the
- Coulomb energy result in yields which are strongly
peaked at low mass number; the effects of the vapor are
relatively weak. Even above this temperature the yields
calculated using the Coulomb energy of an isolated drop
continue to fall exponentially with 3, this corresponds to
x (1 in the previous section. However, when the com-
plete Coulomb energy is used the yields show a systemat-
ic change with temperature. As T increases so do the
large 3 yields, and the fragmentation curves become U
shaped. Vapor eAects become prominent and begin to
favor the formation of large nuclei at high temperature.

To understand why the yields behave in this way we
need to reexamine Eqs. (4.8) for the liquid and vapor den-
sities. At T=0, and p =0 we expect the vapor to have
little effect. In fact, p~ ((p& for most T; pg/pI=0. 1 at
T=0.70 and p~/p& =

—,
' at T=0.96. Thus, it is not until

T gets close to T, that the eftects of the vapor are notice-
able. When we charge the vapor the contributions from
Ec(dS u) and Ec(uu) increase the total energy and
hence decrease the yields. Since there is more vapor
around small clusters, will be greater at lower mass num-
ber. Conservation of baryon number does not allow the
yield to fall across all baryon number. Thus, the decrease
in the number of small clusters is compensated for by an
increase in the number of large clusters, and the fragmen-
tation yields become U shaped as T approaches T, .

VI. CONCI. USIONS

We have presented a method for calculating fragment
yields in heavy-ion collisions which starts with a thermal-
ized gas of unbound nucleons. Fluctuations in the gas
will cause these nucleons to cluster, if the binding forces
are large enough the clusters will remain bound and be-
come nuclei. How often nuclei of a particular size form
is determined by the requirement that the entropy be
maximized, subject to conservation of energy and baryon
number. To calculate this energy we used the Myers-
Swiatecki equation for the energy of a spherical nucleus
generalized to nonzero temperatures. We also used a
form for the Coulomb energy which accounts for the
presence of the vapor. Finally, the densities and tempera-
ture of the system were related through a virial expansion
equation of state. The, results for the liquid and gas den-
sities in an uncharged system with no surface resemble
the behavior of the magnetization of a ferromagnet in a
magnetic field.

As an example of our method we calculated the rela-
tive yield of nuclei from a system of 200 nucleons at tem-
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perature of 10, 15, and 20 MeV. We did the calculations
both with and without Coulombic contributions from the
thermalized gas so that we might study the importance of
such contributions. We found that ignoring the vapor re-
sulted in yields which fell exponentially with A over the
entire range of temperature 0 ~ T ~ T, . However, includ-
ing the vapor caused the yields to exhibit a marked
dependence on temperature. In this case the yields pro-
gressed from an exponential decrease to a powerlaw de-
crease to a relatively Hat curve with a shallow minimum
as the temperature increased and approached T, . This
high temperature behavior resembles the experimental re-

suits from 2-A collisions, thus the picture of a liquid nu-
cleus forming within a vapor of nucleons may be a valid
one with which to calculate heavy-ion fragmentation
yields.
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