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Describing an assembly of an infinite number of nucleons in interaction via a two-body potential
as a nonrelativistic many-body problem in the first place, we envisage corrections to this picture due
to suppressed degrees of freedom at the level of the two-body potential. At variance with relativis-
tic many-body theory, the solution of the nonrelativistic problem with a two-body potential only is
su%ciently under control at present so that evaluating corrections in this framework is of particular
interest. These corrections come primarily from additional three-body forces either due to finite-
density effects (Pauli blocking of fermions) or are of genuine origin: relativistic dynamical processes
and effects from the intrinsic structure of the nucleon. Recalling the successful treatment of elec-
tromagnetic interactions in nuclei in terms of meson-exchange currents, we establish novel con-
sistency requirements between the initial two-body force and the well-identified residual three-body
force. In this way no new parameters enter in the three-body force, save for the controversial mass
of the fictitious scalar "o." meson. We show further that the nucleon-antinucleon pair term re-
quired in the analysis of meson-exchange currents has a genuine three-body counterpart resulting
from time-ordered diagrams containing a single Z branch. Its contribution to the energy per parti-
cle is repulsive and varies with a high power of the density. Thereby we obtain the important sa-
turating effect present in relativistic mean-field approaches. We envisage next the role of the first
radial nucleon resonance N*( ~, 2) (Roper resonance) in inducing a specific three-body force. The
meson-nucleon-Roper coupling constants and form factors are evaluated in a relativistic quark
model. Gathering all self-consistent corrections to the binding energy per particle of infinitely many
nucleons, we find that the final equation of state is solely governed by the density dependence of
medium corrections to the free o.-meson mass. We discuss a first attempt to extract this density
dependence from an empirical equation of state.

I. INTRODUCTION

Relativistic effects in atomic nuclei have long been
looked at to interpret certain of their observed properties.
Besides the early case of the spin-orbit coupling, ' the suc-
cessful reproduction of spin observables; at first glance a
traditional shortcoming of simple nonrelativistic calcula-
tions, is commonly and cheerfully ascribed to the use of
relativistic nuclear dynamics. Cross section, analyzing
power, and the angular dependence of the spin rotation
parameter are often given as "good" examples in this
respect.

Among the numerous pending questions in nuclear
physics one of the most basic and constantly addressed is
that of the binding of nuclei and infinite nuclear matter.
It is a highly nontrivial problem as an unambiguous
answer in terms of the mechanism of saturation can only
be given after a reliable treatment of the nuclear many-
body problem itself. In the nonrelativistic approach,
where the interaction between nucleons is modeled via
two-body potentials, it took about thirty years to come to
the conclusion that the nuclear many-body problem is
well under control by different techniques. The im-
portant outcome is now a wide recognition that in this
nonrelativistic framework the mechanism of saturation of

the nuclear medium cannot be understood in terms of a
two-body potential only, whatever its ability in reproduc-
ing two-body observables.

Even before the "success" of Dirac phenomenology,
the whole question of saturation has been investigated in
relativistic mean field ' and Brueckner-Hartree-Fock
type calculations. It is found that genuine saturating
effects appear, " which are associated with the negative
energy solutions of the Dirac equation for the fermion
field. However, the knowledge, on the one hand, of the
structure and treatment of negative energy components
of the nucleon and, on the other hand, of the convergence
properties of the relativistic many-body problem and
relevance of mean-field approximations in that respect,
are rather elusive. Nevertheless, it is often argued that
the various approximations made there find de facto,
their justifications for the empirical properties of nuclear
matter emerge without throes. Clearly, considering the
present status of the relativistic many-body problem, this
cannot be so. '

What remains as an important effect arising from the
relativistic approach is a repulsive contribution in the en-
ergy per particle which varies with a high power of the
density and is instrumental for saturation. It occurs, due
to strong excitation of nucleon-antinucleon pairs (Z
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graphs) by the meson field. Before considering these pro-
cesses in more detail we would like to present first what is
our general philosophy with respect to relativistic correc-
tions in nuclear physics.

Up to an energy scale at which the internal baryon
structure is resolved, a relativistic description of nuclear
systems from an effective Lagrangian with interacting
mesons and baryons may be relevant. This, however, re-
quires some justification. First of all, the use of such
Yukawa-type models valid at all distances cannot be legi-
timated, ' as often advocated. Despite the existence of
renormalizable perturbative expansion in simplified cases
of effective Lagrangians, a cutoff independent theory is
only guaranteed by an approach to the continuum with
scaling properties as in the case of quantum chromo-
dynamics. In fact, the intrinsic and unremovable cutofF'
of such effective field theories is of the order of one to two
times the nucleon mass. Hence, it may be altogether ten-
able to seek a relativistic description of nuclear physics
phenomena in terms of mesons and baryons degrees of
freedom only below this energy scale, where common rel-
ativistic expansions may be used further.

In lowest order in a p/M expansion, the excitation of a
nucleon-antinucleon pair from a scalar interaction is pro-
portional to the momentum of the nucleon, and therefore
vanishes when the nucleon is at rest, as it should. Such a
transition already occurs in meson-exchange currents'
(pair terms) for the part of the current associated with the
spin-orbit potential. These contributions are required by
the conservation of the electromagnetic current. As a
consequence, and apart from straightforward vertex fac-
tors, the same form factor should be used at the meson-
nucleon and meson-antinucleon vertices, for small three-
momentum transfer. This is in fact the case in the Har-
tree approximation, and in the Hartree-Pock approxima-
tion, the momentum transfer is still much smaller than,
e.g. , 1 GeV/c.

One can equivalently interpret these dynamical relativ-
istic contributions as Pauli corrections to the free meson
mass (cf., Sec. III), since this latter includes implicitly all
polarization effects, such as polarization of the Dirac sea
from meson exchange. ' Translated in terms of a quark
model for the nucleon structure, this effect may be related
to the calculation of the Casimir energy contribution' to
the nucleon mass in the presence of other nucleons. In
this sense, one may doubt that a simple perturbative ap-
proach of the nucleon structure in terms of valence
quarks only is relevant to understanding these relativistic
contributions.

However, it is rather easy to realize that this descrip-
tion of the nuclear dynamics cannot be complete, because
the nucleon has a structure and therefore excited states
must be considered at the same time. In fact, since
nucleon-antinucleon excitations are taken into account,
one should also include all states up to an excitation ener-

gy of about 1.8 GeV. This can be done implicitly in any
quark model by coupling mesons to the individual
quarks, but also at the level of the physical states, if one
knows the various coupling strengths.

In this study we shall consider an (infinite) ensemble of
nucleons as a nonrelativistic many-body problem. Its
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FICi. 1. In medium Pauli blocking of the intermediate nu-
cleon and the single exchange 2~ three-body force.

solution is under reasonable quantitative control with
respect to convergence properties. Hence, it is of partic-
ular interest to study corrections in this framework. It is
well known that the two-body potential between nucleons
appears because mesonic degrees of freedom have been
suppressed from the nuclear wave function. Further-
more, due to Pauli blocking, the two-meson exchange
part of the nucleon-nucleon (NN) potential is modified in
the medium. This gives rise to many-body forces, and in
first order in the hierarchy, to three-body forces (see Fig.
I). Traditional three-body forces (3BF) are associated
with m- and p-exchange and are well documented. '

Likewise, the relativistic nucleon-antinucleon corrections
associated with o.- and m-exchange give rise to three-body
forces which in the nonrelativistic limit do not disappear
and at finite density should embody the dominant relativ-
istic saturating features. "

Considering these corrections from the three-body dia-
grams, we would have gained little in terms 'of a con-
sistent picture between the initial two-body and residual
three-body nucleon interaction if we let the coupling con-
stants, meson masses, and hadronic form factors evolve
freely, and take on values suited tq reproduce the empiri-
cal nuclear matter properties. Our next concern is the
possibility and importance of these consistency require-
ments. We shall emphasize that this is possible to a large
extent from the actual knowledge of meson-exchange
current (MEC) operators. Current conservation between
the isovector current and the %Xpotential, here the Paris
potential, and consistency between the isoscalar part of
the Paris spin-orbit potential and the one-boson-exchange
(OBE) approximation with 0.- and co-exchange fix all the
model parameters, except for the mass of the scalar
meson. As the three-body forces contributions are in
keeping with this analysis of X% potential and MEC's,
they imply no new parameters. This will be the content
of Sec. II.

In Sec. III our purpose will be to construct a three-
nucleon potential from time-ordered diagrams containing
a single Z branch which occur mainly through exchange
of scalar o.- and ~-mesons. In this procedure, we shall
see the importance of keeping contributions of same or-
der in the expansion in terms of momenta over- the nu-
cleon mass M, not only those involving momentum
transfer but also those involving individual momenta of
nucleons. It is this very dependence which brings the
genuine saturating effect observed in relativistic calcula-
tions.
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The 3BF being fixed in a manner consistent with the
use of the two-body interaction, we want next to check
the conjecture on the saturation mechanism induced in
nuclear matter by o.- and co-meson contributions with one
Z branch. For that purpose we need a reliable and well
studied treatment of the nuclear matter many-body prob-
lem. Variational calculations have proved very successful
in this context. ' ' ' " Here we shall perform a nonrela-
tivistic Brueckner-Bethe calculation which includes the
effect of the 3BF via the introduction of an additional
effective two-body interaction. This line of approach has
been used in the past' ' and in the case of the Paris po-
tential, shown to give results ' in essential agreement
with those obtained through alternative techniques. The
treatment of three-body forces through the introduction
of an effective two-body force results from the formalism
of McKellar and Rajaraman. However, tensor correla-
tions in the nucleon. state summed over to generate the
effective two-body force as well as double exchange con-
tributions are not considered. Nevertheless it offers the
interesting possibility of generating perturbative direct
and single exchange contributions without solving the
full three-body problem. They are obtained from the
self-consistent solution of the Bethe-Goldstone integral
equation involving the bare two-nucleon potential (Paris
potential) plus this effective two-body potential. Treating
the three-body force this way, we shall show that its basic
saturating features are taken into account . properly.
Hence, the saturation trends we obtain in our nonrela-
tivistic nuclear matter calculations are reliable. These de-
velopments and results will form the content of Sec. IV.

Our last question arises about the possible role of nu-
clear resonances in inducing a specific 3BF when consid-
ering the exchange of a scalar meson, as in the previous
section. We remark first that the Roper resonance, being
only 200 MeV above the 6 isobar, cannot be disregarded
solely on the basis of arguments on energy denominators.
Moreover, the Roper has the same quantum numbers as
the nucleon, at variance with the spin —,

' Isobar. It can
thus easily couple spins with surrounding nucleons,
thereby possibly boosting its effects despite its expected
small coupling constants and specific form factors. In
Sec. V we consider the derivation of the (o., co)-exchange
three-body force mediated by the Roper resonance. We
shall evaluate the meson-nucleon-Roper coupling con-
stants and form factors from a relativistic model —the
color dielectric model —in which the nucleon has a bag-
like structure. This will permit fixing the o.-cu echange
3BF via the Roper and evaluating its contribution in nu-
clear matter in the same approach as in Sec. IV. In the
last section a concluding discussion is presented.

Sticking to the description of nuclear systems in terms
of mesons and nucleons, we think that the perturbative
approach presented in this work is a satisfactory way to
reconcile the intrinsic structure of the nucleon with
dynamical relativistic effects inherent to such a descrip-
tion. This approach is in keeping with the successful
treatment of electromagnetic interaction in nuclei in
terms of meson-exchange currents. However, a con-
sistent calculation can only be achieved when the whole
set of baryonic excitations in the nuclear wave function is

considered. This goal is certainly very difficult to achieve
given our limited knowledge of coupling constants be-
tween meson, nucleon, and nucleon resonances. We
present in the following a first attempt in such a coherent
description of nuclear systems.

II. CONSISTENCY REQUIREMENTS
BETWEEN TWO- AND THREE-BODY FORCES

A. Three-body forces and meson-exchange currents

In the OBE description of the NN interaction, an
effective Lagrangian density is constructed from various
mesonic degrees of freedom generally identified as two
isovector mesons, the pion (m. ) and the rho (p), and two
isoscalar mesons the sigma (cr ) and omega (co). The pion
field has long been identified from peripheral N-N scatter-
ing and deuteron data as the source of the long range part
of the NN potential, while the p meson is responsible for
the spin-isospin symmetry properties of the nuclear medi-
um. The cu-meson vector field is also well identified and
gives rise to a strong short-range repulsion accounting for
the observed behavior of the scattering phase shift in the
singlet S state above 250 MeV. The o. meson provides at-
traction at intermediate range on a purely empirical
basis. Its interpretation and the fundamental understand-
ing of this intermediate range attraction has been at the
heart of investigations on the NN force for more than two
decades. We shall comment on this question in the
sequel.

The derivation of a consistent three-body force cannot
be disentangled in any way from the two-body NN poten-
tial one starts from. This can be very easily visualized if
one recalls that 3BF are just Pauli corrections in the
medium ( A )3) to the two-meson exchange part of the
NN potential. We illustrate this point in Fig. 1, where for
simplicity we restrict ourselves to the 2m. exchange poten-
tial. For the part which involves a nucleon in the inter-
mediate state [Fig. 1(a)], Pauli blocking will restrict the
possible states and therefore the NN potential must be
corrected accordingly. This is done by considering the
correction indicated in Fig. 1(b), a pure 3BF contribution.
The dashed blob in this figure involves many different
contributions which we shall discuss later on. They con-
tribute to the mN scattering amplitude.

The consistency requirements between two- and three-
body forces is rather easy to achieve in the OBE descrip-
tion of the NN potential. Here we prefer to use the Paris
potential derived directly from dispersion relations for
the most important long- and medium-range part. The
foremost reason is that it includes the exact mass distri-
bution of the 2~ exchange system, either in the P channel
(p meson), or in the S-channel (cr meson). As we shall see
below-, this leads to rather important deviations from the
simple parametrization in terms of single (zero-width)
mesons. The short-range part is purely phenomenologi-
cal, contrarily to OBE potentials for which the structure
of the potential is taken the same at all distances. This
may explain why the p dependent part of the Paris po-
tential is much more important in this region than in the
OBE potentials.



CONSISTENT THREE-NUCLEON FORCES IN THE NUCLEAR. . . 1043

The price to pay for the use of the Paris potential is
that the ensuing form of the 3BF is not obvious. To find
it, it is necessary to disentangle from the parametrization
of the potential the different channels associated with
specific meson exchange. This can be done rather easily
with the use of MEC's and the requirement of current
conservation. Starting from a given XN potential, the
conservation of the total electromagnetic current J
writes, in the nonrelativistic limit for an energy-
independent potential

V J+i [H,p]=0,
where

)iN
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In Eq. (2), T is the nonrelativistic kinetic energy and Vzz
the two-body potential. If one decomposes the charge
density (p) and current (J) operators in their one- and
two-body parts

J(1)+J(2)

p p( 1 ) +p(2)
(3)

(a)

R,

FIG. 2. (a) Leading MEC contributions constrained by the
continuity equation. From left to right: seagull, mesonic, and
pairs diagrams. (b) Gauge invariant contributions to MEC's in
6rst order: contribution from nucleon resonances and pm. y dia-
gram.

the continuity equation can be rewritten in the following
form

V.J"'+i [T,p"']=0,
V J' '+i [V~~ p' ']=0

where we neglect here three-body exchange currents and
small contributions from [T,p' ']. If the NN potential is
now interpreted in terms of meson exchange, it is easy to
identify the elementary processes in J' '. We indicate in
Fig. 2(a) the various MEC's which contribute to Eqs. (4)
in leading order. The first two diagrams are associated
with the isospin-dependent part of the XX potential
(mainly tensor potential for m and p exchange) while the

(b)

h) +-.Tt;
0

pii

(cj

FIG. 3. Leading order contributions to the three-body force
deduced from the meson-exchange current operators indicated
in Fig. 2. See text for the explanation of the various groups
(a)-(c).

third diagram comes from the spin-orbit part of the po-
tential (associated with o and co exchange in the OBE ap-
proximation). We recall in Fig. 2(b) the two other leading
order contributions to MEC's which are gauge invariant
by themselves and hence do not contribute to Eqs. (4).
They are associated to nucleon excitations and the p de-
cay into m.y.

The relationship between MEC's and 3BF contribu-
tions can be understood as follows. If one replaces the
external currents (vector current here associated with the
photon, or axial current for weak interactions), by meson
lines coupled to a third nucleon, one can generate all con-
tributions to the 3BF in leading order (two-meson lines)
with no additional parameters. The corresponding con-
tributions are indicated in Fig. 3. They have been
separated in three different groups for the purpose of the
discussion. As one can realize immediately from Eq. (4),
this procedure fixes only the longitudinal part of the
current, and, moreover, it concerns the leading order
contribution associated with a given XX potential, and
does not fix higher-order corrections. This is however,
sufficient to determine all the parameters entering the ele-
mentary processes, once these have been identified in
terms of the degrees of freedom we start from, as given in
Figs. 2 and 3.
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B. Determination of the parameters

TABLE I. Coupling constants and form factors at the
di8'erent vertices. The meson masses are m „=138 MeV,
m =783 MeV and m =540 MeV, m =600 MeV (see text for
discussion). The tensor to vector coupling constant ratio for the
p-meson is Kp 5 6 (Ref. 14).

o N2V

coNN
m.NN
pNN
oNR
coNR

g /4m.

11.9
33
14.4
0.55
2.58
4.13

A (GeV/c)

1.1
1.3
1.4
1.1
1.45
1.55

—2.35
—2.33

The 3BF contributions of Fig. 3(a) have already been
derived, at low momentum transfer, from mX scattering
amplitude in both S and I' channels, and extended to in-
clude pp and ~p exchange as well. ' Therefore, they in-
clude all the contributions indicated by a dashed area in
Fig. 1, and are consistent with the Paris potential deriva-
tion for the 2m-exchange part. The parameters which
have to be given are the masses, coupling constants, and
form factors at the meson-nucleon vertices. According to
our discussion of the preceding subsection, we have
determined these quantities by comparing MEC's (here
isovector currents) associated with the Paris potential
from Eqs. (4), to MEC's derived in the OBE approxima-
tion, and represented in Fig. 3. By looking at the radial
distribution of the corresponding operators, it is possible
to fix all these parameters. ' We summarize these quanti-
ties in Table I. The form factor at each meson-nucleon
vertex is chosen in a monopole form

/pe
2

F(q') =
p2 p

2 +2 +q2

where m is the meson mass and A a cutoff parameter
(different a priori for each meson).

For p exchange, we have to fix various quantities since
the 2m. amplitude in the p-channel is rather broad. As a
consequence, the range of MEC's associated to this part
of the potential is larger than for a single p exchange with
the physical mass m =776 MeV. With the parameters
indicated in Table I, the tensor part of the NX potential is
given in Fig. 4 (small dashed line), and compared with the
exact Paris tensor potential. The two potentials agree to-
gether to a very large extent. In particular, the behavior
of the tensor potential at distances smaller than 0.5 fm
agrees with that of the Paris potential, while the parame-
trization of Refs. 17 and 18, using a zero-width approxi-
mation for the p meson gives a positive tensor potential
in this domain.

The 3BF corrections indicated in Fig. 3(b) are associat-
ed with o. and co exchange in the OBE approximation.
They have not yet been considered in detail so far. We
shall discuss the calculation of the second contribution in
Sec. V. The first one is derived directly from the MEC
diagrams shown in Fig. 2(a) (pair term) and therefore the

-50

r (fm)

Paris

(TC+p exchange

-100: Tt-exchange (J),&

FIG. 4. The nucleon-nucleon tensor potential as function of
relative internucleon distance. Dashed line: m-exchange contri-
bution with no form factors; dash-dotted line: ~- and p-
exchange contributions with form factors and coupling con-
stants of Refs. 17 and 18; continuous line: tensor part of the
Paris potential (Ref. 23); short-dashed line: a- and p-exchange
contributions with form factors and coupling constants as dis-
cussed in the text (see Table I).

where k=p' —p. Keeping track of the total momentum
of the two nucleons, one has

l
~Is(pi pz'pi p2)= —

I ua(k)[o i(pi Xp, )+1~2]
2

+ ub (k) [o &(p,
—p, ) + 1~2]I .

This last expression is necessary to construct MEC's by
minimal substitution. In the OBE approximation, the
potentials u, (k) and uz(k) are

2 2

u (k)= F (k )+- F (k ),2~2 ~2 +] 2 2~2 ~2 +/2

2

ui, (k) =
z z ~

F„(k') .

(8a)

(8b)

The meson-nucleon coupling constants and the nucleon
mass are denoted by g ~„~ and M, respectively. These
potentials can be also derived directly from the Paris po-
tential parametrization. We indicate them in Fig. 5 for
both the Paris potential and the OBE approximation with
the parameters of Table I. The value at the origin is fixed
by the coupling constants, while the momentum-
dependence is governed by the mass and form factor.
Both parametrizations are in reasonable agreement.

The last point one has to check when going from the
two-body system to nuclear matter is the question of the

various parameters can be fixed from the (isospin in-
dependent) spin-orbit part of the XN potential.

In the cm frame, this part of the potential is expressed
in momentum space by

l
~Ls(p p) = u (k)(o i+ o 2)(p' Xp),2
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p4— va(k)

E—0,2

Paris

2
I

4

FICy. 5. The spin-orbit potential components U, (k) and U&(k)

of Ref. 28 as obtained from the Paris potential —continuous
curve —and for a pure "o.+co" exchange model, Eqs. (8) dashed
curve with coupling constants and form factors as indicated in
Table I.

density dependence of the various quantities (medium po-
larization). As far as rrand p e.xchange are concerned, it
is easy to realize that the three-body force indicated in
Fig. 3(a) corresponds precisely to the polarization of the
~ and p propagators as well as mNN and pNN vertices in
first order, in the nuclear medium. For isovector-meson
exchange, these renormalizations are dominated by 6-h
excitations. They are indicated, to first order, in Fig. 6.
These corrections correspond exactly to the isobar contri-
bution to the 3BF of Fig. 3(a), after summation over the
intermediate particle in the Fermi sea. Hence no further
modification is needed in this channel.

The situation for o. exchange is much more intricate.
Since it. is not a well defined resonance, one can expect
the o. meson to be strongly polarized in the nuclear medi-
um, the first consequence being a strong modification of
its mass as a function of the density. Two mechanisms
have been proposed in the literature to account for this
change. ' On the one hand, the o. meson, viewed as a29, 30

2m exchange, has its mass changed in the medium from
6-h excitations in the m line. At normal nuclear matter
density, the change may be as large as 20—30%, and
leads to a reduction of m . A similar conclusion is
reached in the apparently difFerent Nambu-Jona-Lasinio
model where the o. meson is taken as the chiral partner of
the pion.

It is certainly too early to draw more quantitative con-
clusions for the polarization of the o. meson in the nu-
clear medium. In particular, the o.NN coupling constant
may also change. In Ref. 30 this change is found to be
very small. In any case, it is likely that the o. mass will be
reduced in nuclear matter with respect to its two-body
(zero density) estimate of 680 MeV found from Fig. 5(a).
This is in fact the only free parameter in our approach, if
one assumes that all other mesons keep their free mass
and coupling constant. As we shall see in Sec. V, the
value of the o. mass cannot be too small, otherwise the
saturation properties of nuclear rnatter are unrealistic.
For convenience, we choose here m =540 MeV. We re-
call that the o. mass deduced from the OBE approxima-
tion to the NN potential can be as large ' as 720 MeV, de-
pending upon the isospin channe1 and the detai1 of the
potential. In the relativistic Hartree-Fock description of
finite nuclei, a mass of 440 MeV was used.

The last contribution to the 3BF we derived from
MEC s is indicated in Fig. 3(c). It originates from the
pwy diagram of Fig. 2(b) and has never been considered
up to now. Because of the isovector m and p exchange,
this 3BF contributes only through exchange terms, and
therefore should be of smaller importance. This point
should however be checked in the future. Note that oth-
er three-body contributions involving nonlinear couplings
between o. mesons, as originating in the o.-model La-
grangian for instance, have not been retained either since
they involve higher order terms not considered in the La-
grangian we start with. We only mention here that these
terms cannot be calculated in the tree approximation
from the o. model Lagrangian since they give rise to
pathological behavior for the nuclear equation of state [3j
at moderate densities. Moreover, drastic cancellations
occur in the one loop approximation. The resulting con-
tribution to the binding energy is highly sensitive to the
o.-meson mass and cannot be settled with accuracy. We
restrict ourselves in this study to the 3BF contribution
which can be calculated at tree level, and directly con-
nected to the NN potential itself. We refer the interested
reader to Refs. 3 and 11 for an extensive discussion and
results concerning this other aspect of the 3BF.

III. THE SIGMA- AND OMEGA-EXCHANGE
THREE-BODY POTENTIAL

FROM VIRTUAL PAIR TERMS

FICx. 6. Polarization of ~ and p propagators as well as md%
and pNN vertices from 6-h excitations in first order. These
corrections are taken into account by the three-body contribu-
tion of Fig. 3(a) fourth diagram.

The primary feature of recent relativistic mean-field
calculations of nuclear properties consists in the "dress-
ing" of the individual nucleon state through the scalar
meson-nucleon interaction. The precise mechanism has
been analyzed in the past. "' We recall it here to
stress the underlying 3BF picture of the present perturba-
tive approach.

A. Relativistic corrections in e6'ective Lagrangian
formulation of nuclear structure

For the purpose of discussing the mechanism which
dresses the nucleons, we recall here the simplified model
popularized by Walceka which includes only the ex-
change of the o. and co mesons. The e6'ective Lagrangian
writes
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X= %(iy„d" —M)V+ —,'(B„oB"o —m o )

—
—,'F,.FI' +-,'m2~, ~j' —g ~%Co- —g „9y„%mI',

(9)

[u p+P(M + Us) —(s —Ui, )]u (p, A, ) =0 .

In this equation characteristic values of the scalar and
vector self-energies at a density PB around the normal
density po=0. 17 fm, are

where 4 represents the nucleon field, with mass M, o. the
scalar meson field, with mass m and co„ the vector
meson field of mass m„. In Eq. (9) the regularizing part
of the Lagrangian is omitted as it does not enter the dis-
cussion. According to the usual notation F„=B„co—8 co„. In translationally invariant nuclear matter the
mean field approximation consists in taking for the scalar
and vector fields their expectation values over the Fermi
sea denoted by (o ) and (co„)=5„O(coo). These quanti-
ties are obtained from the field equations

Va '
Us = -400 MeV,

po

U, =350 MeV .PB

Po

Let us write

cp —cp Uv

M=M+ Us

(12)

(13)

—m'. (~)=g.„(Ve)
g oops (10a)

The solution of Eq. (11) for E~ is that for a quasifree nu-
cleon of effective mass M, momentum p =

~ p ~, and helici-
ty A, . It writes

g coXpB (10b)

where Ps and PB, are respectively, the scalar and baryon-
ic densities of the nuclear medium. Defining the scalar
and vector self-energies by Us = —g ~&Ps /m ~ and
Ui =g &p~/m, the one-body Dirac equation satisfied
by the nucleon spinor u (p, A, ) with helicity A,(+1) and en-
ergy c, writes

u (p, A, )=
+M

2E,p pg +A,

gp+M

(14)

with E ~=M +p . Let u (p, A, ) and v (p, k) be the spi-
nors with positive and negative energy +c.~ of the free
nucleon (no interaction Us= Ui =0). Then u (p, A, ) may
be written identically as

u(p, k)=
p 1/2

1 Bp

2M (E~+M)' (E~+M )' E~
I [(Ep+M)(EP+M) —p ]u (p, A, )

+( —1)' " 'pi[(ep+M) —(c~+M)]v (
—p, —A, )I . (15)

d3 2i,2

2 ' (16)

In this relation kF is the Fermi momentum, with

p~ =2kF/(3m. ). Taking for Us the value indicated in Eq.
(12), summing over isospin and helicity, one obtains

' 8/3
kE 4 2 M y PB

po

This is a strongly saturating quantity genuine to a relativ-
istic framework as antinucleon propagation is not con-

This expression shows that the interaction mixes the posi-
tive and negative energy components of the free nucleons.
To lowest order in p /M, where e~ =M+0(p /M), the
change 5u (p, A, ) of the free spinor u (p, A, ) is determined

by the difference M —M = Us. Hence it is the scalar field

which gives rise to the first relativistic correction to the
propagation of a positive energy single-particle state, as
indicated in Fig. 7(a). The corresponding energy correc-
tion is represented by Fig. 7(b). It is proportional to Us

and is found simply from relation (15). To lowest order
in p/M it writes

sidered in conventional nonrelativistic approaches to the
nuclear many-body problem. Figure 7(a) clearly em-
phasizes the three-body nature of the scalar coupling to
nucleon-antinucleon pairs, while Fig. 7(b) indicates a
medium correction to the scalar meson mass m . Both
interpretations are equivalent.

B. The sigma- and omega-exchange 38F in momentum space

The usual and well documented treatment of three-
body forces in the nuclear medium involves' ' m and p
exchanges between three nucleons. These contributions

(,) U

(a)

FIG. 7. (a) Relativistic corrections to the propagation of a
single nucleon of positive energy. (b) The corresponding contri-
bution to the energy per particle.
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help getting closer to the empirical estimate of the bind-
ing energy and saturation density of nuclear
matter. ' *' ' Yet these quantities cannot be reproduced
without additional phenomenological assumptions.
Hence, it is legitimate to investigate whether or not the
above relativistic corrections treated as additional three-
body forces would give a new saturation mechanism in
nonrelativistic approaches of the nuclear many-body
problem. The question was studied recently both in nu-
clear matter and in three- and four-body systems within
a variational framework. The conclusions however, are
only indicative, mainly for two reasons. First the impor-
tant m- and p-exchange contributions to the 3BF were not
included and second, by retaining only those contribu-
tions which depend upon the momentum transfer and not
upon the individual nucleon momenta in the reduction of
the Z graphs, an essential piece of the saturation mecha-
nism is dropped.

%'e consider here the general expression for the three-

P3

(aj (t)
FIG. 8. Backward propagating terms contributing to the

two-meson (o., co) exchange three-body force.

three scattering amplitude ( p'„p2, P3 I T3 I p„pz, p3 &, with
particle 3 undergoing backward propagation. The total
amplitude is the sum T& + T2+ T3, as is the three-
nucleon potential 8'defined in terms of the individual 8';
related to T; by

~p)~pz~p3I~ lp) p2 p3& —(2')r) fi (p)+p2+p3 —p) —
p2

—p3)&f&;~p) p. p3I~;lp»pz p3& (18)

Here Xf=g, ,[M/E (p )]', the index v labeling the particles in the final states (viz: initial states for X, ). We adopt
throughout the same normalization as in Refs. 17 and 18 and denote the transferred and total momenta by

q2 P2 P2 (19)

and

P1+P & P2+ P2P)=
2 '

2
P2= (20)

respectively.
The time ordered diagrammatic contributions are indicated in Fig. 8 (exchange of 2(r, crea, and 2'). These contribu-

tions are calculated in leading order. This corresponds to the static approximation for the meson propagator. To
lowest order in q2/m we find

I I 3 (3)~p'), pz, p31 3 Ip), p~, p3&=(2~) & (p3 —
P3

—q) —q2) 4~ q]+~ q2+~
X [4p3+4p, (q, +q2)+q, +q~+q, q, +2io, (q, +q, ) Xp,],

g )v F (q, ) F„(q2)
~ Pl Pz P3I ~3 Ipl P2 P3 &

= (2~)'t)"'(p3 P3 ql 'q2)
4M q&+m q2+m„

X[ —q).qq
—(cr3Xq2) (o') Xq() —(o'3Xq)). (o'2Xq2) —(o) Xq)) (o'2Xq2)

—2iP) (o 2+o 3) X q2
—2iP2 (o, +cr3) Xq)+4P).P2],

2 2

( p) p2 p3l ~3 lp), pz, p3 &
= (2~)'5"'(P3 —

p3
—q)

—q2)
4M

F2 (q2 ) F2 (q2 )X, , [—q',—io, ((2p, +q, )Xq, )
q ) + PP1 ~ q2+ Pl ~

(21a)

(21b)

—(2p3+ q) +qq+ iver 3 X qq)(2Pq —io ~ X qq)]+ 1~2 (21c)

In these expressions we have introduced vertex form fac-
tors F „(q ) with the monopole parametrization of Eq.
(5). In the Hartree approximation, the only contribution
which survives and gives the strong saturation e8'ect is
the first term in Eq. (21a) proportional to p3 (this contri-
bution is not present in the three- and four-body calcula-

tions of Ref. 22). We emphasize here that the 3BF we
derive in this section is of the same order as the spin-orbit
part of the XN potential. Moreover, since the meson
propagators are treated in the static approximation, there
is no ambiguity as far as consistency with the nonrela-
tivistic nuclear wave function is concerned.
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IV. EVALUATION OF CORRECTIONS
AT FINITE NUCLEAR DENSITY

The 3BF of Eqs. (21) supplemented with the vr- and p-
exchange contributions of Refs. 17 and 18 with parame-
ters determined in Sec. II are used in this section to deter-
mine the three-body potential contributions to the bind-
ing energy of nuclear matter. We use the formalism of
McKellar and Rajaraman which we shortly recall.

A. Formalism

The contributions of the 3BF 8'to the nuclear binding
energy is given by

z y y, (~...lwln„, „,&, (22)
E &j(k P

where l+,.jk & is the wave function for three particles in
the state (ijk) calculated with the two-body force only,
and lQ~&;~k~& is the three-body wave function obtained
from both the two-body force and the 3BF 8'. The sub-

g 222 2V; 2 Iv —IV—IV j)'2(;22)) .
i (j(k P

(23)

The neglect of the double exchange term in this expres-
sion allows us to define an effective force V3 which
renders the calculation of Ew' tractable. If one specifies
the correlation in particles 1 and 2 in the three-body
correlated wave function l%';J3, & by those built in by the
operator 1 —G' 'Q/e, with G' ' the Brueckner reaction
matrix obtained from the two-body potential V2 alone,
then Ew' takes the form

script I' stands for the permutations of (ij k) with ~~ their
parities. To our knowledge the complete evaluation of
Eq. (22) has only been performed for the bound state
three-body problem with the 2m exchange 3BF of Ref. 17.
A similar evaluation is currently under way with the
complete 3BF used here.

To second order in 8'one may write

Ew —Ew+Ew

E~"=—,
' Z P, (I)q, (2) I —G' '—Vj I ——O' '

I2, (1)I2,(2)—y (1)I2,(2)),
EJ

(24)

where y;( I ) is a normalized plane wave. The energy con-
tribution per particle due to Fw(" is symbolically rewritten
as

E(1)
=

& Vj) —2 G' ' —Vj + G' '—Vj —G' ') . (25)
e e e

Following the approximations made in Ref. 26, one may
reduce Ew'/A to

(26)

%'e shall evaluate the effect of V3 by performing a
proper Brueckner calculation with the effective potential
V3 added to the two-body force V2 ~ If one denotes by
G' + ' the reaction matrix built in this way, the energy
contribution due to 8'will be obtained as

(27)

Using the integral equation obeyed by G, one readily ob-
tains

&I laGII ) =
& v, ) —(Gjjj—v, )

—(v, —Gjj+22)

G(2) V G (2+3)
e e

(28)

which reduces to the sum of the contributions (25) and
(26) when G' + '=G' '+ V3. This procedure of evaluat-
ing E /A has been cheeked and used in the past. ' '

Although it involves many successive approximations
and does not consider certain type of contributions, ' it
offers the interesting possibility of generating directly the
important single and exchange contribution present in
Eqs. (25) and (26) while the double exchange contribution
correcting ( V3& may be evaluated simply. We show
belo~ that the expected saturating features of the 3BF of
Sec. III are present in ( V3 &.

Explicitly, the effective force V3 is given by

V3(r] r2lr) r2) = —,'Tr g f d r3d I 3(I&2 (13)(1 7)(r I3 ))(1 g(r13 ))

x w3(rl, rz, r3ll ) 12 13)(1 Q{ ] r)}3(1 g(r23))p„{r3),
1

(29)

where the trace is taken with respect to the spin and iso-
spin of nucleon 3 (cf. Fig. 8). To obtain Eq. (29) we have
used the solution of the Bethe-Faddeev equation valid
for a strongly repulsive central two-body potential.
Thereby, we consider only the most important central
correlations g(r» ) and g(r23) between nucleons (1,3) and

III( I 2) (21 22) G22 j I)e
(30)

(2,3), respectively. Here g(r) is the average over spin and
momenta in the Fermi sea of the 'So and S, partial wave
components of the wave defect
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Generalizing Eq. (29) to include tensor correlations
would involve products of terms where 1-il( r ) are
changed to 1 g—(r) S—

,~(r.)il (r), with S; (r) the usual
tensor operator and g (r) an average wave defect in the
channels coupled by the tensor operator, principally
Si+ D, . While 1 ri—(r) reaches unity for r ~0.8—1

fm, g (r) remains small ((0.2) for all r thereby
effectively reducing contributions with factors of iI (r) in
the integrand of Eq. (29) with respect to those with fac-
tors of 1 —i)(r) only. A full scale Bethe-Faddeev calcula-

tion with 8'is probably the only way to do better.
To obtain 8's(r'„rz, rs;r„rz, r&) we take the Fourier

transforms of the expressions (21) [multiplied by (2~)
for correct normalizationj with respect to the variables

(pi, pz, p&, pi, p2, pz). We give here the full result for the
2o.-exchange 3BF as we shall use it in the later discus-
sion. The other contributions from cree and 2' exchanges
are given in Appendix A. We write x=rz —r„x=x/lxl,
and y=r3 —r2. The 2o.-exchange 3BF is nonlocal in the
variables (ri, ri) and writes

4 2

X . —4Z (x)Z (y)V2, —4Z' (x)Z (y)x V, —4Z (x)Z' (y)y V,

T

Z" (x)+—Z' (x) Z (y)+Z (x) Z" (y)+ —Z' (y) —x.yZ' (x)Z' (y)

—2i[Z' (x)Z (y)cri. (xXV, )+Z (x)Z' (y)cri (yXV, )] .5' '(r3 r3) . (31)

Here the function Z (x) is given by

4~Z.(x)=
(2m) (q +m )

(32)

With the form factor I' (q ) defined in Eq. (5), Z (x) and its single and double derivatives Z' (x) and Z" (x) are ob-
tained in a closed form. ' Had we kept in Eq. (2la) only the terms involving the momentum transfer (q„qz) we would
have obtained the fourth and fifth terms in Eq. (31) and only this one when no form factors are considered and contact
terms are disregarded as in Ref. 22.

In the derivation of the effective force Vi from Eq. (29) let us focus on the first term in Eq. (31) and denote this con-
tribution by V& ', local in the variables (r„r2). With g (x)= 1 —iI(x), it writes

I

Vi '(riz)= — —& &(kF —lp„l) f d ri f d rye' " "g(Iran ril)g(Iran
4M' (4~)' &.

Sg 'Fg

XZ (lri —r, l)Z (lr~ —rzl)V, 5' '(ri —ri)
"3

xg(Iran —ril)g(Iran —r~l)e """
2/3

3 3m

M' (4~)'
pB5i3 3r3g2X gzy Z. X Z. y

(33a)

—Sa fd'ra(x)g(y) g "(x)+—g'(x) g(y)+g(x) g"(y)+ —g'(y)

+2x yg'(x)g'(y) Z (x)Z (y) (33b)

Here x y=(x +y r)/(2xy) a—nd fd r&=2m. /

In the absence of nucleon-nucleon correlations, as was
the ease in the development of See. IIIA, g(x)=l, the
second term in Eq. (33b) drops out and the Hartree con-
tribution to ( Vi ) in Eq. (25) reduces to

2/313 3m

2 5 2

4 mg cr% 8/3
4 ~B 1 ~2m 0'

( V2u, I ) — d 3 V2cr, i
( r )

PB
3 H 3

(34)
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TABLE II. Various contributions {in MeV) to the potential energy at three typical baryonic densi-
ties.

Density

po/2

po

(S,T)

(1,0)'
(0,1)'
(1,1)'
(0,0)
U
E/A
(1,0)'
(0,1)'
(1,1)"
(0,0)b

U
E/A
(1,0)'
(o, 1)'
(1,1)"
(0',0)"
U
E/A

V2

—27.18
—21.53
—0.14

5.01
—43.84
—6.85

—44.70
—37.17

0.16
10.99

—70.72
—12.33
—78.30
—65.14

4.00
24.44

—115.00
—21.52

V2+ V3(w, p)
—26.36
—19.67
—1.14

3.96
—43.21
—6.55

—41.47
—30.35
—5.82

5.95
—71.69
—12.82
—47.39
—35.83
—18.69

4.18
—97.73
—12.88

V2+ V3(m, p)
+V(, —N)

—25.69
—19.14
—0.84

4.02
—41.65
—5.76

—39.52
—28.34
—3.88

6.27
—65.47
—9.71

—34.04
—24.85
—3.94

6.38
—56.45
—7.75

V +V, (~,p)
+ V3(cr, co —N, R)

—26.38
—19.71
—1.74

3.91
—43.92
—6.90

—40.53
—30.09
—7.86

5.87
—72.61
—13.28
—42.07
—32.27
—22.64

4.31
—92.67
—10.36

'Summation on partial waves with l ~ 4.
Idem but with l +5.

With the values of Table I for the coupling constants, re-
gulator masses and a scalar meson mass m =540 MeV,
we obtain

8/3

BINDING ENERGY PER PARTICLE
I t

'
I

( V ~ ') =3.9 Me+ Pa

po
(35)

close to the result of Eq. (17). This is quite remarkable
considering that the consistency requirements discussed
in Sec. III invoke physical considerations other than the
simple empirical fixing of parameters on nuclear satura-
tion properties as in the "o.-co" model.

It is clear now that the dominating saturating features
of the 2o.-exchange term resides in the individual momen-
tum dependence of the nucleons. ' Hence keeping only
terms involving transferred momenta misses an essen-
tial piece of the 2o.-exchange 3BF. In the nuclear medi-
um at finite density the net saturating effect of using the
full V3 (r, 2) is expected to be somewhat reduced with
respect to the result of Eq. (35). It is due, on the one
hand, to the presence of correlations [g(x)%1] and of
the exchange Fock term in ( V3 ), and, on the other hand,
to the other contributions (o'co and 2' of Fig. g) to the
effective force V3 which come in with different signs. Be-
cause of their length these contributions are given in Ap-
pendix A. However, as the nuclear density increases the
term in p~~ in Eq. (33b) will gradually take over all the
other terms linear in pz thereby stiffening the equation of
state with respect to the one involving the Paris potential
alone or eventually supplemented with conventional 2m-,

mp-, and 2p-exchange 3BF.'

B. Numerical results

The results of nuclear matter binding energy calcula-
tions as a function of density for the Paris potential

I

0.1 0.2
I

0.3 0.4 0.5

p(fm j

FIG. 9. Binding energy per particle as function of symmetric
nuclear matter density: long-dashed line: Paris potential only;
short-dashed line: Paris potential and (m, p) effective two-body
force; dash-dotted line: Paris potential, (~,p) and (o., co) —N
effective two-body forces; continuous line: Paris potential,
(m, p), {a,cu)-N, and (o.,co)-R effective two-body forces. The
cross in this figure indicates the empirical saturation point.



CONSISTENT THREE-NUCLEON FORCES IN THE NUCLEAR. . . 1051

alone are well estab1ished. ' ' Here we adopt the cal-
culation scheme of Ref. 25 based upon the continuous
choice of Jeukenne et al. for the auxiliary single parti-
cle field. This approach is essentially a modified version
of the Brueckner-Bethe (BHF) hole line expansion and
its motivations and validity in comparison with alterna-
tive techniques have been extensively discussed in the
past. ' In Table II, we indicate under the column V2
and for the three densities po/2, po and 2po, respectively,
with po=0. 17 fm the density at empirical saturation,
the different contributions in each spin and isospin sub-
space to the nuclear matter. potential energy per particle
for the Paris potential. The corresponding saturation
curve is shown in Fig. 9 by the long dashed line. It is the
modifications with respect to this situation and brought
about by the effective force V3 we want to investigate.
Although we are confident to identify the correct satura-
tion trends, as argued in Sec. IIIA, we stress that the
only way in our framework to be more precise is to solve
the Bethe-Faddeev eqm, tion in the presence of the 3BF
8.

We investigate first the effects of the 3BF V3 due to
2m.-, irp-, and 2p-exchanges only, as given by Eqs. (4.7),
(4.9), and (4.10) of Ref. 17 for the 2n part and by Eqs.
(3.10) to (3.13) of Ref. 18, for the mp-, and 2p parts. [Eq.
(4.10c) of Ref. 17 has to be corrected for a misprint:
2i) /p has to be replaced by 2t) /p . Same remark for
Eq. (3.13) of Ref. 18 where —,

' in the first factor has to be
replaced by 3.] The coupling constants, masses and regu-
lator masses are those of Table I. Here and in all the
cases discussed below, we perform a fully self-consistent
calculation of the reaction matrix 6' + '.

The effective potential V3"'~' can be separated into cen-
tral and tensor components V3 ct' and V3 f '

10—

(Tt;, pj
3, C

V3 t{' and V'3 f ' in MeV as a function of the distance r in
fm. They noticeably differ from those of Ref. 18 not only
due to changes in parameters but more importantly be-
cause of the very difFerent correlation function i)(r) in-
duced by the Paris potential as compared to the one in-
duced by the Reid soft core interaction.

We turn now to the study of the corrections from the
effective force V3 due to 2', 2o.co, and 2' exchanges de-
rived from Sec. IIIB with the values of coupling con-
stants, masses and regular masses obtained in Sec. II and
gathered in Table I. From the constraints discussed in
that section we obtain at zero density a o.-meson mass of
about 680 MeV. We recall that it is expected to decrease
substantially with increasing nuclear density because of
medium corrections. ' The actual m arrived at and
used in relativistic mean field calculations is around
500—550 MeV. We choose here to work with a constant
o.-meson mass of 540 MeV which is actually the value
read off from Fig. 2 of Ref. 30 at normal density. We
shall present and discuss at the end of the next section
the overall effect on the saturation curve one may expect
when considering medium corrections to the cr mass.

To the contributions V3 '~' we add now those of Eq.
(33) and Eqs. (A4) to (A9) of Appendix A and perform a
new self-consistent calculation of the reaction matrix
G. ' + ' The results are again given in Table II, where un-
der the columns V2+ V3 'l'+ V3 '" ', appear the
different subspace contributions to the nuclear matter po-

V3 ' (1 ) 'ri 'T2(CT i 'cr2 V{3 c~t( r) +S i(2r ) V3it (r) ) (36) -10
K

Each component is the sum of 2m, ~p, and 2p contribu-
tions. In symmetric nuclear matter, the tensor part con-
tributes only through terms in Q/e in Eq. (28) and
corrections to the first order perturbative results ( V3)
may be expected depending upon the intensity of V3. De-
tailed accounts on this aspect of the problem are given in
Refs. 17 and 19. The results are given in Table II, under
the column V2+ V3 '~'. The different contributions in
each (S, T) subspace refiect the spin-isospin structure in
Eq. (36) and the overall attractive character of V{3 P'.
The corresponding saturation curve is shown in Fig. 9 by
the short dashed line. These results have to be compared
with those of Ref. 25 where a less sophisticated 3BF was
used with no attention paid to the consistency require-
ments of Sec. II. As already noted in Ref. 17, the addi-
tional attraction we obtain at low density with respect to
results of Ref. 25 originates from components in the 2m-
3BF not present in the 3BF version used there.

In Table II we compare the complete estimate of
E /A from Eq. (27) to the first term ( V3) of Eq. (28).
For the purpose of comparison and because of the
changes in parameters with respect to earlier studies (cf.
Sec. II and Table I) we show in Fig. 10 at normal nuclear
density, the different contributions building up the total

-20—
.~2TL-

-30

2-

0 (ix

X2z

(Tt„pI
3.T

— r (frn)

Tt;P

FIG. 10. (a) The 2a, mp, and 2p contributions to the spin-spin
two-body effective force VI3 ci' of Eq. {36) at baryonic density

p& =0.17 fm; (b) same as (a) for the tensor two-body eftective
force.
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TABLE III. Various contributions to AG and V3 [see Eqs. (27) and (28)], from the difFerent pieces of
the three-body force.

Density

p. /2 (~G&

(V, &

&aG&

(~,p)-A

0.30

—0.49

8.64

2a-N(p )

0.23

0.18
1.43

1.20
10.03

9.10

2a-N(p', )

—0.17

—0.16
—0.80

—0.79
—3.43

—3.55

2a)-N

—0.07

—0.06
—0.26

—0.25
—1.12

—1.21

ae-N

0.76

0.60
3.16

2.65
14.56

13.26

Sum

1.05
(1.09)
0.56
3.04

(2.62)
2.81

28.68
(29.27)
17.60

—1.02
( —1.14)
—0.97
—4.24

( —3.57)
—4.21

—18.13
( —18.11)
—18.44

tential energy per particle. The corresponding saturation
curve is shown in Fig. 9 by the dash-dotted line. In Table
III we have separated the contribution to the energy in
pz~ coming from the first term in Eq. (33) from those in

pii. The results were obtained from a calculation (cf. Sec.
IVA) of G' ' and of G' + ' with an effective two-body
potential corresponding only to the component under
consideration, =that is the first term of Eq. (33) for the case
2cr N(pii~ ),—the second term of Eq. (33) and the contri-
bution of Eq. (A4) for 2o N(pii), —contributions from
Eqs. (A5) to (A8) for 2' —X, and the contribution from
Eq. (A9) for

ohio

—X. The single particle spectra used at
each density in the evaluation of both G' ' and 6' + ' is
the self-consistent one corresponding to the calculation at
the same density of the third column of Table II. Under
the column "sum" figures the sum of the different contri-
butions to (b,G). The numbers in parentheses are those
obtained from Table II (AE/3 from columns 3 and 1 in
that table) and differ slightly from the sum in Table III
because of the different single particle spectra used in
evaluating 6' '.

The effective potential V3 is only central for 2o. and

ohio

contributions but receives central, spin-spin, and tensor
components from 2' contributions (cf. Appendix A).
The different components in MeV are shown in Fig. 11 as
a function of r in fm. The central component is altogeth-
er dominant and the 2' tensor component is seen to be
much smaller than its (~,p) counterpart, hence bringing
( b, G ) much closer to ( V3 ) than in the (m.,p) case. It is
plain to see that for the most dominant o. and co contribu-
tions, the predominance of ( V3 ) occurs thereby comfort-
ing our approximate treatment of the 3BF 8' made in
Sec. IV A. %'e do not expect, as we argued, that the ten-
sor correlations left out in the evaluation of the effective
force from Eq. (29) and double exchange contributions
would invalidate this result and jeopardize the saturation
mechanism brought about by V3.

Going back to Table III, it is of interest to compare the
value of the Hartree contribution obtained in Sec. IV [Eq.
(35)] with the value of ( V3) in pit . The latter includes
the effect of correlations and the exchange-Fock contri-
bution. We obtain, respectively,

p=pc/2:( V,' ')H«, =0.3 MeV, ( V', ')decor= —0. 1 MeV,

p pQ ( V3 )H cop 1 6 MeV, ( V3 ' )~ c«= —0.4 MeV

p=2pp'. ( V3 )H c 11.4 MeV, ( V', ' )~c„=—2. 3 MeV .

(37)

For the Hartree term a slight departure from the p& law
occurs due to the density dependence of the correlation
function tl(r) which, for the Fock term, combines with
the usual Fermi momentum dependence of the exchange
integral. The effect of the short-range XX correlations
reduces the estimate of Eq. (35) by a factor close to 2.5, in
keeping with the results of relativistic Dirac-Brueckner
calculations of the reaction matrix. ' '" Up to a nuclear
density of about 2.5po, the (o —co)-contributions of Fig.
11 linear in pz overides the 2o. contributions in pz but
the latter is nevertheless instrumental in driving the posi-
tion of the saturation density to a lower value, at variance
with the result of Ref. 21. The huge reduction in binding
we observe from the long dashed to the dash-dotted curve
of Fig. 9 may actually seem to question our whole ap-
proach to corrections to the two-body potential results.

2 Vo(d( )C ~20( 5/3) y20( )

FIG. 11. The 2a-, aco-, and 2'-N contribution to the central
two-body effective force and the 2' contribution to the spin-
spin and tensor two-body effective force. The baryonic density
isp, =0.17fm '.
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However, this is not the case as these corrections have to
be confronted with the total potential energy U in the
column V2 of Table II and are at. most of the order of
20%%uo of this quantity.

At this stage, some remarks about the mass of the o.
meson are in order. Throughout our calculations we
have adopted a value m =540 MeV. This is consistent
with the results of Ref. 30 in which the cr-meson is de-
scribed as a quark-antiquark quasibound state. This
model being rather successful in describing pion physics
we may tend to consider this value of m as rather corn-
pelling. However, it is worth noting that the value ar-
rived at in Ref. 32 is only m =440 MeV, emphasizing
the importance of medium effects hidden in this fictitious
o.-meson mass. The important point we want to stress
here is that whatever the mass m retained in the com-
mon range 450 to 600 MeV, the saturation curve includ-
ing three-body pair term contributions will be driven up
from the short-dashed one in Fig. 9 with (m, p) three-
body forces towards the dash-dotted curve in the same
figure. Clearly the question arises about the genuine
mechanism possibly leading to additional attraction in
agreement with the empirical saturation.

V. CONTRIBUTION OF EXCITED STATES

A. Model for the Roper resonance

The second contribution to the 3BF we are interested
in is given in Fig. 3(b), second diagram, and is related to
the occurrence of nucleon excitations in the intermediate
state. ' This is of course a direct and unavoidable
consequence of the composite structure of the nucleon,
and must be considered on the same footing as the contri-
bution of XX pair terms studied in the preceding section.
For o. and co exchange, the only resonances which can be
excited are those with J =T=—,'. The first candidate is
the Roper resonance of mass M~ =1440 MeV, which is
strongly coupled to mX and ~mN channels. The excita-
tion of the Roper resonance through ~ and p exchange is
implicitly included in the derivation of Ref. 17 and al-
ready considered in the previous section.

Very little is known about the Roper resonance, both
from an experimental and theoretical point of view. For
our purpose, the most interesting experimental quantity
is its decay width into mX

65 MeV
I = '205 M V (38)

where we indicate the two available measurements.
From these data, one can extract the miVR coupling con-
stant, provided the form factor at the vertex is known.

Theoretically, the Roper resonance is not yet fully un--
derstood. Being a radial excitation of the nucleon, the
simplest configuration is a 1particle-1hole quark excita-
tion, i.e., a quark in the 1s&&2 is excited in the 2s, &z level.
This configuration is commonly assumed in the constitu-
ent quark model for the nucleon structure. This however
raises the unanswered question of the position of the 1p
excitation (K* of mass 1535 MeV) at a higher position in
energy than the Roper, though its excitation is only 1hco

instead of 2hco for the Roper. Qualitatively, this puzzle
may be discussed in several ways. First of all, the Roper
resonance may be a collective excitation rather than a
simple 1p-1h configuration, and therefore its excitation
energy can be lowered. This can be investigated for in-
stance in a RPA type calculation. Yet no firm con-
clusions have been reached, as the residual interaction is
of foremost importance, and its knowledge is rather limit-
ed at present. Secondly, the excitation energy of the neg-
ative parity state X* could be increased if a more realistic
model for the nucleon structure is used. In the chiral bag
model for instance, pion self-energy as well as gluonic
corrections can reconcile to some extent the experimental
spectrum. Finally, it is very attractive to represent, in
the bag model, the Roper resonance as a breathing mode
of the bag surface. ' The whole spectrum would be
thus interpreted as rotational and vibrational states. Yet
quantitative spectral predictions are not available.

It is certainly not our purpose to discuss in detail the
nature of the Roper resonance, but rather to illustrate
how it contributes to the 3BF in nuclei. Hence, we con-
sider here a simple 1p-1h configuration which permits the
evaluation of such contribution. The quark wave func-
tions for the 1s,&2 and 2s»2 levels are calculated in the
color-dielectric model for the nucleon. ' We restrict
ourself for simplicity to the SU(2) derivation, keeping
only the scalar dielectric field y. The effective Lagrang-
ian we start from is

(39)

where q is the quark field and m the effective quark
mass. The Lagrangian is written here in dimensionless
units, the length scale being fixed by the lattice spacing a
after block-spin iterations. Note that the effective quark
mass in Eq. (39) should not be confused with the current
quark mass. It includes in addition contributions from
the expectation value of qq (a la Nambu-Jona-Lasinio for
instance). The restoration of chiral symmetry in this
model can be done in the usual way by coupling the
quarks to the chiral fields P and m. according to the o-
model coupling

gq()+i—y5r n)q . . (40)

In the Lagrangian, Eq. (39), it is important to note that
the kinetic energy term for the dielectric field g is

y B~B4y. This comes from the plaquette summation on
the lattice after block spinning. Because of this non-
linear structure, the y field has no longer the usual Yu-
kawa asymptotic tail, but goes to zero at some distance
R& which is determined numerically by solving the equa-
tions of motion in the mean-field approximation. This
solution leads therefore to an absolute confinement of the
quarks (analogous to the MIT bag model), at variance to
the commonly assumed form B~B"y. We show in Fig.
12 a typical profile for the dielectric field in the classical
limit, normalized to unity, as well as the upper and lower
components of the quark wave function y, in the 1s,&2

level, written as
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0
= g~ = +N, 6...

(f 'K

FIG. 13. Various contributions to the o NN form factor. The
first diagram on the right-hand side represents the direct cou-
pling of the o meson to the quark, while the other contributions
involve corrections associated with the coupling to 2m.

0.5

FIG. 12. Color dielectric field y {normalized to unity at
r =0), and the upper and lower components of the quark wave
function in the nucleon, in dimensionless units.

u (r)
y(r) =

v(r)o"r v'g(p) ' (41)

j' xz(k) = —
—',g f rdrj i(kr)(ui, v2, +vi, u2, )dr,

0

where we denote by u&„v&, and u2„v2, the 1s and 2s
quark wave functions, respectively.

With such form factors and coupling constants, the de-
cay width of the Roper into ~N can be written as

Rcfor r (Rc. The normalization is f o (u +v )r dr =1.
The parameters in Eq. (39) are fixed to the values
@=0.75, /3=10, A, =5, v=1.67, and m a =0.1. In or-
der to calculate the various coupling constants and form
factors, we couple the external fields o., co, and m. to the in-
dividual quarks in a way similar to Eq. (40). One can
thus deduce the following strengths

g~~it(k)=3g f drjo(kr)(ui, u2, —v„v~, )dr
0

g XR(k)=3g q f drjo(kr)(ui, u2, —v»v2, )dr (42)

(kP) A +ak A —m
gMNR gMNR ~2

=gMNR+M(k (44)

and the values for A, e, and gMNR are reported in Table
I. The o.XR cutoff parameter has been corrected by the
same factor as the a NN vertex (from Fig. 13).

With these parameters, the decay width of the Roper
resonance into mX is

I R"'~ =70 MeV . (45)

This is consistent with the experimental data Inentioned
in Eq. (38). These parameters can thus be used with some
confidence to calculate the contribution to the Roper res-
onance to the 3BF in nuclear matter.

tween this value and the cutofF of 1.1 CxeV/c reported in
Table I is attributed to additional vertex renormalization
at the aNN vertex from the coupling of the o. to 2~. We
indicate schematically in Fig. 13 the various contribu-
tions to the os% vertex. In the case of the cod% and
nNN vertices, such additional renormalization involve at
least m and p exchange and are far less important. We
have neglected them here.

One can thus calculate all the required coupling con-
stants and form factors for the meson-nucleon-Roper
(MNR) vertex. The vertex factors given in Eq. (42) are
parametrized as follows

XR(k ) 6k MRrR —+ m.N IR
(43)

where k is the momentum of the emitted pion, close to
420 MeV/c, and co (k ) the pion energy.

In order to determine completely the various form fac-
tors and coupling constants, one needs to fix the meson-
quark coupling strengths and the length scale a. This is
done by calculating the meson-nucleon coupling con-
stants in this model, and thus the meson-quark coupling
constants are fixed to get the values reported in Table I
and extracted from the Paris potential, following our dis-
cussion in Sec. II. The length scale a is fixed to get the
mNN cutoff parameter A reported in this table.

With these assumptions, the o.NX cutoff parameter is
equal to 1.55 GeV/e, while the cutoff for the co%% and
mNN vertices are given in Table I. The difference be-

(V,h)) —R
3, C

SUM

20

FIG. 14. The 2o., o.co-, and 2'-R contributions to the central
two-body effective force at baryonic density p&=0. 17 fm
The continuous curve represents the sum of these three contri-
butions.
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B. Numerical results

The contribution of the 3BF indicated in Fig. 3(b),
second diagram is evaluated following the procedure de-
tailed in Sec. III B. The three-nucleon potential 8'
defined in Eq. (18) is explicited in momentum space in
Appendix B, together with the corresponding efFective
two-body potential V3. Note that the potential F is cal-
culated up to terms in q /M, to be consistent with the
derivation of the 3BF involving NN excitations. These
corrections are far from being negligible. At that order,
the meson propagators are also treated in the static ap-
proximation.

The contribution to the potential energy are summa-
rized in Tables II and III, and the effective two-body po-
tential shown in Fig. 14. The total potential results from
a large cancellation between the 2o. and 2' part on the
one hand, and the o.co term on the other hand. The total
contribution is rather small, less than 1 MeV in absolute
value, attractive and of long range. The small repulsion
present at small separation distance is not significant and
does not contribute to the binding energy because of the
presence of correlations. It is important to note here that
although the 3BF under consideration corresponds to the
exchange of two heavy mesons (compared to the pion), it
contributes mostly between 1 and 2 fm. Furthermore,
since the potential is purely central, it contributes con-
structively in all partial waves, and therefore gives a rath-
er large contribution to the binding energy per particle,
as shown in Table III (about —4 MeV at normal density).
In addition, the contribution of the Roper resonance to
the 3BF gives a correction to the potential energy in p~.
It dominates the correction from virtual XN pair terms
described in the preceding section at normal density, but
is less important at higher density where the repulsive
effect in p~ takes over. We indicate by a solid line in
Fig. 9 the resulting equation of state once all corrections
from the 3BF indicated in Fig. 3(a) and (b) have been tak-
en into account. It is interesting to notice how the
correction of —4 MeV is inAuenced by the peculiarity of
the vertex form factors. The specific orthogonality prop-
erties of the Roper wave function with respect to that of
the nucleon induce a particular shape of the vertex form
factor not predictable from qualitative arguments and at
variance with monopole expressions commonly used. It
is such as to reduce the energy per nucleon from the
three-body force via the Roper by a factor of about 3
with respect to the one obtained with a pure monopole
shape with identical asymptotic behavior at large
momentum transfer. We view this result as indicating
the importance of a consistent description of baryonic ex-
citations at the quark level.

All the corrections discussed in this work are in fact
equally important in bringing the saturation curve in
qualitative agreement with the empirical results, starting
from the simple calculation in terms of a two-body poten-
tial only (long-dashed line). Given the various approxi-
mations we made in treating the many-body problem and
the derivation of the effective two-body potentials from
the 3BF, as well as the model dependence of the parame-
ters entering the contribution of the Roper resonance, we

believe that the small discrepancy which still persists is
not very significant. It could only be settled through
more tedious numerical works.

From a phenomenological point of view, the empirical
equation of state constructed in Ref. 48 can easily be ac-
counted for within our framework by giving a small den-
sity dependence to the o. mass. At small density,
p &pa/2, the corrections we analyzed in this work are
very small, and therefore the equation of state is not sen-
sitive to the mass of the o. meson. Between po/2 and po,
one needs extra attraction which can be achieved by
lowering m down to 450 MeV. On the other hand, at
large density, the o mass cannot be lowered that much
(all other masses and coupling constant being kept fixed)
in order to avoid saturation at too high density. It is in-
teresting to note that the variation of m we find is in
qualitative agreement with the results of Ref. 30. The un-
certainty in the medium dependence of the o.-meson mass
is certainly a major limitation to a more precise evalua-
tion of the 3BF contributions detailed in this work.

VI. SUMMARY AND CONCLUSIONS

The basic observation underlying our study is twofold.
On the one hand, it is the established capability of the
nonrelativistic many-body theory of nucleons interacting
via a two-body potential to give reliable results for nu-
clear matter and finite nuclei properties. On the other
hand, it is the necessity to take into account in a con-
sistent scheme the finite structure of the constituents and
to evaluate corrections perturbatively. This is of utmost
importance as the excited states of the nucleon enters
significantly in the corrective processes. Suppressed de-
grees of freedom at the level of the two-body potential re-
sult in many body potentials, the three-body interactions
coming first in the hierarchy. On a pure phenomenologi-
cal basis, it has been shown that an additional three-
body potential is indeed capable to correct in a satisfacto-
ry way the many body results obtained from two-body
forces only. However, the theoretical analysis of the
corrective three-body interaction is quite involved, one
major reason being that it cannot be disconnected in any
way from the two-body potential one starts with. Hence,
if one seeks a consistent description of the difFerent in-
teractions in the nuclear system, one cannot simply let
various parameters of the residual forces evolve freely
and take on values suited only for one purpose —empirical
properties of nuclear matter and/or finite nuclei —and
disregard other areas of physics where similar perturba-
tive corrections have also been studied for long and
mastered from comparison with a large body of data.

We have shown here that the actual knowledge of elec-
tromagnetic interactions in nuclei in terms of meson-
exchange currents provides a link with we11 identified
three-body processes. For a given two-body interaction,
the constraints of current conservation and consistency
with the one-boson exchange picture fixes all the model
parameters which are not expected to depend much on
the medium itself. This is the case of the masses, cou-
pling constants, and form factors of well established
mesons. The hypothetical scalar o. meson which provides
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the intermediate-range attraction on a purely empirical
basis in one-boson exchange models of the two-body in-
teraction, has again a very specific role in the medium.
Recent theoretical investigations have shown that medi-
um corrections to the o. mass are strongly density depen-
dent. Hence we have kept this mass as the only free pa-
rameter in the expression of the three-body forces result-
ing from our analysis of meson-exchange currents. In the
first place, and to make the study of the three-body forces
contributions to the nuclear matter binding energy sim-
ple, we fix m at a given value (540 MeV) independent of
density.

Although the calculation scheme we envisage to evalu-
ate corrections is subject to limitations and amendable in
many respects, we show that it incorporates correctly the
dominant saturating effects brought about by the three-
body forces. Hence we believe to have identified the
characteristic trends in the saturation mechanism that
are mostly independent of the technics of solution of the
many-body problem itself. We find that these trends in
modifying the equation of state from the two-body force
only originate predominantly from two well identified
processes. One relates to nucleon-antinucleon pair terms
present in the analysis of meson-exchange currents. Its
three-body counterpart gives a correction to the energy
per particle which varies with a high power of the density
and drives the system to lower density at saturation,
stiffening the equation of state. The second one comes
from subnucleonic degrees of freedom via the nucleon
Roper resonance N*( —,', —,'). It counteracts the eft'ect of
the latter on the equation of state and drives it close to
the empirical binding energy at normal saturation densi-
ty. As the m- and p-exchange contributions from the
Roper resonance are highly suppressed in first order in
the three-body force because of their specific spin struc-
tures, the dominant role is played by processes with sca-
lar and vector meson exchanges. This comes from the
fact that the Roper, with the same quantum numbers as
the nucleon, can easily couple spin with surrounding nu-
cleons through a scalar (e.g. , vector) interaction. Howev-
er, quantitative results concerning the effect of the Roper
in the nuclear medium have so far proved elusive due to a
limited knowledge of coupling constants and form factors
between meson-nucleon and this resonance. We have
been able here to give a more quantitative answer
through a determination of these quantities from a more
realistic quark model in which the nucleon has a baglike
structure.

The pending and most puzzling problem relates to the
case of the hypothetical scalar meson. Our results clearly
show the importance of the medium corrections to the

free o. mass in determining the equation of state. In fact
we are now able to obtain rather easily a reasonable set of
values of m as a function of the density in order to
reproduce a given empirical equation of state. However,
due to the limitations of the calculations, we consider our
numerical results. for the density dependence as only indi-
cative. Yet an important point we want to stress is the
combined importance of both the strong repulsion from
the pair terms and the attraction from the Roper terms in
producing enough Aexibility in the energy functional in
terms of the o. mass to cope with the empirical situation.
We achieve this goal here through consistent corrections
to reasonably well controlled nuc1ear many-body results,
in close connection to the successful analysis of meson-
exchange currents in nuclei. This is in marked contrast
to actual relativistic approaches of the nuclear many-
body problem. Although successful in the mean-fie1d
description, they are presently out of control beyond this
approximation and offer no possibility for the quark sub-
structure of the constituents.

Future investigations of the effects of nucleon reso-
nances and medium corrections to meson masses and
coupling constants should hopefully bring our conclusion
to a more quantitative basis. This is certainly possible,
although not straightforward with existing and more ela-
borate techniques of solution of the many-body problem
combined with a thorough description of meson and
baryon properties from relativistic quark models.
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APPENDIX A: COMPLETE EXPRESSIONS
FOR THK r-SPACE THREE-BODY FORCES

FROM 2' AND o.co EXCHANGE

The case of the 2o.-exchange contribution is treated in
Sec. IV A. with the result W3 given in Eq. (3l). ~e fol-
low the same procedure here and give the expressions of
8 3 and 8'z ". They write

4 2

~3 (x y'r& r21rl r2) 3 p
&' '(r3 r3)

4M (4m )

X I [(I+~, ~,+~, ~3+cT2 03)x.y —o
&

yo3.x —cr3 yo2. x cr&ycr2 x]Z' (x—)Z' (y)

+2iZ' (y)Z (x)(o 2+ o, )(y X V, )+2iZ' (x)Z„(y)(o,+cr2)(x X V, )

—4Z (x)Z (y)V, V, )5' '(r2 —rz)5' '(r', —r, ),
1 2

(Al)
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IV3 (rf r2 r3lri, r2, r3) =5"'(rt —
I& )IV3, &

(x,y;r2, r3lr2, r3)+5' '(r2 —r2) W3 z(x, y;r', , r3lr„r3)
I

with

(A2}

W3, (x,y;rz, r3lr2, r3)= (1+o2 o3) Z" (y)+ —Z' (y) Z (x)
4M (4n. ) y

—2iZ (x)Z„'(y)(o 2+o 3) (y X V, )+iZ' (x)Z' (y)(o 2+cr3).(x X y)
f3

+2iZ (x}Z' (y)cr3 (yXV, )+2Z' (x)Z (y)x V, +2Z (x}Z' (y)y V,

+4Z (x)Z„(y)V,V, —
—,'(o 2 o 3 Yz (y)+S23(y)X2 (y) )Z (x)

X5' '(r3 —r3}5' '(r2 —r2),
and 8'z 2 obtained from 8'3

&
with the interchanges

I cr) —o'2, r) r,2)I—I'2, x —y j

(A3)

In these expressions Z
~

~(x) is defined in Eq. (32) and Y2 (x),Xz (x) are given in Eq. (2.24) of Ref. 18 with x=r3 —r'&

and y=rs r2
In the derivation of the effective two-body force, according to the general expression (29), we note that by tracing

over the spin (isospin) of the third particle all terms linear in o 3(r3) drop out. Likewise, terms in x X y, y X V, , x XV,.
do not contribute after integration and in keeping with the derivation of the (n, p) co.ntribution of Ref. 18, the overall
potential V3 is kept local in the variables (r&, r2), with r=r& —r2.

The part V3 ' completing the expression given in (33b) writes

2 2

V3 (r)= —
p~ f d r3g (x)g (y) 4g'(x)g (y)[Z' (x)Z (y)+x.yZ (x)Z' (y)]4M (4m )

+g(x)g(y) Z" (x)+—Z' (x) Z (y)+x ~y

+x yg(x)g(y)Z' (x)Z' (y) . . (A4)

From Eq. (Al) the effective force V3 (r) writes

V3 (r)= V3 c(r)+o, o2V3 (r)+S,2(r) V3"T(r),

with

4 2

V3 c(r) 3 P.f d "3g'(x)g'(y)x yZ.'(x}
4M (4n. )

XZ' (y),

(A5)

(A6)

Here Q = —
—,'(cos8+3cos8 cos8r), cos8=x y=(x +y

r)/2xy, —cos8 =(y x r)/2x—r, an—d cos8 =(x
y r) /2yr. — —
From the sum Wz", + 8'3 2 we obtain only a central

effective force V3 (r) which writes

, pg fd'r, g'(x)g'(y)
4M (4m )

V2co ( r) —2 V2cd ( r) (A7)

XZ' (y) . (A8)

4 2

V3 T(r)=—, ,p~ fd'r3g (x)g (y},
' QZ' (x)—

4M (4m. )

Z" (y)+ —Z' (y) Z (x)+x ~y
(A9)

Here the functions Z
~

~(x) and derivatives are obtained
from Eq. (32) and jd r3 is explicited after Eq. (33b).

APPENDIX B: MOMENTUM-SPACE THREE-BODY FORCES FROM o AND co EXCHANGE VIA THE ROPER
RESONANCE, AND CORRESPONDING EFFECTIVE TWO-BODY POTENTIALS

The relevant diagrammatic contributions are represented in Fig. 3. We use the notation of Secs. III 8 and V, and
denote by Mz the Roper mass, 5=M/Mz and F (q ) the o-Roper form factor. For the order in momentum over the
nucleon mass, consistent with the derivation of expressions (21), the 2o.-Roper three-body force in momentum space
writes
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(3l, g Ng R F.(ql )F'. (ql ) F.(q2)F'. (q2)
& pl, p2, P3l ~3 Ipl P2 P3~ (2~) 5 (P3 P3 'ql 12) 2 2 2 2MR(1 5) q2l+m2 q2+m

X2 1+ (1—5 )+
4M 4M

25
(1 —5)

(ql+q2) 1 1 5 ll l2+ 1 ——5 ——5 — + (1—5)4M' » (1—5)

l l, l
&3 P3 X ( ll+q2) — o'l'(Pl X Pl ) — 2 ~2 (P2 X P2

R 4M 4M
(B1)

In the case of »co and cree exchanges, we distinguish between the scalar F„' (q ) and vector F"' (q) co-Roper form fac-
tors. In the e6'ective two-body potential approach only terms involving the scalar part contribute. For completeness,
the full expressions of the 2'- and o.co-Roper three-body forces in momentum space, obtained to the same order in the
expansion as for (Bl) are given. They write

2 2 F ( 2)FR( 2)
~
gr2a&R

~

P1~ P2~ P3~ 3 ~ P1~ P2~ P3 )= —(2 )'5"'( ' — — —
) ~

X 4M F '
( )F ( ) 1+ (1+45—5)+

4M
+45—5

25 2

1 —5

( 2+ 2)q2

8M
25 ql q2 (1+5)

(1—5)

p2 p2+ + +o('X)
4M2 ~1 P1 P1

4M
o2 (P2XP2) M w3 [P3X(q, +q2)]

4MM~

F ' (q, )F ' (q2)[(1+5)(2p3+q,+q2) i (1—
)5(
—oX3q) +i(1 +)5(o X3q )2]

X(2P icr2Xq—2) — F ' (ql )F ' (q2)
j.

X[(1+5)(2p3+ql+q2) —i(1—5)(cr3Xq2)+i(1+5)(o3Xql)](2P, io, Xq, ) —. .

and

&Pl P»P3~~3

= (2 )35(3)( )
g Ng Rg Ng R

P3 P3 2M (1—5)

25
1 —5

F(')F ( ')F( ') P3 q1 45.4F ' ( )M 1+ (1+35—5 )+ 1+25—25—
(q +m )(q2+ m ) 4M 4M

2

+ (1+5)+ 1+5—5—
4M 4M

2 p2

8M 4M 4MM~

(B2)

4M l (pl Xpl)+ 2 o3 (p2Xp2)
4M

F (q,' )[ (1+5)(2p3+ q, +q2) —i (1—5)(o 3 X ql )

+i (1+5)(o3Xq2)](2P2—io2Xq2) .+1~2 (B3)
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TABLE IV. Coefficients of Eq. (84).

pa-R Ia-R
1 Ia-R

2
Ia-R

3 Ia-R Ia-R
5

2 2.
goNgoR mo

MR 4m

2
(1—5)

(1+5)
2

1+5—1 25
2 (1—5)

2 2

2(1—5)

52

1 —5

2 2
g cdNg roR

g ~Ng re g (y Ng o R m

MR (4n-)2

2
(1—5)

2

(1—5)

(1+45—5')
2(1—5)

(1+35—5 )

2(1—5)

1+45—5— 25
(1—5)

2(1—5)

—1

2(1 —5)

251+5—5—
1 —5

4(1 —5)

—1

2(1—5)

(1+5)
2(1—5)

(1+5)
2(1—5)

Specifying the form factors (cf. Secs. III 8 and V), the r-space expressions of these contributions can be obtained in a
straightforward though cumbersome way. We do not use them directly in our calculations, hence we only give the ex-
pressions of the local two-body effective forces V& defined in Eq. (29) and derived from Eqs. (Bl) to (83). They write,
for a taken successively as 2o. , 2', and o.co

5
Va-ii( ) Ca Ry Ia-RV-a R-

i=1

with the coefficients C "and I; "given in Table IV and the following functions Vz; (r)
(i) a taken as 2o or 2'

V3 i (r)=pa f d r&g (x)g (y)Z (x)Z (y),
' 2/3

(84)

(85a)

~ g —2 3 3'7T
V ( )=M p —

p~ f d r&g (x)g (y)Z (x)Z (y)

+ f d'r&[g(y)Z (y)(g(y)g'(x)+x yg(x)g'(y))(g'(x)Z~(x)+Z (x)g(x))+x y], (85b)

Vz z (r)=M pz f d rzg( )gx(y)[(Z" (x)Z (y)+x.yZ (x)Z (y))g'(x)g(y)+x=y], (85c)

Vi ~ (r)=M pz f d rig (x)g (y) Z (x)+—Z (x) Z" (y)+x ~yR' (85d)

Vi ~ (r)=M pii f d rex.yZ (x)Z (y) .

Here the function Z (x) and derivatives are obtained in closed form
r

4& d g' e q
Z~(x)= f », F (q')F (q'),

m (2ir)~ (q +m )

(85e)

(86)

with the form factors F (q ) from Eq. (5) with parameters of Table I, and F (q ) from Eq. (44) with parameters given
in Sec. V.

(ii) a taken as o co

V~, (r)=pii f d rig (x)g (y)(Z (x)Z (y)+x y),
2/3

Vi 2 (r)=M pii
— pii f d rig (x)g (y)(Z (x)Z (y)+x ~y)-2 3 3'

+ f d rz[g(y)Z (y)(g(y)g'(x)+x yg(x)g'(y))(g'(x)Zg(x)+Z" (x)g(x))+x—

(87a)

+g(y)Z (y)(g(y)g'(x)+x yg(x)g'(y))(g'(x)Z„(x)+Z„(x)g(x))+x y], (87b)
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V3 3 (r)=M p
2

1+25—25 —4 f d r3g(x)g(y)[Z" (x)Z (y)(g'(x)g(y)+x. yg(x)g'(y))+x y]

+(1+5)fd'r, g(x)g(y)[Z (x)Z (y)(g'(x)g(y)+x yg(x)g'(y))+x y] (B7c)

V3 4 (r) =M p~
Q2

1+5—5 —2 f d r3g (x)g (y) Z„(x) Z" (y)+ —Z (y) +x ~y

+ ,' f —d r3g (x)g (y) Z (x) Z„"(y)+—Z"'(y) +x y (B7d)
L

V3 &
(r)=M pz f d r3g (x)g (y)x y(Z. (x)Z (y)+x ~y) . (B7e)
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