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The assumptions underlying several quadrupole collective models are tested by a comparison
with results of self-consistent Hartree-Fock plus BCS calculations using the Skyrme SIII interac-
tion. We analyze the deformed states of '**Ba in terms of condensates of fermion pairs which have
been introduced in the interacting boson model and in the quadrupole phonon model, and in terms
of multipole components of the density suggested by the Bohr and Mottelson model. We compare
the deformation energy curves obtained by using (i) several multipole truncations of the Hartree-
Fock plus BCS pairs, (ii) pairs obtained by a variation after truncation, and (iii) truncated series of
multipole correlation energies. The influence of the core and vacuum polarization effects on the
structure of the fermion pairs is found to be fairly strong.

I. INTRODUCTION

Over the past decades a considerable effort has been
devoted to a description of a variety of properties of low-
energy nuclear excitations in terms of relatively simple
quadrupole collective models. The most studied (and
used) among such models are the unified Bohr and Mot-
telson (BM) model,! ™3 and the interacting boson model
(IBM) of Arima and Iachello.* As far as the phase space
of collective excitations is concerned, these models, to-
gether with the quadrupole phonon model (QPM) of
Janssen, Jolos, and Dénau,’ are intimately related one to
another.

The BM model assumes that the quadrupole collective
states can be described by functions of quadrupole collec-
tive variables a,, u=-—2,...,+2. The QPM, which
makes a similar assumption for the many-boson states
built out of the five components of the quadrupole boson
operator bl, has an identical phase space [due to the nat-
ural correspondence bZ=(a“—a/aa;‘j)/\/2]. From the
viewpoint of group theory, this phase space can be
identified with an infinite sequence of the SU(5) represen-
tations, N =0,1, ..., o, where N is the number of the b}:
bosons. In the IBM, the collective states are built by
means of the monopole and the quadrupole bosons, s
and d L, and the total number N, of bosons is fixed. The
IBM phase space can be associated with one representa-
tion of SU(6), and is identical to a finite sequence of the
SU(5) representations for N =0,1, ..., N,, i.e., the IBM
phase space is contained in that of the other two models.

This close geometrical relationship can be contrasted
with the rather different microscopic interpretations pro-
posed for these three models. The BM model assumes
that the collective variable a, defines the shape of a nu-
cleus, and refers to quadrupole distortions of the nuclear
density. On the other hand, in the IBM and the QPM,
the boson operators are associated with pairs of fermions
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coupled to a given angular momentum J. In the QPM
one considers pairs of quasiparticles coupled to J =2 (D
pairs), while in the IBM the discussion is much in terms
of pairs of valence particles (or holes past midshell) cou-
pled to J =0 and J =2 (S and D pairs).

A possible test of the validity of the microscopic as-
sumptions of the IBM and QPM consists of diagonalizing
an effective fermion Hamiltonian in a space built with the
fermion pairs appropriate for each model, and comparing
the results with experimental data. However, such an
ambitious program has, up to now, never been worked
out. A simpler and tractable method, which we use in
the present paper, consists of calculating the mean energy
of an uncorrelated state built with the fermion pairs.
This is feasible, because the lack of correlations allows
one to use the Wick theorem to determine the energy of a
fermion system with two-body interactions. This method
provides only some weighted sums of collective energies
instead of a complete collective spectrum to be compared
with the experiment. However, from a comparison of
these weighted sums with the energy resulting from the
deformed mean-field theory, one can estimate the role of
the angular momentum restrictions on the structure of
the fermion pairs suggested by the IBM and the QPM.

There have already been several attempts to derive the
microscopic foundations of the IBM from the deformed
mean-field theory® ™ !® (see also the review by Iachello and
Talmi'®). In the present paper, which follows our rapid
communication,?® we analyze the assumptions of the
IBM, QPM, and the BM model from the point of view of
the deformed self-consistent Hartree-Fock (HF) ap-
proach.

Our study differs from the previous ones®™!® by one or
more of the following elements. (i) We investigate fer-
mion pairs defined with respect to several reference vacu-
ums. Up to now, the only considered vacuum was the
closed-shell inert core suggested by the IBM. As in Ref.
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20, we also consider the vacuum suggested by the QPM,
i.e., the spherical state of the studied nucleus. This al-
lows for a consistent comparison of the microscopic foun-
dations of the IBM and QPM. (ii) Previous calculations
have been performed within a rather restricted single-
particle space. Since we free ourselves from this restric-
tion, we can study the influence of polarization effects.
(iili) We use the Hartree-Fock theory with a realistic
effective interaction (Skyrme SIII), instead of the separ-
able residual quadrupole-quadrupole force, which has
mainly been used up to now. Therefore, our HF energy
directly compares with the nuclear mass, and the defor-
mation energy and equilibrium deformation are properly
determined. (iv) We not only calculate the properties of
states made of the low-angular-momentum components
of the HF pairs (truncation after variation), but we also
perform a full minimization for fixed multipole contents
of the fermion pairs (variation after truncation). We can
therefore determine the absolute lower bounds for the en-
ergy of the deformed states in the frame of the IBM and
QPM. (v) In order to compare the effects of truncations
inherent to the IBM and QPM with those of the BM
model, we calculate the multipole correlation energies
corresponding to the low angular-momentum com-
ponents of the density matrix and estimate the effect of
neglecting all but the quadrupole correlations.

The paper is organized as follows. In Sec. II we
present the results of the HF method for the deformed
states of 12®Ba. In Sec. III we give details of our method
to analyze the assumptions made in the IBM and QPM.
In particular, we discuss the relationship between the two
associated vacuums and their two coherent fermion pairs.
In Sec. IV we present the results obtained for truncated
HF pairs, while Sec. V contains those obtained by a vari-
ation after truncation. Section VI describes the calcula-
tion of the correlation energies, and our conclusions are
given in Sec. VII.

II. DEFORMED STATES OF 2®Ba

Our choice of the nucleus 2®Ba for testing the micro-
scopic foundations of the interacting boson model (IBM)
and of the quadrupole phonon model (QPM) is motivated
by two observations: (i) this nucleus has a relatively small
calculated ground-state hexadecapole moment, which
simplifies the discussion of the quadrupole effects, and (ii)
the prolate and oblate minima are almost equally deep,?!
which allows us to discuss the effects occurring for both
shapes. In the present paper the deformed states of '2Ba
are calculated within the constrained Hartree-Fock {(iI%)
theory?>?3 with the Skyrme SIII interaction?* and the
pairing correlations are included by the BCS method.
The axial, parity, and time-reversal symmetries are im-
posed when solving the HF equations. The dependence
of the HF states on deformation is obtained by using the
quadrupole moment 0 =3 /A (222 —x2—y}?) as the con-
straining operator. The HF solutions are found by ex-
panding the single-particle wave functions on the spheri-
cal harmonic oscillator basis including states with the
principal quantum number Ny < 12. The value of the os-
cillator basis parameter®® b =Vmw/%=0.48 fm~! is
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determined by minimizing the HF energy at the spherical
shape.

Two elements of our approach should be stressed.
Firstly, we use the self-consistent method with a realistic
two-body interaction, which provides us with a variation-
al estimate of the total energy of the nuclear system. A
quality of any approximation concerning the structure of
the nuclear wave function can therefore be immediately
judged by looking at the corresponding increase of the
variational energy. Secondly, we explicitly use a large
basis of the single-particle states and neither restrict the
calculation to a valence space nor assume any inert core.
This allows us to study the effects of the core polarization
and of the vacuum polarization (i.e., the role of the
single-particle states below and above the valence space,
respectively), and also to disregard the problem of
effective charges, inherent to calculations which use a re-
stricted space.

Two different treatments of pairing correlations have
been used in the present study. In the first one, we have
used the constant®? (independent of the deformation) gap
parameters,

A,=1.41 MeV, A,=1.38 MeV , (2.1)

for neutrons and protons, respectively, which have been
determined from the experimental odd-even mass
differences.”> The A=const approach is, as discussed in
Ref. 22, equivalent to a minimization of the quantity

E'=Ep+2E, , (2.2)
where E is the mean-field energy equal to the expecta-
tion value of the kinetic energy operator plus the expecta-
tion value of the Skyrme interaction, while the pairing
energy Ep is given in terms of the standard BCS
coefficients u,, and v, by

Ep=—A, 3 uv,—4A, 3 u,v,.
u>0,n uw>0,p

(2.3)

The summation over u>0,n(p) denotes the summation
over the single-particle neutron (proton) states which
have positive projections () of the angular momentum on
the quantization axis.

In the second version of the BCS method, which we
call the G =const approach, one solves the BCS equa-
tions for a monopole pairing interaction with fixed (in-
dependent of the deformation) strengths G, and G, for
neutrons and protons, respectively. Such approach is
equivalent to minimizing the total energy

E=E.+Ep, (2.4)
where the pairing energy is given by
Ep=—G, [ S u#u#]z—GP S uw, . (2.5)

©>0,n u>0,p
The unrestricted variation of both functionals, Egs. (2.2)
and (2.4), yields exactly the same solution if the pairing
gaps are related to the pairing strengths by
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A, =G, 3 UL,
u>0,n

A,=G, > U, -
u>0,p

(2.6)

Because of the deformation-dependent density of the
single-particle levels, relations (2.6) can in general be
fulfilled only for a single value of deformation. In the
present study we have adopted for the G =const ap-
proach the values ’

G,=0.0955 MeV, G,=0.1091 MeV , (2.7)

which at the deformation Q =8b, close to the equilibrium
deformation of '?®Ba, fulfill relations (2.6) with the pair-
ing gaps of Eq. (2.1).

Some care should be taken when interpreting the re-
sults of the A=const calculations, because the quantity
minimized, Eq. (2.2), is not then equal to the energy, Eq.
(2.4). In particular, one can encounter the situation (see
the results of variation after truncation, Sec. V) when the
energy increases for enlarged variational space. In such a
case, a quality of the restricted variational wave function
can be judged by comparing the corresponding values of
E’, Eq. (2.2).

In Fig. 1 we present the pairing energy Ep obtained for
122Ba in our two versions of the BCS approach. For
A=const, the pairing energy depends weakly on defor-
mation, and has a shallow minimum at the spherical
point, which is related to an increase of the level density
close to the Fermi surface. The fluctuations of the pair-
ing energy are strongly amplified for G =const, and the
minimum at the spherical shape becomes very deep. The
ampliﬁcation is strong because all single-particle levels
(with Ny =< 12) have been purposely used when solving the
BCS equations. The best physical description of pairing
correlations can probably be found somewhere in be-
tween our A=const and G =const results. In the present
study, however, we prefer to keep both extremes, which
allows us to discuss the influence of pairing effects on our
conclusions concerning the microscopic foundations of
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FIG. 1. Pairing energy of '**Ba obtained by the A=const and
the G =const versions of the BCS approach.
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FIG. 2. Hartree-Fock energy of 'Ba obtained for pairing
correlations described by the A=const and the G =const ver-
sions of the BCS approach.

the IBM and QPM.

In Fig. 2 we plot the total energy E as function of de-
formation. The strong decrease of the pairing energy at
the spherical shape for G =const results in a decrease of
the total energy at this shape. The prolate deformation
energy is decreased in this way from 5 to 1.5 MeV.
Beyond the prolate and oblate minima the influence of
pairing correlations on the total energy is small.

III. REFERENCE STATES AND PAIR CONDENSATES

The deformed nuclear state |¥) resulting from the HF
method is a quasiparticle vacuum for the set of the quasi-
partlcle annihilation operators, which we denote by S,
ie., BFI\I/) =0. The quasiparticle creation and annihila-
tion operators, B and B,, are related to the particle
creation and anmhﬂatlon operators, aT and a,, by the
Bogolyubov transformation

BT aT
B

In view of the Thouless theorem the quasiparticle vacu-
um |¥) can be expressed in terms of the bare vacuum
[0),a,10)=0, as

|w)=(0|¥)exp{CT}|0) ,

AT BT

[ @3.1)

(3.2)
where C' is the coherent particle pair creation operator

*—lgcm fal . 3.3)

The antisymmetric matrix C,, is related to the
coefficients of the Bogolyubov transformation, Eq. (3.1),
by

C=—BA"'. (3.4)

Because |¥) has the form of a sum of powers of Ch act-
ing on vacuum, % (3.2), one can call it the condensate of
the particle pairs

The diagram in Fig. 3 presents various Bogolyubov
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transformations which will be discussed in this section.
Transformation (3.1) is represented by the vertical arrow
connecting the box a,|0) with the box 8,|¥), while the
corresponding Bogolyubov matrices 4 and B, together
with the pair matrix C, are marked within the oval box at
the middle of the arrow. Let the state |¥ ), which we
call the reference state, be an arbitrary quasiparticle
state. Denotmg the quasiparticle operators related to
| W, ) by a and a,, i.e., a,|V¥ ) =0, we can express B
and B, in terms of ozT and a, by the following Bogolyu-
bov transformation (see Fig. 3):

BT] a'l'
P —

which allows us to present |¥) in terms of the reference
state | W .¢) as

| W) = (W, ¥)exp{

uT yvT

ytoot , (3.5)

ARIL (3.6

where the coherent quasiparticle pair creation operator
ARD given by

EZ,W e 3.7)

and

=—pUu~!, (3.8)

Therefore, the deformed state |W¥ ), being the condensate
of the particle pairs ct, Eq. (3.2), can also be considered
as a condensate of the coherent quasiparticle pairs 2 t,
built on an arbitrary reference state |W¥,), of the corre-
sponding quasiparticle creation operators a

For a given deformed state |¥) one can eas11y find the
relation between the particle pair CT and the quasiparti-
cle pair 2. To this end, let us suppose that the reference
state is determined by the Bogolyubov transformation re-
iating3)az and a, and the particle operators a; and a,
Fig. 3),

aT ATf Bref T
a|” Bl als ’ .9)
ie.,
!w,ef)=(o|wref)exp{éief}|o> , (3.10)
Cle=1 2 Clhmalal (3.11)
Cree= BrefAref . (3.12)

Expressing the Bogolyubov transformation (3.1) as the
superposition of transformations (3.9) and (3.5), one ob-
tains from (3.4) that

C=(A}Z —B )N A, s—B}Z)” (3.13)
which can be inversed, and gives
refc Bref ref—BrefC")m1 . (3.14)

Since the rotational invariance is broken in a deformed
state, the pair operator 2" contains various angular
momentum components:
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FIG. 3. A schematic illustration of the relationship between
various Bogolyubov transformations discussed in the text. Each
rectangular box represents a quasiparticle vacuum. Bogolyubov
transformations are denoted by arrows connecting rectangular
boxes. The oval boxes attached to the arrows embrace the ma-
trices of the Bogolyubov transformation and the corresponding
pair matrix.

=3x,2}, (3.15)
J
where Z 2h=1 T v (z] Malai transforms under spatial ro-
tations as the rank J spherical tensor, and the coefficients
x; are fixed by requiring that for each J one has

26UV, 2,28 W, o) = z<z, =1 (3.16)

The sum in Eq. (3.15) contains in general all values of J,
and also, for each J, all values of the magnetic quantum
number M (which is not shown explicitly). For the de-
formed states |¥) which conserve some spatial sym-
metries, the sum can be restricted to some particular
values of J and M. In the present study we consider axial
and parity invariant deformed states, in which case only
the even-J and M =0 components appear in Eq. (3.15).

From Eq. (3.14) it is clear that the multipole composi-
tion of the quasiparticle pair VAl depends, for a given |¥)
i.e., for a fixed matrix C, on the choice of the reference
state. When the reference state | W) conserves the rota-
tional symmetry, which we will assume from now on, the
matrices A, and B, defining the Bogolyubov transfor-
mation (3.9) transform as scalars. Even then the mul-
tipole components of V4 depend on the choice of the
reference state, which is a consequence of the nonlineari-
ty of the relation between the quasiparticle pair matrix Z
and the nonscalar particle-pair matrix C, Eq. (3.14).

In order to get a closer insight into the dependence of
Z7 on the reference state, let us suppose that we have two
different reference states |¥ ) and |¥,.). The quasipar-
ticle operators related to |W,.;) will be denoted by a,';' and
a,’j, ie., a;|¥ ) =0, while the primed matrices U’, V",
Z', Al B,ef, and C,. will refer to |W¥,.) through equa-
tions analogous to those from Eq. (3.5) to Eq. (3.12). Let
us also denote by U, V,, and Z, the matrices determin-
ing the reference state |W.,) in terms of the reference
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state |W ¢) (Fig. 3), i.e.,

o _ Uy Vi |at
o |= |t | la] (3.17)
I\I’;ef)=<\Preflw;ef)exP{23}l\pref> ’ (3.18)
Zi=13(zhalal, (3.19)
uv
Zo=—VoUy ! . (3.20)

The relation between the quasiparticle matrices Z and Z’
can now be derived, similarly to the derivation of Egs.
(3.13) and (3.14). Comparing the Bogolyubov transfor-
mation |W,;)—|¥), Eq. (3.5), with the superposition of
two Bogolubov transformations [W )— |Wic)—|¥)
(see Fig. 3) one obtains

Z'=UNZ—-Z)I+Z}zZ)'u)" . (3.21)

As seen in Eq. (3.21), the relation between the quasiparti-
cle pair matrices Z' and Z, corresponding to two refer-
ence states, |W.) and |V¥,), is again nonlinear, and
therefore there is no simple correspondence between the
multipole components of these two matrices. Even a sin-
gle multipole component of the Z matrix gives in general
rise to all multipole components of the Z' matrix. How-
ever, the presence of the difference Z —Z, in Eq. (3.21)
allows us to formulate an approximate conclusion con-
cerning the scalar (J =0) component of Z’. Noticing
that the matrices U, V,, and Z are scalars [this is so
because the Bogolyubov transformation (3.17) connects
two spherically symmetric reference states, |¥, ) and
|Wi )] it is clear that the scalar component of Z' is
strongly reduced whenever the Z matrix is close to the
scalar component of the Z matrix.?

Such a reduction of the scalar component is at the ori-
gin of the 2 dominance?® in the quadrupole phonon mod-
el® (QPM), as opposed to the S-D dominance®!° in the in-
teracting boson model.* Following Ref. 20, we study here
the assumptions of both models by considering a choice
of the two corresponding reference states.

In the IBM, the collective states of a given nucleus are
described in terms of pairs of valence particles (or holes
past midshell) added to the nearest closed shell nucleus.
Therefore, in order to analyze the deformed HF states of
128Ba, Sec. 11, in terms of the IBM, we choose the IBM
reference state (IBM core) to be the spherical HF ground
state of the '32Sn nucleus. This reference state will be
denoted by |V¥,.:), and the corresponding Bogolyubov
transformations and pair matrices will be denoted ac-
cordingly (see Fig. 3). In Fig. 4(a) we schematically illus-
trate the principal idea of the choice of the IBM core by
presenting the quasiparticle states according to their par-
ticle number 4 and quadrupole moment Q. The bare
vacuum |0), which has 4 =0 and Q =0, is placed at the
origin of the figure. The IBM reference state |W ) is
placed at Q =0 and A4 =132, while the deformed state
|W) of 28Ba is placed at @ >0 and 4 =128. The Bogo-
lyubov transformation |0)—|¥), Eq. (3.1), increases
both the particle number and the quadrupole moment.
The transformation |0) — W ), Eq. (3.9), increases only
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the particle number, while |V )—|¥), Eq. (3.5), in-
creases the quadrupole moment and removes some parti-
cles. (In fact, it adds some protons and removes some
neutrons, which is not essential in a schematic discus-
sion.)

In the QPM, the collective states are assumed to be
built of coherent two-quasiparticle excitations added to
the spherical state of the given nucleus. Therefore we
choose the OPM reference state (QPM core) (which will
be denoted by |W¥,.)) to be the HF solution for ®Ba ob-
tained by imposing the spherical symmetry when solving
the HF equations. In Fig. 4(b) we present, in analogy to
Fig. 4(a), the idea underlying the choice of the QPM

132Sn |
A
128Ba |
Aref, Bref, Cret
0 — IBM
0 Q
Y
ISZSn - (b)
A
128Ba -
A’refv B;ef’ C;ef
0 QPN

0 Q

FIG. 4. A schematic illustration of the choice of the refer-
ence state in the IBM (a) and in the QPM (b). The rectangular
boxes represent the quasiparticle vacuums, and are placed in the
diagram according to their particle number 4 and quadrupole
moment Q. The arrows and oval boxes denote Bogolyubov
transformations.
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reference state. Contrary to the IBM, the Bogolyubov
transformation |W¥,) —|¥) does not change the particle
number and only creates an appropriate quadrupole mo-
ment. Since the transformations |¥.)—|¥) and
|W, o) — W), Eq. (3.17), change the neutron and proton
numbers in the same way, the scalar pair matrix Z is not
far from the scalar component of the IBM pair matrix Z,
and the cancellation in Eq. (3.21) leads to a depletion of
the scalar part of the QPM pair matrix Z’. Denoting the
multipole components Z; of the IBM pair matrix by
S,D,G. .. for J =0,2,4. .., respectively, and the respec-
tive multipole components Z; of the QPM pair matrix
8D, 8. .., we can formulate the above result as the D
dominance in the QPM being a result of the S-D domi-
nance in the IBM.

Before discussing the influence of various truncations
of the multipole components of the IBM and QPM pairs
on the nuclear properties, Sec. IV, let us make two re-
marks concerning the IBM and QPM reference states.
Firstly, we want to stress that both reference states have
been calculated self-consistently by using the same HF
method which has been used to determine the deformed
states of 12®Ba, Sec. II, i.e., the same force parameters
(SIII), numerical approximations and numerical code
have been used. Since two versions of approach to the
pairing correlations, G =const and A=const, see Sec. II,
have been used when determining the deformed states,
also two corresponding QPM reference states have been
calculated. Secondly, one should note that the use of the
BCS method for the closed shell nucleus *2Sn results in
the vanishing of the pairing correlations, and yields the
ordinary HF solution. In such a case the IBM reference
state |W ) is exactly orthogonal to the bare vacuum [0)
and the Thouless theorem, Eq. (3.10), is not applicable,
because of the singularity of the A matrix in Eq. (3.12).
In order to avoid the use of a separate set of formulae,
relevant in such a case, we have performed the deter-
mination of the ground state of !*?Sn with fixed and
insignificantly small value of the pairing gap parameters,
A,=A,=0.1 MeV, and checked that none of the results
depend on a change of this particular value.

IV. TRUNCATION OF THE HF PAIRS

In this section we discuss the results of calculations for
truncated quasiparticle pairs 2" and 2 T, corresponding
to the IBM and the QPM reference states |¥,,) and
|W..), respectively, which were described in Sec. III.
The truncation consists in keeping only selected terms in
the multipole expansion of the quasiparticle pairs, Eq.
(3.15),

4.1

The truncated pair Z ' is denoted by a tilde. The trunca-
tion of the quasiparticle pairs leads to truncated HF
states given by

1) =¥, | Yexp{ZT}|W,;) . 4.2)
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In order to determine the HF energy of this state, as well
as mean values of other observables, one has to calculate
the corresponding density matrix and the pairing tensor.
An efficient way to do this consists in using Eq. (3.13) to
calculate the particle pair matrix C(Z), corresponding to
the truncated quasiparticle pair matrix Z, and then
finding the canonical form of C(Z),

Cc(z)

w=Sucuds, 5

which can be done by diagonalizing C(Z )'C(Z). The in-
dex @ refers to the time reversed single-particle state, and
s» is the phase factor associated with the time-reversal,
ﬁy)=s . |Z). The BCS coefficients can now be deter-
mined as

(4.3)

1 _ Cu

u,= , V,— ’
I (1+C )1/2 I (1+C;2;)1/2

(4.4)

which allows to calculate the density matrix p,,=v25,,,
and hence, the mean-field Hartree-Fock energy, as well as
the pairing energy, Eq. (2.3) or (2.5). When the BCS
coefficients u, and v 'u are determined from the BCS equa-
tions, the product u,v, has the same sign for all . How-
ever, it is important to notice that this need not to be the
case when they are determined from a pair matrix
through Egs. (4.3) and (4.4). Therefore, a partial cancel-
lation is possible in the sums determining the pairing en-
ergy, Eq. (2.3) or (2.5).

As discussed in Sec. II, we have performed two ver-
sions of HF calculations, which differ by the treatment of
the pairing correlations, and are referred to as the
A=const and the G =const version. The result for the
A=const version has already been presented in Ref. 20,
and therefore in this section we consider the G =const
version, unless we explicitly mention the other one.

The coefficients x;, Eq. (3.15), give the relative ampli-
tudes of various multipole components of the HF pairs.
They have been presented in Fig. 1 of Ref. 20 for the
A=const version. The results for G =const are almost
identical, and therefore are not reported here. In both
versions of paxrmg treatment one obtains the dominance
of the Z I, and 21 , pairs (S-D dominance) for the IBM and
of the 2 pair (2 dominance) for the QPM.

From the S-D and the D dominance one cannot direct-
ly infer that the description of deformed states in terms of
low angular-momentum components of fermion pairs is
accurate enough. Since the deformed state Eq. (3.6) re-
sults from the exponentiation of the coherent pair Eq.
(3.7), the dominant low-J components lose in importance
while the nondominant ones gain, and this is so because
of the cancellation due to the Pauli principle. The accu-
racy of such a description can only be discussed by calcu-
lating observables for the truncated states, Eq. (4.2), and
comparing them with the untruncated HF values. For
the IBM quasiparticle pairs we have performed the calcu-
lations for the truncation to the angular momenta 0, 02,
024, 0246, 02468, and O0...10. Although keeping the
J =0 (S) component alone cannot give a correct descrip-
tion, because the J =2 (D) component is equally large, it
can give us some insight into the structure of the S pair.
For the QPM we have used the truncations to 2, 24, 246,
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02, 024, and 0246. In all cases the dominant J =2 com-
ponent is included, while the first three truncations differ
from the last three ones by an absence of the J =0 (&)
component. Again such choice allows us to discuss a role
of the & pair.

A. Multipole moments and particle numbers

In Figs. 5 and 6 we show the quadrupole and the hexa-
decapole moments, respectively, calculated for the trun-
cated HF states, Eq. (4.2). The results are plotted as
functions of the untruncated HF quadrupole moment. In
Fig. 5(a) (IBM) it is seen that the major part of the HF
quadrupole moment is reproduced by the dominant (02)
components in the whole deformation range. After in-
cluding the J =4 component, the truncated quadrupole
moment becomes identical to the HF value within the
precision of the figure. For the QPM core, Fig. 5(b), the
major part is also given by the dominant (2) component.
Inclusion of either J =0 or J =4 component gives almost
the exact value, while inclusion of both of them repro-
duces the HF quadrupole moment exactly. The hexade-
capole moment is for both cores reproduced nearly
correctly after inclusion of J =0, 2, and 4 components.
However, when only the dominant components are kept,
its overall dependence on the deformation is also repro-
duced.

Before proceeding with the comparison of energies of
the truncated states it is necessary to mention that the
truncation affects the expectation value of the particle
number. The HF state has the correct mean values of
neutron and proton numbers, but these are changed after
removal of some components of the HF pairs. This is
shown in Figs. 7(a) and (c) for the IBM core and in Figs.
7(b) and (d) for the QPM core. For the IBM core, the
proton numbers in truncated states are larger than the
correct value of Z =56, while the neutron numbers are
smaller than N =72. The difference in the studied range
of deformations may be as large as 10 neutrons or 12 pro-
tons, when only the dominant components are kept. One
reproduces the correct values with a sufficient precision
only after including all components up to J =8. Let us
note that these changes are opposite to what one might
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FIG. 5. Quadrupole moment of truncated states, for the IBM
(a) and the QPM (b) reference state, compared with the HF re-
sults.
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FIG. 6. Hexadecapole moment of truncated states, for the
IBM (a) and the QPM (b) reference state, compared with the HF
results.

expect from naive considerations. Indeed, had the proton
(neutron) pairs been the pure valence particle-particle
(hole-hole) pairs, the proton (neutron) number would
have had to be smaller (larger) for truncated pairs than
for the untruncated ones. The actual results are different,
because the nondominant components have large ampli-
tudes outside the valence space (see discussion later in
section). For the QPM core, the particle numbers are
much closer to the correct values, at least in a wide range
of deformations extending beyond the prolate and oblate
equilibrium deformations. For the far end of the prolate
deformation, the discrepancy reaches, however, as much
as seven neutrons and six protons.

B. Energies

The differences in particle numbers prevent a direct
comparison of energies calculated for the truncated
states, Eq. (4.2), with the corresponding HF energies.
Since the binding energy per particle is around 8 MeV,
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FIG. 7. Mean neutron and proton numbers of truncated
states, for the IBM, (a) and (c), and the QPM, (b) and (d), refer-
ence state, compared with the values for '**Ba.
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the discrepancies in particle numbers induce differences
in energy of many tens of MeV, far beyond the energy
range of the deformation effects, which we want to ana-
lyze. Some insight in the quality of description of the HF
‘energy by the truncated pairs can, however, be gained by
comparing the corresponding scaled energies per particle,
128 XE7/{ A ), where E is the HF energy, Eq. (2.4), cal-
culated for the truncated state, Eq. (4.2), { 4 ) stands for
the mean number of nucleons in the same truncated state,
and 128 is the scale factor corresponding to the correct
number of nucleons in 2*Ba.

The scaled HF energies per particle of the truncated
states are shown in Figs. 8(a) and 8(b) for the IBM and
QPM cores, respectively, and compared with the untrun-
cated values. For both cores, one obtains a poor agree-
ment with the self-consistent energies, and almost no de-
formation can be created, when only the dominant com-
ponents are kept. The energy for the J =2 pair of the
QPM is similar to the energy for the 02 pairs of the IBM.
The former is lower than the latter for large deformations
and higher for small deformations. For the IBM core,
the prolate and oblate equilibrium deformations can be
reproduced only when the 0246 components are included,
and even the inclusion of all 0...10 components is not
able to reproduce the HF energy at the far end of prolate
deformations. For the QPM core, the equilibrium defor-
mations are reproduced by the 024 components. The en-
ergies for the truncations to 24 and 246 cluster between
those for 02 and 2, and are not plotted in Fig. 8(b).
Without the J =0 component of the QPM pair, one can-
not reproduce the equilibrium deformation at all. How-
ever, when this component is included, the energy for a
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FIG. 8. Scaled energy per particle of the truncated states, for
the IBM (a) and the QPM (b) reference state, compared with the
HF results. The G =const version of the BCS approach has
been used.
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FIG. 9. Pairing energy of the truncated states, for the IBM
(a) and the QPM (b) reference state, compared with the HF re-
sults. The G =const version of the BCS approach has been
used.

given truncation of the QPM pair is always lower than
for the same truncation of the IBM pair. This suggests
that the QPM reference state is better suited for a
description of deformed states in terms of low-J quasipar-
ticle pairs than the IBM reference state.

A role played by the J =0 pairs can be seen from Fig.
9, where we plot the pairing energy, Eq. (2.5), for
different truncations of the IBM (a) and the QPM (b)
pairs. One can see that the S pair of the IBM cannot
alone account correctly for the pairing correlations with
increasing deformation. However, when the D pair is
added, the HF pairing energy is reproduced very well.
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FIG. 10. Scaled energy per particle of the truncated states,
for the IBM (a) and the QPM (b) reference state, compared with
the HF results. The A=const version of the BCS approach has
been used.
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FIG. 11. Pairing energy of the truncated states, for the IBM
(a) and the QPM (b) reference state, compared with the HF re-
sults. The A=const version of the BCS approach has been
used.

Since both pairs are of the same order, x(z) zx%, one can
say that both are equally important for the pairing
effects. The pairing energy is equally well described by
the QPM pairs, provided that at least J =0 and 2 pairs
are included. Without the J =0 pair, the pairing energy
has qualitatively different behavior than the untruncated
one. The sudden decrease of the absolute value of the HF
pairing energy, which occurs for small deformations and
is related to a sudden change in level density (Sec. II),
cannot be obtained unless the § pair is included. From
these results it is clear that the original assumption of the
QPM, in which solely the O pair has been introduced,
has to be modified by adding the & pair, which is neces-
sary when the pairing and quadrupole effects are in-
terwoven.

In Fig. 10 we show for comparison the scaled energies
for truncated states obtained from the calculation with
constant pairing gaps (A=const version). It can be seen
that, although the HF energies are quite different in the
G =const and A=const versions, the quality of succes-
sive truncations is very much the same. The poor ap-
proximation of the HF curve with 2 and 02 components
alone, and a relatively better result for the QPM core
than for the IBM (at identical truncations), are evident.
Inclusion of the J =4 (J =6) component is necessary to
reproduce the equilibrium deformation for the QPM
(IBM) core. Still higher-J pairs must be included if the
HF curve is to be reproduced up to the largest studied
deformations. Despite the fact that the pairing energies
in the A =const version, Fig. 11, are different from those
in the G =const version, the conclusions which one can
draw about the role of the J =0 pairs are the same.

C. Core and vacuum polarization

The interacting boson model assumes that the quadru-
pole collective states are built of .S and D pairs of valence
particles (or valence holes past midshell). From this as-
sumption, it can be derived that the number of active
pairs is equal to half of the number of valence particles
(or holes). Since the IBM pairs 21, which transform the
IBM reference state I‘P,ef> (132Sn nucleus, see Sec. III)
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into the deformed state of '>*Ba through creation of some
number of quasiparticles, Egs. (3.6) and (3.7), are a priori
built of all single-particle states, we are able to verify the
above assumption of the IBM. In Fig. 12 we present the
mean neutron and proton quasiparticle numbers, N% and
Z %, respectively, defined as

qu:<\y zala”’q;), qu=<\p Ea;aﬂlq}) . (4.5)
. u,n mp

where o' and a, are the quasiparticle operators corre-
sponding to the IBM reference state |¥,,). Had the
IBM neutron (proton) quasiparticle pairs been equal to
the valence neutron hole (proton particle) pairs added to
1328n, the mean neutron (proton) quasiparticle number
would have been for all deformations equal to 10 (6),
which is the difference of number of neutrons (protons) in
328n and '2®Ba. As seen in Fig. 12, this is obviously not
the case, the quasiparticle numbers increase substantially
with deformation. At the spherical shape, the neutron
and proton quasiparticle numbers are approximately
equal to 11 and 7, respectively. (The difference of about
one quasiparticle illustrates the fact that the spherical
self-consistent single-particle states in '*2Sn and '*®Ba are
not identical.) These numbers are much larger for large
prolate and oblate deformations. The increase of quasi-
particle numbers is even bigger for the truncated states
than for the HF states.

The quasiparticle numbers with respect to the QPM
core |W,) are also given in Fig. 12. By definition they
are equal to zero at the spherical shape. With increasing
deformation these numbers increase, which is entirely
consistent with assumptions of the QPM, where the de-
formation is generated by adding quasiparticle pairs to
the spherical core. One should note that in the QPM the
truncation affects the quasiparticle numbers much less
than it does in the IBM.
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FIG. 12. Mean number of neutron and proton quasiparticles
in the truncated states, for the IBM, (a) and (c¢), and the QPM,
(b) and (d), reference state, compared with the HF results.
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As seen from the above results, the quasiparticle HF
pairs are not confined to the valence space. In order to
estimate quantitatively the role of different single-particle
states in building up the nuclear deformation, let us split
the set of the single-particle states of the reference state
into three following classes according to their single-
particle energies. For '*Ba the major valence shell con-
sists of states between the magic numbers 50 and 82, both
for neutrons and for protons. Therefore, we will call the
50 lowest single-particle states the hole states, next 32 the
valence states and all the other the particle states. The
single-particle index p will be denoted by 4, v, or p de-
pending on which value it assumes. One should note that
this definition explicitly refers to the single-particle ener-
gies of the reference state, and in what follows, when dis-
cussing the properties of the IBM (QPM) pairs, we define
the hole, valence, and particle states with respect to the
IBM (QPM) reference state. By core and vacuum polar-
ization effects we will understand the influence of the hole
and particle states, respectively, on the properties of de-
formed states and of the quasiparticle pairs. Holes and
particles are now considered as states below and above,
respectively, the valence space, and not below and above
the Fermi level, as is usual.

The quasiparticle numbers, Eq. (4.5), can now be
presented as sums of contributions coming from the hole,
valence, and particle space, which for neutron states read

N®=NF+NF+N§ ,

t (4.6)
Ng):<‘y Eahah *‘l’> y
h,n
N?/’=<\I/ EaIaU \I/> R
" 4.7)
N3p=<\11 S ala, l\ll> ,
p,n

and similarly for protons. The HF quasiparticle numbers
are presented in Fig. 13 together with their constituents
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FIG. 13. Mean number of neutron and proton quasiparticles
in the valence ( V), hole (H), and particle (P) space, Eq. (4.7), for
the IBM, (a) and (c), and the QPM, (c) and (d), reference state.
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given by Eq. (4.7). It is seen that for the IBM core, Fig.
13(a) and (c), the increase of the neutron quasiparticle
number with deformation is mainly caused by the in-
crease of number of quasiparticles in the valence and in
the particle space, while the proton quasiparticle number
increases due to the components in the hole and in the
particle space. On the average, the effects of the hole and
particle spaces are comparable with effects inherent to
the valence space, i.e., the core and vacuum polarization
plays a substantial role in building up the nuclear defor-
mation. In accordance with the position of the Fermi
level in the valence shell, which for neutrons (protons) is
closer to the upper (lower) limit of this space, the vacuum
polarization is more important for neutrons, while the
core polarization is more important for protons. Similar
conclusions are valid for the QPM quasiparticle numbers,
Figs. 13(b) and (d).

In order to directly estimate the fractions of the quasi-
particle pairs which are located outside the valence space
we define the valence-valence (VV) and valence-hole (VH)
pair amplitudes by

y}lv—;E IZJUU'\2 ’
v’

VH L 5 (4.8)
Vi —ZE]ZJuhI ’
vh
where the factor 2 in the definition of y)¥ accounts for
the antisymmetry of the Z; matrix. Analogously, one
can define all the other components: PP, HH, PV, and
PH. Because of the normalization defined in Eq. (3.16),
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FIG. 14. Pair amplitudes of the J =2 quasiparticle pairs, for
the IBM, (a) and (c), and the QPM, (b) and (d), reference state.
The valence-valence (VV) and valence-hole (VH) amplitudes are
calculated according to Eq. (4.8). Analogous formulae are used
to determine the remaining four amplitudes, PP, PV, PH, and
HH.
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the sum of the six y; pair amplitudes is equal to 1,

yiHy Yy Py Ry =1, 4.9)

and the importance of a given component is quantitative-
ly described by the corresponding y; amplitude.

We have calculated such pair amplitudes for the dom-
inant components of HF pairs for both considered cores.
It turns out that the IBM J =0 neutron pair is well con-
centrated in the valence-valence space; the corresponding
v,V amplitude is for all deformations larger than 90%.
The same amplitude for the IBM J =0 proton pair is
larger than 90% between Q =—10b and 10b, and then
drops significantly to 55% (70%) on the prolate (oblate)
side. The amplitudes for the neutron and proton J =2
pairs are presented in Fig. 14. It can be seen that the
neutron (proton) valence-valence (VV) component
amounts in the deformation range between Q = —8b and
10b to 90% (80%) of the IBM J =2 pair, Figs. 14(a) and
(c). For protons the VV component decreases rapidly
with increasing deformation outside the above mentioned
range, and the other components start to increase (espe-
cially PV and HH on the prolate and oblate side, respec-
tively). For the QPM core, Figs. 14(b) and (d), the
highest percentage of the VV component is smaller, 80%
and 65% for neutrons and protons, respectively, and this
component decreases rather rapidly with increasing de-
formation, reaching 50% around the equilibrium defor-
mation.

V. VARIATION AFTER TRUNCATION

The variation after truncation consists in freely adjust-
ing the low angular-momentum pairs, so as to minimize
the HF energy for a given quadrupole moment and
correct mean particle numbers. In order to find such op-
timal pairs, we have used the gradient method. The HF
energy can be considered either as a function of the
quasiparticle pair matrix Z, or of the particle pair matrix
C, see Sec. III. The gradient of the energy with respect to
the C matrix, (VcE),,=0E /3C,,, reads

—VeE=(1—p)hk+kh*(1—p*)

+kA*k+(1—p)A(1—p*), (5.1)

where # and A are the matrices of the mean field and of
the pairing field, respectively, and p and « are the density
matrix and the pairing tensor (definitions from Ref. 27
are used). In the BCS approximation, which we use here,
the only nonvanishing elements of the A matrix are the
ones between the time-reversed states, i.e.,

A,,=s,88, , (5.2)
where A is the constant gap parameter [in the A=const
version, Eq. (2.1)] or is determined from the pairing
strength G [in the G =const version, Eq. (2.6)]. Since the
quasiparticle pair Z Tis given in terms of the quasiparticle
creation operators al, Eq. (3.7), and the particle pair
in terms of the particle operators al, Eq. (3.3), the quasi-
particle gradient V,E can be expressed through the parti-
cle gradient V- E as
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V,E=A];(1+ClLCAVEN1+CCli A%y, (5.3)

where A, and C,¢ correspond to the Bogolyubov trans-
formation |0) — |¥,_), see Fig. 3 and Eq. (3.9).

The condition for the absolute minimum of energy at
given mean particle numbers reads

VZE_}\‘nVZNn_A'pVZszo ’ (5.4)

where N, and N, are mean neutron and proton numbers
as functions of the Z matrix, and A, and A, are the corre-
sponding Lagrange multipliers. The quasiparticle gra-
dients of particle numbers, VzN, and VN, can be cal-
culated from the corresponding particle gradients given
by

VeN,=(1—p, )k, +x,(1—pk),
(5.5)
VeN,=(1=p, )k, +x,(1—p;) ,

in analogy to Eq. (5.3). It is easy to check that condition
(5.4), which is equivalent to the similar condition for the
particle gradients, leads to the well known BCS expres-
sions for the occupation probabilities.

In order to find the minimum of energy with respect to
the quasiparticle matrix Z truncated to some angular mo-
menta, one has to solve the Eq. (5.4) truncated to the
same angular momenta, i.e.,

where, as in Sec. IV, tilde denotes truncation of some an-
gular momentum components. A practical method of ap-
proaching the minimum (the projected gradient
method?’) consists in correcting the truncated matrix Z,
Eq. (4.1), by subtracting the truncated gradient [left-hand
side of Eq. (5.6)] multiplied by a suitable small coefficient
€, i.e.,

Z—>Z—e(V,E—A,V,N,—A,V,N,) . 5.7
The value e=3 keV ™! has been used in our calculations.
The Lagrange multipliers A, and A, have now to be itera-
tively corrected to guarantee the desired number of neu-
trons and protons for a solution of Eq. (5.6).

Unfortunately, the projected gradient method is nu-
merically much more time consuming, roughly by an or-
der of magnitude, than the usual methods used to solve
the HF equations. The standard methods cannot be ap-
plied because Eq. (5.6) is not equivalent to a requirement
that the self-consistent mean field A is diagonal in the
basis diagonalizing p, as is the case for Eq. (5.4).

The gradients of energy with respect to two matrices Z
and Z’, corresponding to two different reference states,
are related by

V,E=U1+ZZ\WV,EQO+ZZ)Hut , (5.8)

[see Eq. (3.17) and (3.20)]. Again it is seen, that as soon
as the Z matrix differs from a scalar one, the truncated
gradient V,E and the truncated gradient V;.E are not
identical, and therefore the corresponding variational
equations give different solutions.

The energies resulting from our variation after trunca-
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tion calculations for 2®Ba are presented in Fig. 15. The
calculations have been performed for truncations to the
angular momenta 02 and 024 (IBM), and to 2, 02, and
024 (QPM). In order to have substantial deformation en-
ergies for the HF solutions, we have used the A=const
version of treatment of pairing correlations (see Sec. II).
The truncation to dominant components, 02 for IBM and
2 for QPM, gives on the prolate side very similar energies
for both cores. On the oblate side, the dominant pair of
the QPM gives at moderate deformations the energy
much lower than the dominant pairs of the IBM. In fact,
it can even give the energy lower than the one for the
truncation to 02. This apparently contradictory result is
related to the fact that for the A =const version it is the
quantity E'=FE +Ep, Eq. (2.2), and not the energy E,
which is minimized by the BCS theory. For a given trun-
cation, the energies obtained for the QPM core are lower
than those for the IBM core. The differences are, howev-
er, smaller than for the truncated HF pairs, cf., Fig. 10.
This occurs because the decrease of energy due to the
variation after truncation is larger for the IBM core than
for the QPM core. In other words the truncated HF
pairs are much closer to the optimal pairs for the QPM
than for the IBM. This is especially visible for the trun-
cation to 024 QPM pairs, where the variation after trun-
cation gives almost the same energy as the truncated HF
pairs. Still, however, the truncation to dominant com-
ponents gives for both cores the deformation energy
curve very different from the one of the HF method.
Truncation to 024 allows for a fair description of the
equilibrium deformation, while a large discrepancy still
persists for larger deformations.

Pairing energy is plotted for various truncations in Fig.
16. Again one can see that for a given truncation the
pairing energies are closer to the HF values for the QPM
core than for the IBM core. The pairing energy for the
dominant (2) pair of the QPM depends on the deforma-
tion in a qualitatively different way than those for trunca-
tion with the J =0 pair included. This confirms our pre-
vious conclusions, Sec. IV, about a crucial role of the
J =0 component in describing the pairing correlations.
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FIG. 15. Energy of truncated states obtained by the variation
after truncation, for the IBM ( solid lines) and the QPM (dashed
lines) reference state, compared with the HF results.
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FIG. 16. Pairing energy for truncated states obtained by the
variation after truncation, for the IBM (solid lines) and the
QPM (dashed lines), compared with the HF results.

VI. TRUNCATION OF HF DENSITY MATRICES

The IBM and the QPM models assume that the basic
building blocks of the quadrupole collective excitations
are made of pairs of fermions coupled to angular momen-
tum J =2. As opposed to this, the Bohr and Mottelson
model! 7 assumes that such excitations are related to
fluctuations of the quadrupole component of the nuclear
density. In this section we develop a method which al-
lows us to present the HF energy of a deformed state as a
multipole series associated with the multipole expansion
of the density matrix. In this way we are able to discuss
the quality of approximating this energy by the low-J
terms, and to compare this approximation with energies
of truncated states discussed in the previous sections.

Let the two-body interaction ¥ and the kinetic energy
operator T define the nuclear effective Hamiltonian A:
A=T+VP=3T,ala,++ 3 V,alalasa,. (6.1

uv

w@uy T 7
UVKA

Then the mean energy of a nuclear state |¥),

E=TrTp+iTrVo=3 Tppout 3 2 Viwr Oy »
uv HVKA

(6.2)

is determined by the one- and two-body density matrices
pand o,

pyu=<{V¥lala l¥), 6.3)

UKM“,:<\P|(IZGI‘,CIA(1K|‘P> . (6.4)

The density matrices of deformed states are sums of vari-
ous angular-momentum components and, for the sym-
metries imposed as in Sec. III, only even-J components
contribute:

(6.5)
(6.6)

P=potprtpst -,
o=oyto,to,+ -,

in close analogy to the multipole expansion of the quasi-
particle pair matrix, Eq. (3.15). Since the kinetic energy
operator 7' is a scalar operator, and the same holds for
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the true two-body interaction f>, the energy of the state
|¥) depends only on the scalar parts p, and o, of the
density matrices,

E=TrTpy+LiTrVo, . (6.7
When the state |¥) is a quasiparticle vacuum, the two-
body density matrix o is determined by the one-body
density matrix p and the pairing tensor «,

UKA,‘MV=pK/.lp}\.‘V_pK1pA.,u+K;V'(K)\ . (6.8)
The first term on the right-hand side is a product of one-
body density matrices, typical for an uncorrelated many-
particle system. The second term is the exchange term
describing the Pauli correlations in a system of fermions,
and the third term describes the pair correlations. The
scalar component of o, which determines the energy, Eq.
(6.7), can be obtained by calculating the scalar parts of
both sides of Eq. (6.8), i.e.,

UOKA;.W= pOKyPO)w_pOKvPOA,u
+P2x,.4P27w_P2mP2Ay+P4xpP4Av"P4mP4Ap+ e
+KgymOKA,+K;#VK2KK+K:yVK4KK+ T (6.9)

where the multipole expansion of the pairing tensor reads
K=Ko+K,+K4 . The consecutive terms on the right-
hand side of Eq. (6.9) describe an uncorrelated spherically
symmetric system of fermions, its quadrupole-
quadrupole, hexadecapole-hexadecapole, and higher
correlations, and then the monopole, quadrupole, hexade-
capole, and higher pair correlations. Inserting the expan-
sion for o into Eq. (6.7) one obtains the series of terms

E=Ey+E,+E,+--- , (6.10)
where E is the monopole energy of the system,
EozTero'{“%Trpono_*'EP N (6-11)

and E, and E, are the quadrupole and hexadecapole, re-
spectively, correlation energies,

E;=3Trp;Vp; =5 3 PrwVuwarPirw J>0. (6.12)

BVKL

Because in our study we use the monopole pairing in-
teraction, the quadrupole, hexadecapole and higher pair
correlations do not contribute to the pairing energy,
which therefore is included in the monopole energy E,,.

Now one should recall, that the Skyrme interaction de-
pends on the nuclear density, and hence for a deformed
system is not rotationally invariant. In such a case, when
trying to separate the total energy of the deformed sys-
tem into multipole correlation energies, one can express
the energy by the self-consistent potential T,

E=TrTp+.TTp+Ep, (6.13)

F[J,K:E)\ V,uvxkphv ’ (6.14)

and then use the multipole expansion of the density ma-
trix, Eq. (6.5). As a result one obtains the series of Eq.
(6.10) with the monopole energy E, and the multipole
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correlation e/nergies E;,J >0, given by
Ey=TrTpy+iTrTpy+Ep , (6.15)
E;=1iTrTp;, J>0. (6.16)
Since the trace is a scalar operation, one has
TrTp,=Tr,p; , 6.17)

where I'; is the rank J multipole component of the self-
consistent potential I', and the multipole correlation en-
ergies describe the correlations between the multipole
components of the mean field and of the density matrix.
These correlation energies take explicitly into account
the rearrangement effects resulting from the density
dependence of the effective interaction. For scalar in-
teractions they reduce to previously derived formula, Eq.
(6.12), because then the rank J component of the self-
consistent potential depends only on the rank J com-
ponent of the density matrix.

In Fig. 17 we show the series of correlation energies,
Eq. (6.10), truncated to low angular momenta,
0=J =J . for J.,=0,...,6, denoted as 0, 02, 024,
and 0246. The truncated energies converge to the HF en-
ergy, and this convergence is much faster than the one
corresponding to truncations of multipole components of
coherent quasiparticle pairs, cf., Fig. 8. The inclusion of
the 0246 components gives energies which in the scale of
the figure cannot be distinguished from the HF results,
and even the 024 components assure quite good agree-
ment. The 02 components are good enough to fairly well
describe the equilibrium deformation, and give similar
energies as the 024 components of the QPM quasiparticle
pair. These results show that the low-J multipole com-
ponents of the density matrix better account for the ener-
gy of the deformed state than the low-J multipole com-
ponents of the IBM or QPM quasiparticle pairs, i.e., the
microscopic concept underlying the description of quad-
rupole collective motion within the Bohr and Mottelson
model is better compatible with the HF results than the
assumptions of the IBM or QPM.
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FIG. 17. Monopole energy E;(0), and the sums E,+E,(02)
and E,+E, + E, (024) which take into account the quadrupole
and the hexadecapole correlation energies, E, and E,, com-
pared with the HF energy.
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A disadvantage of the truncation of density matrix,
with respect to the truncation of quasiparticle pairs con-
sists in the fact that the truncated density matrix does
not, in general, correspond to any nuclear state. This can
be seen by considering the relation between the one-body
density matrix and the pairing tensor,

(6.18)

which is valid for any quasiparticle vacuum. Since k! is
a positive definite matrix, the eigenvalues of p are located
between O and 1. Such condition for the eigenvalues of
the density matrix stems directly from the Pauli exclusion
principle, and must be satisfied for any p which is a one-
body density matrix of a many fermion system. Calculat-
ing the scalar components of both sides of Eq. (6.18), one
obtains

p=p2+KKT ,

Po=pst+pitpit - +K0K$+K2K;+K4KI+ T, (619)

which guarantees that the eigenvalues of p, are between 0
and 1, and proves that the scalar component of the densi-
ty matrix is a one-body density matrix with correctly in-
corporated Pauli exclusion. On the other hand, truncat-
ing Eq. (6.18) to some angular momenta 0=<J <J_,. for
J max > 0, one cannot conclude the same about the trun-
cated density matrix po+ - - +p,; .

max

In order to illustrate the effect of truncation on the ei-
genvalues of the density matrix, we plotted, in Fig. 18,
the maximal and minimal eigenvalues of the truncated
density matrix py+ - +p g, as functions of the HF

quadrupole moment. Outside a small region of deforma-
tions around the spherical point, the eigenvalues of
pot - +p;  escape the allowed interval between O

and 1. The maximal eigenvalues increase above 1 and the
minimal ones become negative, the magnitude of these
changes being of the order of 0.1. Even for J,, =10,
when no significant trace of the truncation can be seen in
the energy, the violation of Pauli principle by the truncat-
ed density matrix is still visible.

VII. CONCLUSIONS

We have analyzed from the microscopic point of view
the assumptions made by three collective models of quad-
rupole motion: The unified Bohr and Mottelson (BM)
model, the interacting boson model (IBM), and the quad-
rupole phonon model (QPM). The analysis has been per-
formed by checking the ability of these models to repro-
duce the properties of deformed states of '>®Ba obtained
within the Hartree-Fock theory with the Skyrme interac-
tion. The following conclusions can be drawn from our
study. (i) The dominant angular-momentum components
of fermion pairs, S and D for the IBM and D for the
QPM, are not sufficient to describe the equilibrium defor-
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FIG. 18. Maximal, (a) and (b), and minimal, (c) and (d), ei-
genvalues of the truncated neutron and proton density matrix.

mation of !2®Ba. This is especially manifest from our re-
sults obtained by the variation after truncation, which
give the lower bounds for the energy of condensates of
'such fermion pairs. (ii) Inclusion of J =0, 2, and 4 com-
ponents (both in the IBM and QPM) allows to fairly well
describe the equilibrium properties of the studied nu-
cleus. The J =0(§) pair of the QPM can be associated
with a description of the pairing correlations. (iii) For a
given truncation of the angular-momentum components,
the QPM pairs better describe the deformed states than
the IBM pairs. The truncated HF pairs of the QPM are
closer to the optimal pairs, obtained by the variation after
truncation, than those of the IBM. (iv) Core and vacuum
polarization effects are fairly strong. A substantial, and
increasing with deformation, part of the IBM pair is lo-
cated outside the valence space. The number of active
IBM pairs depends on deformation, and is equal to the
values proposed by the IBM only in the vicinity of the
spherical shape. (v) The HF equilibrium deformation is
fairly well described by including only the quadrupole
correlation energy, as suggested by the BM model. The
quality of the description is comparable to the one ob-
tained when the J =0, 2, and 4 components are included
in the IBM and QPM pairs.
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