PHYSICAL REVIEW C

VOLUME 4, NUMBER 1

JULY 1971

Brueckner-Hartree-Fock Calculations of Spherical Nuclei in a Harmonic-Oscillator Basis.
II1. Renormalized Calculations Using the Reid Potential*

K. T. R. Davies
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

R. J. McCarthyt
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
(Received 7 April 1971)

A G matrix derived from the Reid soft-core potential is used in a series of Brueckner-
Hartree-Fock calculations of spherical nuclei. The G matrix is calculated using an interme-
diate-state spectrum and Pauli operator appropriate to pure oscillator orbitals, with options
to shift the entire spectrum or the low-lying levels from unperturbed oscillator energies.

The Pauli operator takes into account the filling of different neutron and proton subshells in
N #Z nuclei. Self-consistent occupation probabilities are included in the calculations and re-
sults are presented for 160, °Ca, %8Ca, and 28Pb. Various systematics and convergences
are studied. Good results can be obtained for the binding energies, but the experimental
binding energy and charge radius cannot be fitted simultaneously. It is shown that renormali-
zation with occupation probabilities is crucial for calculating a reasonable single-particle
spectrum. The difficulty of comparing single-particle energies with experiment is discussed
with particular emphasis on heavy and superheavy nuclei. The nuclei %114 and 319126 are

calculated for a simple force.
I. INTRODUCTION

The present paper is a continuation and exten-
sion of the approach developed in a series of Har-
tree-Fock (HF),'™* Brueckner,® and Brueckner-
Hartree-Fock (BHF)®~® calculations. The basic
aim of these calculations is to start witha realistic
nucleon-nucleon potential and calculate the total
binding energy, radius, and single-particle (SP)
parameters of spherical, doubly magic nuclei.

In the above references, and in all other calcu-
lations®~?2 based directly on realistic nucleon-nu-
cleon interactions, the results obtained have been
rather discouraging. All the nuclei studied have
been underbound or too small. In addition, the
calculations yield too low a level density for oc-
cupied SP states, especially in heavy nuclei. There
are HF and BHF calculations®*~27 using effective
interactions which do yield excellent agreement
with experiment. An important feature of some of
these effective interactions is the introduction of
a density-dependent term in the two-body inter-
action. This term is important in yielding SP lev-
els which agree with experiment and also tends to
improve the saturation properties. However,
most of the improvement in the binding energy
and the charge radius is due to adjusting the
strength and range of the interaction to obtain the
desired saturation properties of nuclear matter
or selected finite nuclei.

It is not clear whether the poor results obtained
in Brueckner and BHF calculations are due to de-
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ficiencies in the two-body potential or to an inad-
equate many-body theory. It is clear, however,
that the theory must be improved and that this can
be done only by careful and systematic evaluation
of higher-order Brueckner-Goldstone (BG) dia-
grams, using the best G matrices available. A
study of the convergence of Brueckner theory is
of particular importance.

Brueckner theory is basically a perturbation ex-
pansion, and the renormalized BHF (RBHF)formal-
ism?®!° ysed here includes a self-consistent treat-
ment™? of occupation probability diagrams in cal-
culating the binding energy and SP energies. The
importance of these diagrams has been shown
previously® 12:15:19.20 [yt this is the first large
scale BHF calculation of medium and heavy nuclei
in which these diagrams have been included in a
self-consistent way. In Sec. I we discuss the gen-
eral formalism of RBHF calculations, the BG dia-
grams involved, and the concept of occupation
probability.

The calculation of the Brueckner reaction ma-
trix G is outlined in Sec. III. The reaction ma-
trices used are based on the Reid soft-core po-
tential®® for those partial waves in which the po-
tential is defined and the Hamada-Johnston poten-
tial®*® for higher partial waves. Particular empha-
sis is placed on the choice of the intermediate-
state spectrum used to define G, since this choice
will determine the convergence properties of the
BG expansion. Section IV contains brief discus-
sions concerning details and notation of the RBHF
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calculations, sources of numerical inaccuracy,
and convergence with iteration.

Results are presented in Sec. V for the nuclei
%0, %°%Ca, *®Ca, and 2°®Pb. The HF convergence
with dimensionality is found to be satisfactory and,

for a reasonable choice of intermediate-state spec-

trum, the results are almost independent of the
oscillator parameter used to define the basis
states. The effect of changing the intermediate-
state spectrum is, however, quite large. In *°Ca,
for example, the binding energy per particle in-
creases from 2.3 to 10.7 MeV and the charge ra-
dius decreases from 3.33 to 2.85 fm when the gap
between occupied and unoccupied states is re-
duced by about 45 MeV.

Renormalized calculations are shown to yield
consistently better saturation properties and SP
energies than regular BHF calculations. In par-
ticular, renormalization is very important for ob-
taining a SP level density in 2°°Pb which agrees
with experiment. The comparison of calculated
SP levels with experiment is, however, a compli-
cated procedure®! and becomes increasingly diffi-
cult in heavier nuclei. For superheavy nuclei
these problems are especially critical. Another
problem in heavy nuclei is that the energies of
spin-unsaturated levels lie much too high.!3 % €32
For example, in 2°°Pb, the calculated 0:,;,, neu-
tron and Ok, ,, proton levels are separated from
the other bound levels by a large gap. Renormal-
ization does not correct this difficulty. However,
it is interesting to note that this particular prob-
lem did not occur in a HF calculation of two super-
heavy nuclei. This is illustrated in the Appendix
where we display the SP levels of 31°126 and 2°°114,
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obtained using the Nestor force.®

In Sec. VI we summarize and review the results,
pointing out those approximations which might be
improved upon and some higher-order diagrams
which should be evaluated. The choice of an in-
termediate-state spectrum remains the critical
problem facing Brueckner theory. Although we
are able to find a prescription for choosing the
spectrum which yields reasonable binding ener-
gies for all the nuclei studied, we are not able to
fit the binding energies and charge radii simul-
taneously. This defect might be alleviated by
using renormalized wave functions to calculate the
charge radius.

II. THEORY

As pointed out earlier, the RBHF formalism is
a technique for summing certain classes of BG
diagrams. We begin by choosing a harmonic-os-
cillator basis to define a set of SP wave functions
|a) and energies €,. The first-order approxima-
tion to the energy is then given by

E=),%a|T|a)+} EB’(QSIG(w=€(, +eg)|ap),

(2.1)
where each G matrix element is antisymmetrized

and primed summations go over occupied SP states
only. This approximation to E sums the BG dia-
grams shown in Fig. 1(a).

We improve on this approximation by demanding
Brueckner self-consistency in the starting energy
w. The total energy in the Brueckner approxima-
tion is given by

E=)"a|T|a)+3 Z)B’<OIBIG(w=En +Eg)|ap),
« i (2.2)

(d)

FIG. 1. Lowest-order diagrams summed in a RBHF calculation. Wavy lines signify G matrix interactions while
dashed lines terminated by an x signify negative SP potential insertions.
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where

Ea=<a]T|a)+Zﬁ)’(aB |G(E, +Eg)|ap) . (2.3)

Introducing this self-consistent SP potential for
occupied states cancels the diagrams shown in
Fig. 1(b) along with all higher-order diagrams
with diagonal bubble or potential insertions in hole
lines.3* 3% At the same time we change the first-
order contribution to E since we have redefined
the energies of the occupied states.

The BHF formalism cancels additional diagrams,
namely the off-diagonal hole-hole and particle-
hole diagrams shown in Fig. 1(c). The occupied-
state wave functions must be eigenstates of a one-
body BHF potential U which has hole-hole and par-
ticle-hole matrix elements defined as®®

(AlU|AY =§)(AB|%[G(EA +Eg)+G(E 4 +E)]|A'B),
(2.4)
(A|lU|a)=3,(AB|G(E , +Eg)|aB) . (2.5)

B

Here capital letters refer to occupied BHF orbit-
als, while lower case letters, to unoccupied BHF
orbitals. The occupied-state energies are again
given by the Brueckner self-consistency condi-
tion of Eq. (2.3) with «, 8 replaced by A, B. Since
the BHF wave functions are expanded in terms of
a limited number of oscillator wave functions,

[A) =) la){alA), (2.6)

the particle-hole diagrams are canceled only for
those low-lying particle states which are included
in the HF space.

Equations (2.4) and (2.5) do not completely spec-
ify the one-body BHF potential. In order to solve
the BHF equations we must define the particle-
particle matrix elements of U. The diagrams in
Fig. 1(c) are canceled for any choice of (a|U|a’)
but, in an exact BHF calculation, the occupied or-
bitals and total energy would depend on the parti-
cle-particle prescription chosen. The usual HF
procedure is to choose the particle potential to
cancel the particle-bubble diagrams shown in Fig.

FIG. 2. The third-order particle-bubble diagram in
which the middle G interaction must be evaluated off-en-
ergy shell.

2. However, in BHF calculations the middle G
matrix in the particle-bubble insertion must be
evaluated off the energy shell.3* A proper self-
consistent treatment of these diagrams is possi-
ble3® 37 but quite complicated, since the particle-
particle matrix element of U depends on the exci-
tation energy of the rest of the diagram.

Because of the complications involved, and also
because it is not clear that these diagrams should
not be treated as part of a larger class of three-
body diagrams, we do not treat the particle-state
energies self-consistently. We define the particle-
particle matrix elements of U as®”

(a|Ula’) =33(aB|3[GE, +E)+G(E, . +Eg)]|a’B) ,
B
(2.7)

where E, could be chosen to take into account the
off-shell behavior of the particle-bubble diagram
in some average way. In the calculation presented
here we can in fact choose the matrix elements
(a|U|a’) completely arbitrarily with no effect on
our results.” The reason for this is that we make
two approximations in the calculations which com-
bine to decouple the matrix elements {a|U|a’)
from our results. The first approximation con-
sists of using a Pauli operator defined in terms

of pure oscillator orbitals rather than BHF or-
bitals. The second is that, in calculating G, we
define the energies of the intermediate-state spec-
trum once and for all at the beginning of the cal-
culation and hence do not treat the spectrum self-
consistently.

It should be emphasized that, even though the
prescription chosen to define (a|U|a’) does not
affect the resulting binding energy or occupied
BHF orbitals, it is necessary to choose some pre-
scription in order to solve the BHF equations. The
occupied-state orbitals are not known a priori,
and it is only when self-consistency is reached
that the occupied orbitals are uncoupled from the
unoccupied BHF orbitals.” It should be reiterated,
however, that the results do depend strongly on
the type of intermediate spectrum used to eval-
uate G matrix elements.

The RBHF formalism cancels additional dia-
grams. Including occupation probabilities in the
definition of the SP potentials cancels a large
class of diagrams?® of the type shown in Fig. 1(d).
The final expression for the binding energy is?® !°

E=Y(A|T|AY+3 2;(AB|G(E ,+Eg)|AB)P Py
A A, B
+2,(1-P,XA|U|A), (2.8)
A
where

(A|U|AY=33(AB|G(E 4, +Ez)|AB)P, (2.9)
B
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and®
P,= [1 -z;mmé%mmp,]d .

In the above equations, each G matrix is evalu-
ated on the energy shell with self-consistent start-
ing energy w, and the derivative in Eq. (2.10) is
evaluated at the same value of w. These equations
reduce to the usual BHF equations when the occu-
pation probabilities P, are all set equal to unity.

The importance of the occupation probability dia-
grams depends on the strength of the nucleon-nu-
cleon interaction v. If v were weak enough that
G(w) could be replaced by v, the occupation prob-
abilities [see Eq. (2.10)] would all be unity and the
HF procedure alone would be sufficient. Once the
potential is strong enough that a BHF calculation
is needed, the occupation probability diagrams
should also be included.

In the preceding paragraphs we have discussed
separately the three self-consistencies satisfied
in a RBHF calculation. This separation is, of
course, an artificial one, since Brueckner self-
consistency, HF self-consistency, and occupation
probability self-consistency are coupled together
in the RBHF equations” and must all be satisfied
simultaneously.

(2.10)

III. CALCULATION OF G AND CHOICE
OF INTERMEDIATE-STATE SPECTRUM

The defining equation for G is written in oper-
ator form as

Q

w-H,

Glw)=v+v Gw), (3.1)
where v is the nucleon-nucleon interaction, @ for-
bids scattering into occupied SP states, H, is a
two-particle Hamiltonian defining the intermediate -
state spectrum, and the starting energy w is a pa-
rameter to be determined through Brueckner self-
consistency. We evaluate matrix elements of G
first in the relative-center-of-mass (RCM) har-
monic-oscillator representation. These matrix
elements are then transformed into the SP oscil-
lator representation, and matrix elements of G

in the BHF representation are expressed as linear
combinations of oscillator matrix elements.

Since we are evaluating G in the RCM represen-
tation we cannot treat the Pauli operator @ exact-
ly. We use an approximate “angle averaged” @'5
appropriate to pure oscillator orbitals which is
diagonal in the RCM oscillator representation. No
attempt is made to treat @ self-consistently in the
BHF procedure. We do, however, take into ac-
count the fact that the number of occupied SP
states is different for protons and neutrons in

N #Znuclei. There we obtain three sets ofrelative
G matrix elements corresponding to neutron-neu-
tron, proton-proton, and neutron-proton interac-
tions. We also show in Sec. V that little change

is introduced by using the neutron-proton Pauli
operator for all three cases. The over-all error
due to our approximate treatment of @ is probably
quite small. It has been shown many timeg!* 38
that the angle averaged @ used here is a good ap-
proximation for pure Brueckner calculations, and
the additional error introduced by not using a self-
consistent BHF @ should be quite small if the os-
cillator states used to define @ have large over-
laps with the resulting BHF orbitals.

The major source of uncertainty in the theory
lies in the choice of H,, the intermediate-state
Hamiltonian. The definition of H,, is in principle
arbitrary, since the BG expansion is valid for any
choice of basis states and energies. The choice
of H,, will, however, drastically affect the con-
vergence of the BG expansion and yield substan-
tially different results for the RBHF calculation,
which is a truncation of this expansion. This sim-
ply means that the contribution of diagrams not
included in the RBHF formalism depends strongly
on the choice of intermediate-state spectrum, and
we should in principle choose H,, to minimize the
effects of these higher-order diagrams.

Our basic definition for H,, is'"%

Hab=Hosc—2C" 262B0|a6><‘16‘ ’ (32)
o,
where
1
Hosc=2m(pa2 +p82)+%m92(’}’a2+7’52) , (3.3)

and |apB) is a two-particle oscillator wave func-
tion. The sum over intermediate states is trun-
cated such that all two-particle states with

2ny +1, +2ng+1lg=2n+1+2N+L<N-4 (3.4)

are shifted by an amount 2B, while the higher-
lying states are unshifted. This parametrization
of H,, enables us to transform easily to the RCM
representation and also lets us shift either the en-
tire spectrum or the low-lying two-particle states
separately from the higher states.

This definition of H,, might seem in conflict with
our assumption of an underlying set of SP wave
functions and energies on which the BG expansion
is based. This is not true. Our basis set of wave
functions is still defined by a harmonic-oscillator
Hamiltonian. We have simply changed the ener-
gies of all two-particle intermediate states in or-
der to cancel, in some average sense, the effect
of higher-order diagrams. It was pointed out in
the previous section that the G matrices involved
in higher-order diagrams (e.g., the third-order
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particle-bubble diagram of Fig. 2) must be eval-
uated off the energy shell and any particle-state
potential defined to cancel these diagrams would
depend on the excitation energy of the entire dia-
gram. Thus, the intermediate-state Hamiltonian
should no¢ necessarily be written as the sum of
two SP Hamiltonians but rather as some function
of the product state.

The procedure used in calculating G matrix ele-
ments has been discussed earlier® and we review
it here very briefly. The operator G(w) is ex-
pressed in terms of a simpler reference operator
Gg(w) as™

G(w)= Gg(w) + cﬂ(w)[w _QHM - HR]G(w),
(3.5)
where
Grw)=v+v Gr(w) . (3.6)

w-Hpg

Here Hj is a reference two-particle Hamiltonian
which we choose to be of the form

Hy=H,.-2C.

The equation for Gg(w) separates easily into RCM
harmonic-oscillator states and is diagonal in the
center-of-mass quantum numbers. For a given
choice of oscillator frequency £, we calculate all
necessary Gy matrix elements for a mesh of w
values. These matrix elements need be calculat-
ed only once.

Matrix elements of G(w) are found by matrix
inversion!® of Eq. (3.5). This operation must be
carried out separately for each nucleus (since
depends on the particular nucleus under considera-
tion) and for each distinct choice of the parame-
ters B, and N. The size of the matrix inversion is
usually determined by the value chosen for N. In
those cases where N (or B,) is zero, the size of
the matrix is governed by how fast the operator
@ -1 goes to zero.

Results are presented for a variety of choices
of intermediate-state spectrum. There is as yet
no precise prescription for picking “best” values
for B,, C, and N. However, the best results are
obtained by choosing B, and C such that the low-
lying intermediate-state spectrum starts near
zero energy. This is encouraging, since it gives
a physically reasonable picture®® of the effective
one-body potential.

IV. BHF DETAILS AND NOTATIONS

Two-body G matrix elements are computed
from the relative matrix elements described in
the previous section, using formula (10) of Tar-

button and Davies.? The matrix elements converge
very quickly with relative !/ and, for all calcula-
tions presented in this paper, we truncate at rel-
ative f waves, i.e.,

J(max)— 3 (4.1)

rel

This truncation has no significant effect on our re-
sults, even for heavy nuclei.*®

We use a four-point Lagrangian interpolation
scheme to find G as a function of the starting en-
ergy w. Thus each two-body matrix element is
stored in the computer as four numbers G,, G,,
G,, and G, and, while iterating, we evaluate G(w)
from the expression

G(w)=Gy+wG, +w?G, +w?G, . (4.2)

The same coefficients can simultaneously be used
to calculate

%: G, +20G, +3w2G, , (4.3)
which is substituted into Eq. (2.10) to obtain the
occupation probabilities.

The interpolation points used to find the coef-
ficients G,, G,, G,, and G, were chosen to cover
the w region of physical interest as well as possi-
ble. However, interpolation is still a significant
source of numerical inaccuracy, particularly with
respect to the occupation probabilities. We have
found that modifications of the interpolation
scheme which change the SP energies in the third
or fourth significant figure cause the occupation
probabilities to change in the second or third sig-
nificant figure.

Another computational problem is the conver-
gence of the BHF results with iteration. The dou-
ble self-consistency has an interesting effect on
the calculated quantities. There is a variational
principle on the energy in pure HF calculations,
and the SP energies converge with iteration in a
monotonic fashion. In a pure Brueckner calcula-
tion the energies oscillate with iteration. The
oscillatory behavior can be understood from the
following rough argument. We denote the “true”
w value by w, and for values of w close to w,

6D 6 +(32) (0w, (4.4)
w=wg

where w, is the w value for iteration I. The SP
energies used to calculate w, are results of the
previous iteration. The derivative in Eq. (4.4) is
negative for most matrix elements of significance,
so that if w;>w, then G(w,)< G(w,). This means
that the SP levels calculated for iteration I are
too attractive, i.e., w,,,;<w, so that G(w,,,)

> G(w,), etc. The more we shift the intermediate-
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particle spectrum, the steeper the G(w) curve and
the more severe the fluctuations. For large shifts
of the spectrum, many iterations may be required
to achieve self-consistency, a result shown in Ta-
ble I for an I =50 calculation. This table also dem-
onstrates that the convergence can be dramatical-
ly improved by averaging the SP energies from
the two previous iterations. Therefore, in any
Brueckner calculation some type of energy aver-
aging should always be used to reduce the number
of iterations. Finally, whether HF convergence
(monotonic behavior) or Brueckner convergence
(oscillations) dominates in a BHF calculation de-
pends upon the magnitude of 8G/6w, which in turn
depends upon how much the intermediate spectrum
is shifted.

Convergence with iteration is also affected by
the off-shell value one used for E, in Eq. (2.7).7
Two examples are

E,=2E%9 - E (4.5)

a?

where E(*® is the average of all occupied SP en-
ergies, and

E,=E,, (4.6)

which is the on-shell value. Prescription (4.6)
converges with iteration faster than Eq. (4.5) and
since both prescriptions yield the same occupied
states,” it would seem preferable to use Eq. (4.6).
However, the unoccupied SP energies do depend
on the off-shell prescription, and for our calcula-
tions we use Eq. (4.5), since it gives a better ap-
proximation to the particle-bubble diagram. The
energy denominator of the middle G matrix in
Fig. 2 is

w-H,=Eg+E,+Ec—-E,—Hy, , (4.7)

TABLE I. Convergence with iteration for pure
Brueckner calculations of 80 with 72 =12.5, C =0, N
=18, and By=1 /9. The numbers in parentheses are
from a calculation in which the SP energies to be used
in each iteration are averages of the values obtained
in the two previous iterations. The numbers shown are

typical of other SP energies and occupation probabilities.

The 0sy/, neutron energies are in MeV,

Number
of iterations Eosy 5 (neutron) P opy, 9 (reutron)
5 -31.108 (—32.337) 0.80 725 (0.79656)
10 -32.627 (-32.168) 0.79324 (0.79750)
15 -31.990 (—32.177) 0.79913 (0.79739)
20 —32.256 (—32.178) 0.79666 (0.79739)
25 -32.145 0.79770
30 -32.191 0.79726
40 -32.180 0.79737
50 -32.178 0.79739

[ >

which we approximate by
Eg+E,-H,, .

Obviously, the simplest average value for E, is
given by Eq. (4.5).

In a HF -type calculation in the oscillator repre-
sentation, a SP dimensionality must be chosen.
Let d; be the dimensionality of all states having
the same symmeltry type’ s,

SE(q) l, ]) ’ (48)

where g is the charge, [is the orbital angular mo-
mentum, and j is the total angular momentum.

We then define a “total dimensionality” D for the
whole calculation. If all symmetry types have the
same number of occupied states, e.g., *He and
%0, then all d,; have the same constant value d

and we have

D=d. (4.9)

However, for nuclei such as *°Ca, *®Ca, and %°®Pb
in which each symmetry type has a different num-
ber of occupied states, it is convenient to define*

D=P+56, (4.10a)
if

d,=n,+0, (4.10Db)

where 1, is the number of occupied states of sym-
metry type s. The notation P in Eq. (4.10a) stands
for “pure oscillator”; thus 6 tells us how many
wave functions beyond a pure oscillator basis are
being used. For calculations of unoccupied sym-
metry types, e.g., the d states in %0, it is also
convenient to adopt the notation

D, =total dimensionality of the occupied

symmetry types , (4.11a)

D, =total dimensionality of the unoccupied
symmetry types . (4.11b)

(In the last case n =0 for each type considered.)

The total energy is calculated from Eq. (2.8),
and the mass, proton, and neutron rms radii
from the following formulas:

r.2=Tr(r%)/A, (4.12a)
r,2=Tr(r%p,)/Z, (4.12b)
r,2=Tr(r?p,)/N, (4.12¢)

where p is the one-body density; A, Z, and N are
the total numbers of nucleons, protons, and neu-
trons. We also compute a charge radius .,

7’62:7024'71;)\'0!2 ’ (413)

where 7, is the finite size of the proton. In all
of the results of this paper we take » %= 0.64

prot
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fm2. Unless otherwise specified, the results also
contain center-of-mass corrections on the total
energy and the various rms radii. For the energy
and mass radius, the corrected values are given
by39

E'=E -(P®/2Am,
rri=v, = (R?),

where P and R are the center-of-mass momentum
and radius, m is the nucleon mass, and the brack-
ets denote expectation values. The corrections to
the neutron and proton radii are a bit more com-
plicated and are discussed in detail by Davies and
Becker.%®

(4.14a)
(4.14p)

V. RESULTS

Separate results will be presented for %0, %°Ca,
48Ca, and 2°®Pb. The major effects studied include
the following: (a) variation of the results as a
function of ZQ; (b) variation as a function of the
parameters B,, C, and N, which define the inter-
mediate-state spectrum used in evaluating G; (c)
differences between calculations with self-consis-
tent and unit occupation probabilities; and (d) con-
vergence with dimensionality of the SP representa-

TABLE II. BHF calculations of 180, For each case, a dimensionality of 6 is used with C=0
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tion. Since most of these effects are quite similar
in all of the nuclei studied, different effects will
be emphasized for each nucleus. In addition, in
208pp we will discuss in some detail the special
problems associated with the SP spectra of heavy
nuclei.

A. 0

The SP energies and occupation probabilities,
the binding energy per nucleon, and the rms mass,
neutron, and charge radii are shown in Table II
as a function of Z7Q. The parameters N=18, C=0,
and B, = £ #Q indicate that, in calculating G ma-
trix elements, all intermediate product states
with 2n, + I, +2n, + I, +4 < 18 have been lowered by
TrQ. For this particular choice of B, the inter-
mediate -state spectrum starts at zero energy.
Our choice of N=18 for 'O corresponds roughly
to the nuclear-matter argument3” that the energies
of all intermediate states between k&, and 2k;
should be lowered. In applying this argument to
finite nuclei we choose to count the number of
major oscillator shells involved. There is, of
course, nothing unique about our prescription for
either B, or N and we will be presenting results

and N =18. Energies are

in MeV here and all remaining tables of the paper.

nQ 9.5 11.0 12.5 14.0 15.5
B, /kQ 3.5 3.5 3.0 3.5 3.0 3.5 3.5
Neutrons
Eqs, -36.8 -36.8 -37.4 -36.9 -37.4 -37.0 -374
Ey, , -18.4 -18.3 -17.5 -18.3 -17.3 -18.2 -18.3
Eyp, -15.6 -15.5 -14.3 -15.3 -14.0 -15.2 -15.1
Pos,, 0.81 0.81 0.85 0.82 0.85 0.82 0.82
Po, 0.79 0.78 0.83 0.78 0.83 0.78 0.78
Py 0.78 0.78 0.82 0.78 0.83 0.78 0.78
Protons
Eys,, -34.2 -34.1 -34.5 -34.2 -34.5 -34.3 -34.7
Eg,, -15.9 -15.8 -14.8 -15.8 -14.6 -15.7 -15.7
Eg, -13.2 -13.0 -11.7 -12.9 -11.4 -12.7 -12.6
Pos, 0.81 0.81 0.84 0.81 0.85 0.82 0.82
PO,S/2 0.78 0.78 0.83 0.78 0.83 0.78 0.78
Po,,, 0.78 0.78 0.82 0.77 0.83 0.77 0.78
-E/A 6.76 6.65 5.52 6.57 5.33 6.49 6.47
7, (fm) 2.46 2.45 2.46 2.44 2.46 2.43 2.41
7, (fm) 245 2.44 2.45 2.43 2.45 2.42 241
v, (fm) 2.59 2.59 2.60 2.57 2.60 2.57 2.55
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for a variety of choices. In Table II, for example,
two cases are shown for B,=371Q.

The dependence of the results on #ZQ is not due
to poor HF convergence. This is clear from Fig.
3 which shows the convergence with dimension-
ality of the charge radius for a number of ZQ val-
ues. This convergence is typical of that for all
the results in Table II. The ZQ dependence is due
partly to the fact that the calculations are not com-
pletely self-consistent (e.g., an oscillator @ is
used in calculating G), but is probably due mainly
to higher-order diagrams not taken into account.

The intermediate-state spectrum should be cho-
sen to cancel higher-order diagrams as well as
possible. If the BG expansion were summed to in-
finite order the results would be completely inde-
pendent of #7Q. Thus a necessary (but obviously
not sufficient) requirement for an intermediate -
state spectrum is that it yield results independent
of 7. We see in Table II that the results for B,
in the vicinity of 7 Q are almost independent of
Q.

Comparing the results obtained with B,=3#%
and B,=3.5%Q we see that, as the intermediate-
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FIG. 3. 180 charge radius 7, as a function of dimen-
sionality D, for various %#Q values. The intermediate-
state parameters are N =18, C =0, and B, = }#Q.

state spectrum is lowered, the binding energy in-
creases, the rms radii decrease, the occupation
probabilities decrease, and most of the SP states
become slightly more bound. The SP energies are
much less sensitive to shifts in the spectrum than
in calculations with unit occupation probabilities.®
This stability can be explained by the following
argument. Lowering the intermediate-state spec-
trum makes the G matrix elements more attrac-
tive, which tends to lower the occupied SP ener-
gies. However, the changes in the occupied SP
energies are smaller than the shift in the inter-
mediate-state spectrum which caused them. This
results in a reduced gap between occupied and un-
occupied states, leading to more virtual excita-
tions and smaller occupation probabilities. De-
creasing the occupation probabilities raises the
SP energies [see Eq. (2.9)], thus partially cancel-
ling the original lowering effect. In fact, in our
calculations the Os,,, states actually become more
repulsive as B, is increased.

All results shown in Table II are obtained using
a SP dimensionality D =6, which is more than ad-
equate for *0. From Fig. 3 we see that for #Q
=11.0, 12.5, and 14.0, satisfactory convergence
is obtained for D =3 and, for all #Q values, good
convergence for D =4. The figure does illustrate
the importance of picking a reasonable #Z§ value
if one is limited to rather small dimensionalities.
This problem is of critical importance in heavy
nuclei where the dimensionalities have to be much
more severely restricted.®

B. “°Caand ®Ca

Results for *°Ca and *®Ca are displayed in Table
III. The Pauli operator for *®Ca properly takes in-
to account that the 0f,,, state is occupied with neu-
trons but not protons. The first three columns
show that 7 Q =12.5 gives reasonable convergence
with dimensionality for the occupied states. The
unoccupied SP energies, which are underlined, do
not converge very well, but this is an expected
problem which plagues all HF calculations per-
formed in the oscillator representation.>® Notice
that the dimensionality of the occupied states var-
ies according to the symmetry type, as described
in Sec. IV. Also, as mentioned previously, differ-
ent values can be obtained for the excited-state en-
ergies by picking a different prescription for E, .

The columns with asterisks are for calculations
with unit occupation probabilities. Thus Table III
also shows a comparison between renormalized
and unrenormalized results. A comparison of the
density distributions for the two kinds of calcula-
tions is presented in Fig. 4. The effects of includ-
ing self-consistent occupation probabilities are to
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TABLE III. BHF calculations of *°Ca and 8Ca for #Q = 12.5, B,/AQ =4.0, C=0, and N=20. The first three columns
show the convergence with dimensionality in 4°Ca; the columns with an asterisk are for unrenormalized calculations.
D, is the dimensionality of occupied symmetry types; D,, of unoccupied symmetry types. The particle-particle pre-
scription used is E,=2E@®) — E; excited states are underlined.

Nucleus ca 0Cca Ca 0Cax BCa BCax*
D, P2 P+3 P4 P+3 P4 P+3
D, 3 4 5 4 5 4

g_oe:l%_:‘ons -55.01 —-54.83 -54.81 —68.2 —-54.8 —68.6

Eol’g/z -35.20 -35.13 -35.12 —-45.3 -35.8 —-46.4

E0’1/2 —-32.42 -32.41 -32.40 -414 -34.7 —44.7

EDd5/2 -17.,51 -17.50 -17.49 —-24.7 -18.1 —-25.4

Els“2 -15.86 -15.84 -15.82 -21.8 -16.7 -22.9

EM,’}/Z -13.38 -13.41 -13.41 -18.8 -16.3 -22.5

E0f7/2 3.55 3.26 3.12 0.54 -2.1 —-6.5

Ey,, 3.68 2.55 1.88 1.1 0.70 —0.45

Ey,, 5.05 3.64 2.80 2.7 14 0.80

E0f5/2 7.75 7.10 6.62 6.6 4.1 3.4

P°s1/2 0.8276 0.8286 0.8286 1.0 0.85 1.0

P0p3/2 0.8352 0.8357 0.8358 1.0 0.86 1.0

POPI/Z 0.8300 0.8306 0.8306 1.0 0.85 1.0

Pm5/2 0.8377 0.8382 0.8383 1.0 0.86 1.0

PISUZ 0.8374 0.8386 0.8387 1.0 0.86 1.0

PO"'}/Z 0.8323 0.8327 0.8329 1.0 0.86 1.0

Posy, 0.90 1.0

Protons

E031/2 —-48.37 —-48.22 —48.20 -59.8 -51.2 -62.9

E0p3/2 -28.91 —-28.85 —-28.84 -37.4 -33.3 —-41.9

EO’!/Z -26.20 -26.21 -26.21 -33.6 -32.3 —-40.4

EM5/2 -11.55 -11.54 -11.54 -17.2 -16.0 -21.6

By, -9.93 -9.94 -9.93 -14.3 ~14.3 -19.0

EMI}/Z -7.54 -7.59 -7.59 -11.4 -14.7 -19.5

Eoz, 9.77 9.25 8.97 8.4 5.5 4.9

Etpy, 9.77 8.22 7.20 8.2 4.7 5.3

Etpy 11.00 9.11 7.89 9.4 5.2 6.4

Eosg) 13.32 12.31 11.48 13.0 7.1 7.9

POSI/Z 0.8225 0.8233 0.8233 1.0 0.83 1.0

PO’:}/Z 0.8321 0.8325 0.8325 1.0 0.83 1.0

P0p1/2 0.8270 0.8275 0.8275 1.0 0.83 1.0

PM.S/Z 0.8360 0.8366 0.8367 1.0 0.83 1.0

Pis‘n 0.8362 0.8376 0.8379 1.0 0.84 1.0

Pw3/2 0.8312 0.8318 0.8320 1.0 0.83 1.0

-E/A 4.980 4.993 4.994 4.21 4.00 3.30

7, (fm) 3.036 3.046 3.048 2.90 3.41 3.21

7. (fm) 3.178 3.190 3.193 3.05 3.25 3.11
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raise the SP levels, to increase the rms radii,
and to increase the binding energy, all of which
tend to improve the agreement with experiment.
However, it is clear that, even with self-con-
sistent occupation probabilities, the results still
differ quite a bit from the experimental values.
(For example, for *°Ca the experimental binding
energy*® and charge radius*! are 8.55 MeV and
3.50 fm, respectively.) The shift used in Table III
for the low-lying spectrum is fairly moderate and
we can obviously increase the binding energy by

TABLE IV. BHF calculations of 4Ca for #2=12.5

andD=P +2,

C/nQ 0.0 0.0 0.0 0.0 4.5
BO_/KQ 0.0 4.0 4.5 4.5 0.0
N 0 20 20 26 0

Neutrons
E -50.2 —55.0 -54.7 —58.2 -70.7
0s4/2
}EO,K/2 -31.7 -35.2 -34.9 -37.5 —46.6
E -29.0 -32.4 -32.2 —-34.5 —42.6
08y/5
EMS/Z -14 .4 -17.5 -18.0 -19.7 -25.6
E151/2 -12.8 -15.9 -16.4 -17.9 -23.0
E""s/z -10.3 -13.4 -14.1 -15.5 -20.1
P°31/2 0.88 0.83 0.82 0.81 0.80
P%/2 0.90 0.84 0.81 0.80 0.80
P"Puz 0.90 0.83 0.81 0.79 0.79
Pws/z 0.92 0.84 0.79 0.77 0.73
P‘suz 0.92 0.84 0.79 0.77 0.72
P‘Ma/z 0.92 0.83 0.78 0.76 0.71
Protons
E0s1,2 —-43.2 —48 4 —-48 4 -51.9 —64.2
E°’3/2 —-24.9 —-28.9 -28.9 -31.5 —40.5
E 224 —-26.2 -26.3 —28.6 -36.6
2y/3
E“"s/z -7.9 -11.5 -12.4 -14.1 -20.0
Etsm —-6.4 -9.9 -10.9 -124 -17.5
E‘”a/z —-4.1 -7.5 -8.6 -10.0 -14.7
POS‘/Z 0.88 0.82 0.81 0.80 0.80
POPs/z 0.90 0.83 0.81 0.80 0.79
P"Pt/z 0.89 0.83 0.80 0.79 0.78
P°¢5/2 0.92 0.84 0.78 0.77 0.72
P,SW 0.92 0.84 0.78 0.76 0.71
Pmm 0.92 0.83 0.77 0.75 0.70
-E/A 2.32 4.98 5.83 6.98 10.7
7, (fm) 3.33 3.18 3.14 3.06 2.85

taking a larger shift, but this would have the ef-
fect of making the radius even smaller. This be-
havior is shown in Table IV, which presents the
SP energies and occupation probabilities, the bind-
ing energy per nucleon, and the charge radius as
a function of the parameters C, B,, and N defined
in Sec. OI. The first column shows the results for
a pure harmonic-oscillator intermediate -state
spectrum. Comparing the second and third col-
umns, we see the effect of changing B,, the mag-
nitude of the low-lying shift, while a comparison
of the third and fourth columns demonstrates the
effect of increasing N, which gives roughly the
number of low-lying states shifted. The last col-
umn shows the behavior when the entire excited-
state spectrum is shifted by a constant amount C.
The parameters B,=$#Q and N =26 used in col-
umn 4 again correspond roughly to lowering to
zero energy the spectrum of intermediate states
with momenta between %k, and 2k;. For this
choice of parameters the nucleus is underbound
by approximately 1.5 MeV, a result similar to
that obtained in *0. Notice that for C=B,=N=0
the occupation probabilities tend to be greater at
the top than at the bottom of the SP well, but as
the spectrum is shifted this trend seems to be re-
versed. It is not certain yet whether this effect
is real since, as mentioned in Sec. IV, numerical
inaccuracy due to the interpolation scheme can
cause the occupation probabilities to change in the
second or third significant figure.

0.36

0.32

0.24

0.20 -

plr) (fm™3)

0.16
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FIG. 4. Proton and mass densities of 4°Ca for h2=12.5,
N=20, C=0, and Bj=4%Q. The solid curves are for a re-
normalized calculation; the dashed curves, for an unre-
normalized calculation.



4 BRUECKNER-HARTREE-FOCK CALCULATIONS... 91

By making various kinds of adjustments of the
intermediate spectrum, we can bring the binding
energy into agreement with experiment, but at the
expense of making the radius too small. However,
the radius does not change as drastically as the
binding energy. (E.g., from Table IV we see that
increasing B, from 4#Q to 4.5%Q changes the bind-
ing energy by 17%, but 7, by only 1%.) Also, the
radius is not computed to the same accuracy as
the binding energy; i.e., there are higher-order
diagrams included in the binding energy which
have not been calculated to the same order for the
radius.

C. %pp

A complete BHF calculation of 2°®Pb is listed in
Table V. Different B, and N values are used for
each type of nucleon-nucleon interaction (i.e., pro-
ton-proton, neutron-proton, and neutron-neutron).
Also, the Pauli operator properly takes into ac-
count the high-lying SP levels occupied by neu-
trons but not protons, so that there is a separate
1 - @ for each nucleon-nucleon interaction. The
numbers in parentheses are for an unrenormal-

ized calculation, and we obtain the same kinds of
results as for °Ca. Comparing the two kinds of
calculations, we see that renormalization substan-
tially raises all of the SP levels (the Os, ,, neutron
level, by 20 MeV) and increases the binding ener-
gy per nucleon by 1 MeV.

Additional binding can be obtained by lowering
the intermediate-state spectrum, an effect dem-
onstrated in Table VI. Only selected neutron SP
energies and occupation probabilities are listed.
Case A is the same as the calculation in Table V,
while in the other cases each nucleon-nucleon in-
teraction is obtained from the same intermediate
spectrum and a neutron-proton Pauli operator
(i.e., the neutron-neutron and proton-proton inter-
actions are calculated with the same (1 - Q) and
the same C, B, and N used for the neutron-pro-
ton interaction). Thus, the matrix elements for
case B are derived from a Pauli operator and an
intermediate spectrum which might be described
as “averages” of the corresponding quantities
used in case A. This kind of “averaging,” which
considerably simplifies the calculation, does not
significantly change the results.

TABLE V. Calculations of 2%Pb for #2=9.5, C=0, and D =P +2, The other intermediate-state parameters are B /kQ
=6.0, 6.5, 7.0, and N =26, 27, 28 for proton-proton, neutron-proton, and neutron-neutron interactions, respectively.
The values in parentheses are for an unrenormalized BHF calculation, with unit occupation probabilities.

Neutrons Protons

SP Occupation Occupation
states SP energies probabilities SP energies probabilities
0sy/2 -71.1 (-91.1) 0.84 -58.6 (—72.5) 0.80
0p3/2 -59.2 (=76.5) 0.84 —47.1 (-58.7) 0.80
0P1/9 —-58.8 (=75.8) 0.84 —46.9 (-58.2) 0.80
0ds/s —47.0 (-61.7) 0.84 -35.5 (—44.8) 0.80
0d 3,y —46.7 (—61.0) 0.85 —-35.4 (—44.4) 0.80
1sy/9 —45.8 (—60.0) 0.84 -34.2 (—42.9) 0.80
0f 779 —-34.7 (—46.8) 0.85 -23.7 (=30.7) 0.81
0f 572 —-34.6 (—46.2) 0.85 -23.6 (—30.3) 0.81
1p 39 —-32.8 (—44.1) 0.85 —-21.6 (-—27.8) 0.81
1p 49 -32,5 (-434) 0.85 —-214 (-27.2) 0.80
08972 -22.5 (-32.0) 0.86 -11.9 (-16.7) 0.81
08772 —-22.2 (-31.1) 0.85 -11.8 (-16.0) 0.81
1dg —-20.1 (-28.8) 0.86 -94 (-13.2) 0.82
1dy -19.3 (-27.3) 0.86 -8.8 (-12.2) 0.81
284/9 -19.3 (-27.2) 0.86 -8.6 (-11.7) 0.82
Ohyy/9 -10.5 (-17.8) 0.87 -0.26 ( —3.0) 0.83
Ohyg/s -9.6 (-16.0) 0.86

1f 1/ -84 (-14.5) 0.87

1f /9 =71 (-12.3) 0.87

2p 379 =7.7 (-12.8) 0.88

2012 =71 (-11.7) 0.88

0i43/2 0.79 ( —4.3) 0.88

-E/A 2.49 (1.52)
7, (fm) 4.96 (4.68)
r, (fm) 5.06 (4.76)
7o (fm) 4.87 (4.63)
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In order to obtain 2°®Pb results corresponding to
the 0 and *°Ca cases in which the spectrum of in-
termediate states with momenta between k; and
2k, is lowered to zero energy, we would have to
choose B,=Tr§ and N=54. Our present code
treats exactly N values up through 27; for higher
values the shifts are only approximately taken in-
to account and we expect the errors involved may
become significant Nz 40. Thus, we are
forced to use shifts in 2°°Pb which are small com-
pared to those used in O and *°Ca. However, it
can be seen from the last column in Table VI,
where the entire spectrum is shifted by 77, that
it is possible to obtain binding energies in 2°®Pb
comparable to those in 0 and *°Ca.

Before discussing the SP levels in 2°®Pb, let us
first review some difficulties encountered in pre-
vious calculations. Figure 5 compares with ex-
periment the high-lying neutron SP levels from (1)
a HF calculation* using the Nestor force,3® and (2)
an unrenormalized BHF calculation® using Kuo’s
G matrix.*? Both sets of results, which are typi-

cal of other cases,!* 3 disagree with experiment
in three important ways:

(1) The main weakness is that the neutron 0i,,,
level is much too high. The same is true of the
proton Ok, , level. Both of these levels should lie
among the levels of opposite parity belonging to
the oscillator shell below them; instead they are
separated from the other levels by a large gap.
This effect is characteristic of HF and BHF cal-
culations for nuclei containing spin-unsaturated
subshells.!®* €32

(2) The experimental SP level density is much
higher than in the cases shown in Fig. 5. For
both forces, the calculated levels are much too
spread out. The order of magnitude of the spin-
orbit splittings is about right for doublets below
the Fermi surface.*® Thus, the main problem
with the level density is that the ! dependence is
much stronger than found experimentally.

(3) Both calculations give SP levels which are
more bound than the experimental ones (except,
of course, for the spin-unsaturated energies).

TABLE VI, Selected neutron SP energies and occupation probabilities, binding energy/nucleon, and charge radius
for various calculations of 2%Pb, The dimensionality is P +2 with 52 =9.5. The trials listed in case A for Bj and N
pertain to proton-proton, neutron-proton, and neutron-neutron interactions, respectively; for each of the other cases
single values of B, and of N are used with a neutron-proton 1 —Q operator always.

Case A B C D E
C/rQ 0.0 0.0 0.0 0.0 7.0
Bo_/‘h’Q 6.0, 6.5, 7.0 6.5 7.0 7.5 0.0
N 26, 27, 28 27 41 41 0
E°51/z(n) -71.1 -70.7 -73.7 -71.1 -97.9
Eopm(n) -58.8 -58.4 -61.2 -58.9 -81.2
Emﬂ(n) -46.7 -46.5 -49.1 -47.3 -65.1
E0f7/2(”) -34.7 -34.5 -37.1 -35.9 -50.3
EO’T/Z(n) —-22.2 -22.3 -24.2 -23.8 -32.9
Ewm(n) -10.3 -19.4 -21.1 -20.9 -29.2
Eo,,m(n) -9.6 -10.1 -11.5 -12.2 -16.8
E°i13/2(") 0.79 0.09 -1.1 -2.6 -5.3
P031/2(n) 0.84 0.84 0.83 0.81 0.81
Po,)l,g(”) 0.84 0.84 0.82 0.80 0.80
Pmm(n) 0.85 0.85 0.82 0.79 0.79
Pofm(n) 0.85 0.85 0.82 0.78 0.78
Pong(n) 0.85 0.85 0.82 0.77 0.78
Pum(") 0.86 0.85 0.82 0.78 0.78
P(’"e/z(") 0.86 0.85 0.83 0.76 0.78
Po,.lm(n) 0.88 0.87 0.84 0.78 0.79
-E/A 249 2.72 4.25 5.69 9.80
7. (fm) 4.87 4.88 4.73 4.69 4.22
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A comparison of the two calculated spectra in ues to persist with our present calculations.
Fig. 5 shows fairly significant differences in the With the above thoughts in mind, let us now ex-
density of levels, so it is reasonable to expect amine Fig. 6, which displays all of the cases in
difficulty (2) above might be alleviated by using Table VI plus case A unrenormalized. Notice for
other kinds of forces.** Also, since the inclusion the latter that, compared to the two previous
of self-consistent occupation probabilities has the forces, the present G matrix gives levels which
effect of raising the SP levels, it is clear that re- are not as spread out. Also, renormalization has
normalization will help to correct difficulty (3). a dramatic effect on the SP spectrum: The level
However, difficulty (1) appears to be more serious density increases and the levels become less
and, as we see in Table VI, this problem contin- bound. The ! dependence of the SP density can be
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FIG. 5. Neutron SP spectra in 28Pb for two previous calculations. The first column is from Ref. 4; the second col-
umn, from Ref. 6; and the experimental values, from E. Rost, Phys. Letters 26B, 184 (1968). The disagreement with
experiment is much worse than for the results shown in the next figure.
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improved by lowering the intermediate spectrum
of the G matrix, and a comparison of cases A and
B shows that using a more exact Pauli operator
tends to slightly raise the energies. Case C gives
reasonable agreement with experiment for the 2p,
1f, and Oh,,, levels, and it is clear that by further
refinements of the G matrix (improved Pauli oper-
ator and various adjustments of the intermediate
spectrum) we could match these energies exactly
with experiment. The point to emphasize though
is that, except for the positions of the spin-un-
saturated energies, the weaknesses of the pre-
vious studies can be removed by an RBHF calcu-
lation using a shifted G matrix of the type de-
scribed here.

There are HF-type calculations?®*~2® which do not
seem to suffer from problem (1)above; i.e., the
neutron 07, , level is not separated from the 2p
and 1f levels by a large gap. However, in these
calculations various arbitrary assumptions are
used, e.g., the local density approximation or an
assumed one-body spin-orbit potential. These as-
sumptions obviously simulate the effects of var-
ious higher-order diagrams needed in our work in
order to bring the spin-unsaturated energies clos-
er to experiment. It is not yet clear how these
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calculations avoid problem (1) or how they are re-
lated to our own work, but they do encourage us
to believe that a careful study of the higher-order
diagrams will be useful in solving this puzzle.
There is also the question of whether one really
can compare the BHF SP energies directly with
experiment. There are a number of higher-order
corrections to be considered, including occupa-
tion probabilities?® for both holes® !2-15:19:20 anq
particles* and core polarization diagrams.* In
our work we have treated only the occupation prob-
abilities for hole states, and we see from Fig. 6
the dramatic improvement in the SP spectrum of
208pp. Including occupation probabilities in parti-
cle states will tend to cancel some of this improve-
ment, but we expect this effect to be small. Core
polarization diagrams do not affect the centroid
of the distribution of measured SP strength but
only its width.3! Thus, if the above-mentioned
corrections are the only important ones and if the
experimental levels really contain 100% of the SP
strength,*® we should be able to compare our RBHF
energies with experiment. However, since the
spin-unsaturated levels have energies which dis-
agree drastically with experiment, further work
on this question is needed.
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FIG. 6. High-lying neutron SP levels in 28PDb for the various cases listed in Table VI. Case A* is case A
unrenormalized. The experimental values are from E. Rost, Phys. Letters 26B, 184 (1968).
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Finally, we should mention that our computer
technology does extend to the super-heavy region,
for dimensionalities as high as D=P +2. In the Ap-
pendix we present some HF results, withD=P +1,
for the nuclei 3°126 and 2°®114, using the Nestor
force.®® It is interesting that, in this particular
case, we do not encounter the usual problem of
the spin unsaturated levels. However, due to the
complications associated with the SP spectrum
of 2°8Pb, we have shied away from G-matrix cal-
culations of the super-heavy nuclei. In these nu-
clei it is critically important to obtain a reason-
able ordering of the SP levels, and it seems point-
less to go beyond 2°°Pb with a G matrix until the
problems there have been solved.

VI. SUMMARY

The results presented in Sec. V are encouraging
for a number of reasons. First of all they show
that accurate RBHF calculations can be carried
out in the oscillator representation using dimen-
sionalities of the same size needed for pure HF
calculations. It is now possible (but, as pointed
out in the last section, not yet worthwhile) to
carry out RBHF calculations even for super-heavy
nuclei. The results not only converge rapidly with
the size of the oscillator basis but also, for a rea-
sonable choice of intermediate-state spectrum,
can be made approximately independent of the os-
cillator parameter.

The fact that the binding energy per particle can
change by 7 or 8 MeV when the intermediate -state
spectrum is shifted simply means that higher-or-
der diagrams - in particular the three-body clus-
ter diagrams - are important. Hopefully their con-
tribution can be made small and independent of
7 Q by choosing the spectrum correctly. It is en-
couraging that our results are almost independent
of 72 when we choose a spectrum consistent with
physical intuition. Moreover, our preferred
choice of intermediate-state spectrum underbinds
80 and *°Ca by only 1.5 MeV per particle and
would probably yield similar results in 2°Pb if
the shifts could be treated exactly.

We could, of course, easily increase the binding

(a)

energy per particle by a further shift of the inter-
mediate-state spectrum. This is illustrated in Ta-
bles IV and VI where we lower the entire particle
spectrum to start at zero energy. A constant shift
of this type has long been used by Becker and col-
laborators,!! who have consistently obtained good
binding energies for light nuclei. However, this
increased shift causes a further decrease in the
rms radii, which are already too small, and yields
results which depend more strongly on 7z 2.

It is not too surprising that the rms radii are all
smaller than those observed experimentally, since
the Reid potential does not appear to saturate nu-
clear matter correctly either —at least in the
Brueckner approximation.*” Qur calculations are
more complete than the nuclear matter calcula-
tions since we include the effect of occupation
probability diagrams. These diagrams tend to im-
prove the saturation properties, but not by a sig-
nificant amount. The excellent fits to experimental
binding energies, SP spectra, and radii found in
recent HF or BHF calculations?*~27 have been ob-
tained using effective two-body interactions con-
taining adjustable parameters. These effective
interactions usually contain nonlocal or density-
dependent terms which are essential in fitting SP
energy levels and helpful in improving saturation
properties. Thus these terms yield effects simi-
lar to those we obtain by including occupation prob-
ability diagrams. The good fit to experimental
binding energies and radii, however, comes di-
rectly from adjusting the parameters of the ef-
fective interactions to fit nuclear matter or select-
ed finite nuclei.

It is not clear if these effective potentials mere-
ly compensate for neglected higher-order terms
in the Brueckner-Goldstone expansion or if the
Reid potential itself is simply not a good repre-
sentation of the nucleon-nucleon interaction. In
order to answer this question it is necessary to
investigate higher-order corrections to the RBHF
procedure.

If the three-body cluster contribution to the en-
ergy turns out to be substantially attractive, we
can increase the gap between occupied and unoc-
cupied states and thus increase the rms radius.

A a
A a

(b)

FIG. 7. Some higher-order corrections to the binding energy: (a) potential insertions in particle lines;
(b) occupation probabilities for particle states.
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(a) (b)

FIG. 8. (a), (b) Two-body correlation corrections to
the rms radius. The dot represents the operator 2.

As pointed out in the previous section this would
have little effect on the SP spectra. Other correc-
tions to the binding energy which should be calcu-
lated are the diagrams shown in Fig. 7, involving
potential insertions in particle lines and occupa-
tion probabilities for particle states. The contri-
butions of these diagrams should depend strongly
on the particle spectrum and on #Q. Thus we
might have to readjust our spectrum to obtain re-
sults independent of #7Q. It is also possible that
including occupation probabilities in particle lines
could have a noticeable effect on our SP energies.
Higher-order corrections to the radius itself
should also be considered. In our calculations we
simply evaluate the expectation value of 2 in low-
est order. However, since the occupation prob-
abilities of the normally occupied states are sub-
stantially less than unity, we might expect large
corrections to the radius from the second-order
diagrams shown in Fig. 8.1 Diagram 8(a) alone
is easy to calculate (those diagrams with A=A~
being proportional to 1 - P ,) and can be shown to
reduce » 2 by ~10-20%. However, diagram 8(b) is
much more difficult to calculate, and both dia-
grams must be treated together, since they are of
comparable magnitude and of opposite sign.
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APPENDIX

Results for super-heavy nuclei are displayed in
Table VII. For neutrons, both nuclei are calculat-
ed by filling all of the levels up through the s-d-
g-i shell plus the 0j,;,, level. For protons, in
310126 all levels up through the p-f-h shell plus
the 0iy,,, level are occupied, while in ?*114 all of
these except the 1f;,, and 2p levels are assumed

TABLE VII, HF calculations of super-heavy nuclei
for the Nestor force, 3 with #2=8.30, 1{T#) =3, and
D =P+1, The underlined SP energies for %114 are un-
occupied states, Center-of-mass corrections are not

included for these nuclei.

310196 298714
SP energies SP energies

SP states Neutrons Protons Neutrons Protons
0s4/9 -102.4 -76.4 -94.5 -74.9
0p3/9 —88.2 —-63.4 —-83.4 —-63.5
0P/ -87.7 —63.0 —83.7 —-63.9
0d sy -74.5 -50.5 -71.1 -51.3
0d 59 -73.9 -50.0 -71.3 -51.7
1s49 =72.7 —-48.3 —66.6 -417.8
0f /2 —60.4 -37.3 -57.9 -38.5
0f 579 -59.6 —-36.6 -57.7 -38.5
1p3 ~55.4 -32.0 -51.1 -32.5
1Py -54.8 -314 -51.0 -32.6
0g 92 -46.2 -23.9 —-44.3 —-25.4
0g 772 —45.2 -22.9 -43.6 —24.8
1dsp -39.6 -16.9 -36.4 -17.9
dy -38.6 -16.0 -36.2 -17.9
2S1/9 -34.8 -10.2 -30.8 -11.3
Ok y1/9 -31.7 -10.0 -30.1 -11.5
()29 -29.8 -8.1 —-28.5 -10.0
1f 19 —-25.2 -3.3 -22.2 -4.3
1f5/9 -23.5 -1.8 -214 3.6
2P 39 -19.3 4.1 -14.8 8.9
2p1p -18.3 5.1 -14.0 9.8
02439 -18.4 2.6 -17.0 1.1
02419 -15.5 -14.3
1g4/9 -12.1 -9.6
1g 179 -9.6 -7.9
2d 59 -5.5 -3.0
2d 55 -4.0 -2.2
3s1s9 2.1 3.6
0371579 -6.0 -4.6
-E/A 3.83 4.02
7 (fm) 6.04 6.04
7, (fm) 6.14 6.15
7, (fm) 5.95 5.92

to be filled. The Nestor force®® is used for the
calculations, and the 7 Q value is chosen by ex-
trapolating from values used in previous HF
studies* of lower-mass nuclei. For each nucleus,
the computational times on the IBM 360/91 are as
follows: 25 min to calculate two-body matrix ele-
ments, and 0.9 min to perform 18 iterations.
Since the dimensionality is only P +1, the con-
vergence is not very good, but the results do in-
dicate the general trends to be expected in the
super-heavy region. Notice that the 0j; , neutron
and 0i,,,, proton levels do mix in with the levels
of opposite parity in the next lowest shell, which
is different from the behavior of the spin-unsat-
urated levels in 2°®Pb. Also, it is interesting that
in this case the 3s,,, neutron level is separated
from the other occupied neutron levels by a large
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gap. Both nuclei are bound, but there are a num-
ber of positive SP energies, particularly for
310126. Some of these characteristics could change

by going to higher dimensionalities, by using im-
proved forces, or by renormalizing with occupa-
tion probabilities.
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poration, and by the National Science Foundation (Grant
No. GP-13957).
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