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The polarization and cross sections for A-4He elastic scattering are calculated for A inci-
dent energies 1—20 MeV. A A-4He potential is constructed using a phenomenological AN
Gaussian central potential and the empirical shape for He, and a spin-orbit potential ob-
tained from a one-boson-exchange (OBE) model for the AN interaction. As indicated recently
by Downs, the OBE model for AN forces leads to strong antisymmetric spin-orbit terms due
to vector-meson exchange. This means that the A- He potential depends only on part of the
AN spin-orbit interaction, since it results from summing the latter interaction over the nu-
cleon spin states. Parameters from three quite different OBE calculations are used to pre-
dict the A-4He scattering, and these three sets of OBE parameters lead to remarkably simi-
lar predictions concerning the cross sections and polarization properties for this energy
range. However, no A-4He resonances are predicted, in contrast to recent Hartree-Fock
calculations of A- He scattering. The polarization effects predicted are large, and experi-
mental data concerning them would have interesting consequences for our knowledge of the
origin of spin-orbit forces in the baryon-baryon system.

I. INTRODUCTION

Estimates of the central part of the AN interac-
tion can be obtained from the cross sections mea-
sured for low-energy AN elastic scattering, ' ' and
from analyses of the binding energies and spins of
the light A hypernuclei. ~' The spin-orbit part of
the AN interaction is more difficult to determine.
In the case of the NN interaction, the spin-orbit
interaction becomes really important in NN scat-
tering only at laboratory energies above about 150
MeV; below these energies, it produces small ef-
fects on the scattering cross sections, although
some of its effects are clearly apparent in the pat-
terns of nuclear energy levels and of nuclear prop-
erties. ' For the AN interaction, the elastic scat-
tering data available does not yield much informa-
tion about the spin-orbit forces. It is difficult to
produce A particles with both sufficient energy
and sufficient intensity to allow the observation of
a spin-orbit term in the AN interaction. For K p
interactions at rest, the A production is copious
but few of the A particles resulting have momen-
tum above about 300 MeV/c. For K p interactions
in flight, at higher energies, the relative yield of
A particles is quite large, but the event rate in a
hydrogen bubble chamber is necessarily rather
low, and the A particles produced are distributed
over a rather wide range of momenta. ' A further
complication is that, for Ap c.m. energy above

78 MeV, the ZN channel becomes energetically
available, and AN scattering must then be treated
explicitly as a two-channel situation. '

In the P-shell hypernuclei, the AN spin-orbit
force contributes directly to the binding energies,
but it proves difficult to identify uniquely the con-
tributions from the spin-orbit AN interaction,
sine e there prove to be effects arising from ANN

three-body forces which have the same character-
istics as AN spin-orbit forces. ' Recent analy-
ses"' "of the effective AN spin-orbit force in the
P-shell hypernuclei indicate a rather large AN
spin-orbit effect, as would correspond to a AN

spin-orbit force with magnitude somewhat larger
than that known for the NN spin-orbit force in the
P-shell nuclei. The sign found for this AN spin-
orbit effect in these analyses is opposite that
known for the NN spin-orbit effect; however, this
conclusion depends on the rather detailed assump-
tions which have to be made concerning the exis-
tence and nature of ANN three-body forces, and
so cannot yet be regarded as firmly established.
It is clearly desirable that independent measure-
ments should be obtained for the AN spin-orbit
force, and this paper explores the possibility of
using low-energy A-4He elastic scattering to ex-
tract this information.

If the AN spin-orbit force is comparable in
strength with the NN spin-orbit force, it is likely
that measurements of A-'He elastic scattering and
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polarization in the low-energy region (below the A

energy, about 26-MeV laboratory kinetic energy,
needed for 'He breakup} could provide rather clear-
cut information about the AN spin-orbit force.
However, no data are yet available on the A-4He

scattering interaction.
To begin, it will be instructive to compare the

A-'He system with the well-known n-~He system,
which has a sharp P», resonance at neutron (lab)
energy about 1 MeV, and a broad P„, resonance
at about 5 MeV. " Sack, Biedenharn, and Breit"
achieved a reasonable fit to the n-'He scattering
phase shifts from 0-12 MeV using phenomenologi-
cal central and spin-orbit potentials of Gaussian
form. Their central potential had the form

y U -r2/R2c= ce

with U, = -47.53 MeV and R = 2.30 F. Neglecting
the Pauli principle, this potential is strong enough
to bind an s-wave nucleon by about 20 MeV. For
comparison, Dalitz and Downs" have calculated
a A-'He Gaussian central potential to fit the A-'He
separation energy BA= 3.1 MeV, "with range cor-
responding to the known 'He size and to 2m ex-
change for the AN interaction. Their potential had
U, = -43.81 MeV, and range parameter R = 1.565 F.

For a first orientation, we calculated A-'He
elastic scattering phase shifts using the Dalitz-
Downs central potential and the spin-orbit poten-
tial from the n- He analysis of Sack, Biedenharn,
and Brett" [given by the form (1.1) with U, re-
placed by U, = -5.85 MeV for the P, ~ state, and by
-2U, =+ 11.7 MeV for the P„, state]. We found that
the P, /2 phase shift then reached a maximum of
about 45, for c.m. energy about 15 MeV, and that
the P», phase shift was always small and negative
below 8-MeV c.m. energy and did not exceed +4'
above this energy. However, if the A-'He spin-
orbit potential were increased by a factor of about
4, then a low-energy P»2 resonance (at about 4-
MeV c.m. energy} would result in A-'He scatter-
ing. On the other hand, if the A-4He spin-orbit po-
tential had sign opposite that for the n-'He system,
the P„,phase shift would reach about 70 in A-'He
scattering, the P, /2 phase shift reaching a maxi-
mum of less than 20', if the A-4He spin-orbit po-
tential were then doubled, a low-energy P„, reso-
nance would result for the A-'He system. These
order-of-magnitude estimates indicate that mea-
surement of the polarization properties of A-4He
scattering would provide a sensitive test for the
strength of the spin-orbit component of the AN in-
teraction, even if the A-4He spin-orbit forces are
not strong enough to give rise to a A-4He P-wave
resonance.

To first order, the spin-orbit potential for A-4He

is the sum of the AN spin-orbit terms over the nu-
cleons in the 'He nucleus, averaged over the nucle-
on single-particle density in 4He. Higher-order
contributions to the A-4He spin-orbit potential are
expected to be small, as we shall discuss below.
This contrasts with the n-'He situation, where the
NÃ tensor force arising from OPE provides, in
second order, a large contribution to the N-4He

spin-orbit splitting. " These theoretical differ-
ences between A-'He and N-4He scattering will be
discussed in Sec. IIB.

Alexander, Gal, and Gersten" have investigated
the possibility of using A-4He scattering as a
means to determine the AN spin-orbit force. They
constructed AN spin-orbit potentials of Gaussian
form with a range parameter appropriate to co ex-
change, or to o exchange (o =isoscalar scalar me-
son assumed to have mass 400 MeV, whose ex-
change represents roughly the effects of the ex-
change of two pions with I=0)." An upper limit
on the strength U, for these AN spin-orbit poten-
tials was obtained from the remark that the expec-
tation value of the AN spin-orbit potential between
the A particle and a P-wave nucleon in the P-shell
hypernuclei was unlikely to exceed 0.5MeV. ' ' "
Calculations were then made for the angular dis-
tribution do(A-4He)/dQ and polarization PA(0) for a
number of potential strengths U, (AN), for A-~He

c.m. kinetic energy of 13 MeV, to illustrate their
sensitivity to U, .

Gibson, Goldberg, and Weiss" and Gibson and
Weiss" have also made calculations for the A-~He

system, considered as a five-particle system,
within the Hartree-Fock approximation. The NN
and AN potentials used in this work had the gener-
al form

(1.2)

consisting of a short-range repulsion together
with an attraction of longer range. The same
short-range repulsion was adopted for both NN
and AN interactions, with parameters 8', = 145
MeV and a, =0.82 F, corresponding to a particular
set of NN parameters discussed by Volkov. " The
other NN parameters, 8'","=83.34 MeV and a",
=1.6 F, were chosen to give the observed form
factor (up to q =7 F ) and binding energy for
4He, in a four-particle Hartree-Fock calculation.
The AN parameters, W, =85.8 MeV and a,""=1.21
F, were chosen to give (in principle'4) the ob-
served B/ values for ~H and AHe in the appropri-
ate Hartree-Fock approximation. Taking this AN
central potential and the He shape given by their
Hartree-Fock calculations, Gibson, Goldberg,
and Weiss" deduced an effective A-'He central po-
tential V, (hereafter referred to as the GW poten-
tial). Gibson and Weiss" then added to this an ad
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hoc A-'He spin-orbit potential with shape given by

where r denotes the A-4He separation, and went on
to calculate do/dD and P~(8) for low-energy A-'He
scattering as function of the sign and magnitude of
the coefficient C~ in this spin-orbit potential.
Some aspects of their calculations will be com-
pared with our results in Sec. IV.

In this paper, we consider the spin-orbit compo-
nent of the A-'He potential corresponding to the
AN spin-orbit interaction given by the simplest
one-boson-exchange (OBE) model for the baryon-
baryon interaction. In this model, we assume
that the baryon-baryon amplitude is given by the
Born pole terms from the exchange of vector,
pseudoscalar, and scalar mesons. We calculate
the OBE amplitude for each meson exchange, and
then make a nonrelativistic approximation to the
scattering amplitude, following the procedures and
conventions which have been stated clearly and sys-
tematically by Brown, Downs, and Iddings, ' and
finally identifying the Fourier transform of this
amplitude with the OBE potential. The A-'He spin-
orbit potential is then obtained by summing the AN

spin-orbit potential over the nucleons in 'He, fold-
ing in the known density distribution for the nucle-
ons in 'He.

In Sec. II, we discuss the OBE model for the AN

interaction and the construction of the A-'He po-
tential. In Sec. III, we review the various theoret-
ical proposals which have been made concerning
the values for the baryon-baryon-meson coupling
constants. We use the predicted parameters ap-
propriate to three different OBE models in our
A-'He calculations, and in Sec. IV we discuss the
cross sections do/dQ and polarizations P~(e) ob-
tained.

where r; denotes the relative coordinate between
the ith nucleon and the 4He center of mass, and the
value a = 1.175 F is obtained from the electron scat-
tering data" for He. Adopting a AN central poten-
tial of Gaussian form with intrinsic range equal to
that for a Yukawa potential with range parameter
(2m„) ', the integration of the AN central poten-
tial over the nucleon distribution (2.2) leads to a
A-'He central potential of the form (1.1), with

8=1.565 F; the fit to the Bf, value known for&He
requires U, = -43.8 MeV.

A. OBE Model for the AN Interaction

OBE models have been quite successful in ana-
lyzing the nucleon-nucleon interaction ' from
0-400 MeV; models with about 10 parameters
have resulted in NN potentials which give good
agreement with all the NN scattering and polariza-
tion data available. OBE models ha.ve also been
used for the AN interaction"'"", ' comprehensive
reviews of the OBE model for the AN interaction
have been given recently by Downs' and, by
Brown, Downs, and Iddings (BDI)."

Here we shall give a brief summary of the AN

parameters appropriate to the OBE model, within
the framework of SU(3) symmetry. For a given
spin and parity, the bosons occur in SU(3) octet
and singlet states. With SU(3) symmetry, the
baryon-baryon-meson [BBM(8)] couplings for the
boson octet M(8) generally depend on two parame-
ters, a coupling strength and a mixing parameter.
For the singlet boson M(1), the interaction BBM(1)
has the same coupling for all baryons. For a giv-
en meson octet, we write the mixing parameter
f= F/(F+D), and we denote the T =0, —,', and 1

members of the octet by the suffices 0, —,', and 1,
respectively. The BBM couplings of relevance
here may then be written as follows, in terms of
f and the coupling amplitude G,

II. AN INTERACTION AND THE A- He
SPINRBIT POTENTIAL

2(1 —f )G
GAzz G~~, ——2fG,

I'(&) = I', (&)+ y'gg (&)I Sg, (2.1)

We assume that the A-'He interaction can be
written as the sum of a central and a spin-orbit
potential,

(4f -1)G
GNNO

V3

2(f—1)G
G Aha

G~) ———,Gr„i =(1-2f)G.(1+2f)G
(2 3)

p(~ ) = (vg2) ~&2e ~ i/a) (2.2}

where r denotes the relative coordinate between
the A particle and the 4He center of mass, L de-
notes the A-4He orbital angular momentum, and

S~ is the A spin vector. We have already dis-
cussed above the central potential used by Dalitz
and Downs. " This was based on the single-parti-
cle density distribution for a nucleon in He, giv-
en by

We denote the coupling of the unitary singlet M(l)
as G~~o —= G'.

We now discuss the spin-orbit interactions re-
sulting from scalar-, pseudosealar-, and vector-
meson exchanges. These interactions are ob-
tained by first writing down the appropriate inter-
action Lagrangian, and then calculating the scat-
tering amplitude for the exchange of one meson;
the static potential quoted is then obtained from
this amplitude, following the procedures dis-
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cussed systematically and explicitly in BDI."
Scalar-Meson (S) Exchange

To order (m/M)», a hN spin-orbit potential due

to S, exchange has the form

2

Mp 8M„MA

by P(8) and P{1)exchange is of tensor form, as is
well known for the case of m exchange in the NN
interaction. However, these AN tensor interac-
tions are of much shorter range than that for the
NN system, since they arise from the exchange
of heavier mesons, the K(494), q(550), and g'(962)
mesons in place of v(140).

Downs and Iddings" have pointed out that there
is an antisymmetric spin-orbit potential generated
by K exchange, in order (m/M)', given by the fol-
lowing form

M„SM„MA

where we have used the notation

(2 4)

(2.5)

Y,.(K) = -P m Y, (mr)

m Mp,
2 2 2

x 8 ~ L,4M AMg
(2.9)

ms denotes the mass of the I=0 scalar boson ex-
changed, and L denotes the relative orbital angu-
lar momentum within the AN system. Using the
notation

where m = [m(K)' —(MA -M„)']'", PA~ is the A N-
space-exchange operator and G~»~ is the ARK cou-
pling constant. This interaction has not been in-
cluded in the present work.

S = —,'(PA+a„), S"= 2(&TA -oz),
the expression (2.4) may be rewritten

m2

M„'+M,' —ms'/4
MNMq

M,' -M„

(2.5)

(2.7)

Vector-Meson (V) Exchange

The Lagrangian for the BBV interactions in-
volves two independent coupling forms, known as
the electric and magnetic terms. We follow Suga-
wara and von Hippel (SVH)'9 and adopt the particu-
lar forms, for a BBV vertex representing absorp-
tion of a vector meson,

k

~i t=ka G
2M

f(t)' —&G 7 &yzP
Pp ij . + g p p"' 4M2

(2.10)

V„(Si)=
4

' P~mY, (mr)

m' m'

2M~My, SMNM/ S (2.8)

where m =[m(S )' —{M„—M„)']'" and PA„ is the
A-N space-exchange operator.

Pseudoscalar-Meson (P) Exchange

The dominant noncentral interaction generated

%'e note the presence of an antisymmetrical spin-
orbit interaction, an asymmetry arising here from
the A-N mass difference, a possibility first point-
ed out by Downs and Schrils. "

These formulas hold equally for the exchange of
So, the I=O member of the scalar-meson octet, or
of S', a unitary singlet meson. In the latter case,
the coupling coefficients G„„,and G«, are both to
be replaced by G~, and m~ by m~. . There is also
a symmetric spin-orbit potential generated by Si
exchange, with the form

where Q' denotes the wave function for the vector
meson, and

P. =(I'+f). , (2.11a)

(2.11b)

g M+M'
o . ~M+M'

G
2 Q gG

2M
g ~ qxQ

M
(2.12)

which makes explicit the "electric" and "magnetic"
character of these terms.

The spin-orbit potentials resulting from an I=0
vector-meson exchange consist of three terms,
arising from electric (EE), magnetic (MM) and
mixed (EM and ME) couplings. Correct to order
(m/M)', these potentials are given by

p', and p, denoting the initial and final baryon four
momenta, respectively. The mass M occurs in ex-
pression (2.10) only for dimensional reasons; we
choose to adopt the value M = —,'(MA+M„) = 1027 MeV.
In the static limit, the interaction (2.10) reduces
to the form
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ghf m 2
Vs (V )= "" ~~omY (mr)

4~ 2M 4m

Mp m m2 2

M~ 4MNM A 8M A

m2
1+ 2

— -- S.L,(M„+My)2 8M„MA

2 2M~ m m

Mg, 4MMq 8M„

(2.13) m 2
Vl///(Kg) Px (G/u/l/2) F ( )

(2.16)

G hl
GAP m '

V""(V)= ""' 'Aomy (mr)

X QA+ —QN L )

m (M +MA)2 MA'-M 2 -„
8M2 4M M 4M 2

(2.17)

(2.14)
GE m 2

VER(K0) V//E(Kg) Px ( AN1/2 Apl/2) y. ( )

m 2 2

8M 2

x —" 1 — S ~ L

(2.18)

(2.15)

The potential V"„s(V,) is obtained by exchanging
the labels A and N wherever they appear in expres-
sion (2.15).

We note that these spin-orbit interactions in-
clude both symmetric and antisymmetric terms.
In V„(V,}and V"„"(Vo), the antisymmetric term
arises from the A-N mass difference, as we noted
above for the cases of V„(SO), V„(S'), and V„(K),
and is therefore of order (MA -M„)/M = 0.17, rela-
tive to the symmetric term Howe.ver, in V~"(V,)
and V"„(V,), the symmetric and antisymmetric
terms are of comparable magnitude, depending on
the relationships between the coupling constants
which occur. As we shall discuss in Sec. III, the
magnetic coupling AA~ and both electric and mag-
netic couplings NNQ are expected to be small. In
this situation, all V„(P) are negligible, as are al-
so V"„"(ur) and V„"(/d); however, V„s(u) and V"„s(&u)
are nonvanishing. To order (m/M)~, the mixed
coupling V"„(co) is proportional to o„L, so that
the vector-exchange spin-orbit potential has a
large antisymmetric component. However, we
should note that the A-4He spin-orbit potential in-
volves an average of the AN spin-orbit potential
over the nucleon spin states, so that this strongly
nonsymmetric term V"„(u}will not contribute to
the A-4He potential under consideration in this
paper.

K* exchange also contributes to the AN spin-or-
bit potential. To order (m/M)', the result is given
by'

where m*=m(K*) and m =[m*' —(MA —M„)']'/2.
We note tha, t V"„"(K*)includes a small antisym-
metric term; otherwise all the K* spin-orbit con-
tributions are symmetrical.

These calculations have neglected some non-
static effects and short-range effects in the poten-
tial. In particular, we have omitted terms pro-
portional to 5(r). The rationale for the omission
of all such short-range terms is that we expect
the existence of a strongly repulsive interaction
at short distances (r & 0.4 F, typically) in all bary-
on-baryon interactions. This repulsive core in the
AN interaction dominates over all other interac-
tions in this inner region; it expels the AN wave
function from this region, in consequence of which
such short-range contributions have negligible ex-
pectation values, so that they may be omitted from
our discussion. The origin of this hard-core re-
pulsion is not yet understood; it is only clear that
it must be present if any of the present calcula-
tions of the outer region of the baryon-baryon po-
tentials are to make any physical sense.

B. A- He Spin-Orbit Potential

We obtain this by summing the AN OBE spin-or-
bit potentials over the nucleons in 4He and averag-
ing over the density distribution (2.2). The BBM
coupling constants to be used for the potentials giv-
en in Sec. II A will be discussed in Sec. III.

For the exchange of a boson of mass m and cou-
pling-constant factors C„"z and D„"A, the .contri-
bution to the A- He spin-orbit potential is



752 J. T. LONDERGAN AND R. H. DALITZ

( )p„'(„,=g fr, ( lr —r;l)(r„—r, )

NPA MAPN ' (Cso S +Dso S )M NAm A+ NAmN+ A

- ~4MN»™Apn
An A N+

we conclude that

V»(rA)=mC«M X(rA
4M„+MA
MN +MA

(2.25)

(2.26)
x p(r, )d'r. , (2.IS)

In this expression (2.19) and henceforth, the vec-
tors rA and r; are measured from the c.m. of the
'He core, SA and S; are the A and ith nucleon spin
vectors, respectively, and (p(), p„) and (M„,M„)
denote the momentum and mass of the particle
specified. The terms proportional to S; sum to
zero, since J=O for 4He. In terms of the A-'He
c.m. momentum and the N; momentum relative to
the 4He center of mass we may write

MNpA -MAp„1
MN+MA 4(MN +MA)

x (4M„pA-MAp ) — (4M„p, -M~a)
MN

(2.20)

Since we know that the 4He wave function is pre-
dominantly S state, the term r; x(p, —

~4 ) vanish-
es identically; similarly, the term rAx(p, —

~p )
leads to zero after integration over r;. Next, the
factor (4MNpA-MAp ) does not depend on the in-
ternal coordinates, so that we are left with the in-
tegration

fY,(m ( rA —r; ~)(r() —r;)p(r, )d'r, =r„X,. (2.21)

where the coefficient X is given by

x( )=, fr(I —r, l),r„( „—;)p(r;)S',
(2.22)

With the expressions (2.5) for Y,(x) and (2.2) for
p(r;), the integral (2.22) may be carried out ex-
plicitly, either directly or by the method indicated
in Ref. 34 below, with the following result:

r2 /t22

X(r}=—,erfc(u, )e"+ (1 -mr)2(mr)'

—erfc(u )e" (1+mr)+
7r

(2.23)
where"

where we recall that rA denotes the A-4He separa-
tion.

Despite the (r») ' singula, rity in the AN spin-
orbit potentials Y,(mr») considered, the A 'He-
spin-orbit potential V~s given by (2.26) is every-
where finite. For larger rp, r„»a (&I/m), ex-
pression (2.22} is clea, rly dominated by the Y,
term, so that

-mr&4MN +MA,(,)2„eVis( A}.„--m CNA
l real ~A)

(2.27)

For small r A, V~s(r) approaches a finite value as
r-0. To discuss this in general for an arbitrary
spin-orbit function Y(mr»), we replace the func-
tion Y, in expression (2.22} by Y and transform to
the variable s = (r)) —r, ), which leads us to the
forms

X(rA) =, F ms s rAp rA- s d's, (2.28a)

2w
s~ Y(m s)ds

A p

+1
x pdu p((rA' »&sit-+ s')'"}.

-l (2.28b)

(2.80)

In the limit rA 0, the -expression (2.28b) approach-
es the limiting form

)'mx( „)=—f x( )p'(s)s'p +o(,*),
3 p

(2.29)

so that, even with the s ' behavior of Y,(ms) near
s=0, X(0) is finite and X'(0) =0. With the Gaussian
form (2.2) for p, the integration over tt can be car-
ried out explicitly for expression (2.28) for arbi-
trary AN spin-orbit function Y(ms), with the re-
sult

rA2/t2 2

ma2

erfc(x}= )— e ' dt,
Y 7T

ma
Q~= k —

~
2 a

Since LA has the form

(2.24a)

(2.24b)

where I, denotes the modified Bessel function of
order v.

It is of interest to remark here [as a generaliza-
tion of the relation (7) in work by Hughes and Le-
Couteur"] that the general function X(rA) given by
the expressions (2.28) can be written conveniently
in the form
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(2.31)

where V(r„) is given by the integral"

(2.32)

the function v(x) within its integrand being explicit-
ly given by the integral

(2.33)

When Y(x) has the particular form Y,(x) given by
(2.5) for n = 1, then v(x) is simply the Yukawa func-
tion Y,(x). The spin-orbit potential Vz s arising
from n OBE processes, for a set of mesons with
masses fm&j and coupling-constant factors (C„"~ j
with j=1,2, . . .n, then corresponds to a function
V(r~) given by (2.32) with

v(s) = Qm, C„"A,Y,(m, s) . (2.34)

Now, if we were to attempt to calculate the A-'He
central potential V, (r„) arising from this sa.me set
of OBE processes, treated in the simplest static
approximation, the result would be given by the
expression (2.32) evaluated for the function v, (s),
where

v, (s) = Qm)C'„A„.Y,(m, s),
1-1

(2.35)

the coupling-constant factors C'„~ being those ap-
propriate to the spin-independent central part of
the OBE amplitude. Since the relationship be-
tween the coefficients C»~ and CN"~~ depends on
the particular meson-exchange considered, there
is no reason to expect that the derivative relation-
ship (2.31) should hold generally between the A 'He-
spin-orbit potential V~s(r„}and the A 'He centra-l
potential V, (rA). In any case, such an attempt to
calculate the central potential V, (rA) from first
principles would be unrealistic, owing to the very
strong repulsion known to exist at very short dis-
tances ((d=0.4 F) in the baryon-baryon interac-
tion. In the present work, we prefer to adopt a
phenomenological approach to V, (r„), taking into
account our knowledge of the 4He shape and the
range observed for the AN s-wave interaction,
and fitting the potential strength to the BA value
observed for &He.

We return now to the consideration of Vr, s(r&) as
given by the expressions (2.22} and (2.26). The
(rA„} ' singularity in the AN spin-orbit potentials
Y,(mr~) is spurious, of course. In fact, the form
of this potential for small rA„ is determined by the
behavior of the AN scattering amplitude for large

(2.36)

using the approximation ItfN=M~ =M for purposes
of illustration. The rA„' dependence in (2.31) is
removed if we subtract a similar potential corre-
sponding to mass p, , where p)ms, and to a cou-
pling constant G which satisfies the equation

A AS NNS 1 S (2.37)

values of the momentum transfer q. For very
large q, the two-component approximation which
has been adopted for the baryon spinor in the non-
relativistic reduction of the amplitude is no longer
valid. For the AN system, in practice, some cor-
rection to the form Y,(mr~) will be necessary, ei-
ther by some more adequate calculation for the
regime of large q (not yet convincingly achieved,
since this is the regime where high-multiplicity
meson systems and virtual baryonic pairs will
play a significant role) or by some cutoff, appeal-
ing effectively to the existence of some strong (or
even hard-core} repulsion of short range to ex-
clude the AN system from this region of close ap-
proach. If the calculated AN spin-orbit potential
is not cut off in some way, it will dominate the
centrifugal barrier for small r; the (r(u(} ' poten-
tial is simply too singular for use in the Schroding-
er equation. Even with a simple cutoff, replacing
Yy (m r~ ) by zero for r~ (d, this AN spin -orbit
potential can still produce spurious bound states
for some angular momentum channels if the cutoff
radius d is not chosen sufficiently large. We have
noted above that our A-'He spin-orbit potential VI s
is well behaved even including this (r~) ' singular
term. However, we must make sure that the con-
tributions to VLs from the region rAN (d do not
play a decisive role in the evaluation of VI s, since
the form (2.5} will certainly not be correct for this
region; on the other hand, if the region ~A„&d
plays a minor role in the final values for V~s(r((},
then we can be sure that a proper treatment for
V„(AN) will not modify V~s(r„) significantly.

To regulate the behavior of V „(rhea) at small rAs,
we have used a subtraction in momentum space;
we subtract from each OBE spin-orbit potential a
term with a higher mass p. and with the coupling
constant chosen to remove the r~-' singularity at
small ~AN. For the two-body problem, this pro-
cedure is roughly equivalent to a cutoff, in that it
suppresses V„(r~) in the central region rA„( I/g.
For example, at small r~N the symmetric spin-or-
bit term due to I=0 scalar-boson exchange has the
form [cf. (2.4)]
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The analogous procedure was followed also for
the vector mesons. We note that with this subtrac-
tion procedure" the singularity at the origin is re-
duced to r~ ', this is evident from the form of
(2.20). We use this cutoff procedure only in the
spin-orbit forces, of course, and we find that the
final results we obtain are not qualitatively sensi-
tive to the value chosen for p, . This degree of in-
sensitivity is due to the fact that the spin-orbit
potential is effective only for states with lh„~ 1,
so that the AN potential occurs always weighted
by an additional factor of at least r~' (over and
above the volume factor rh„'dr~) which suppresses
its contribution to V~~ from small values of r~.
Indeed, we should emphasize here that the poten-
tial Vl ~ remains finite and well defined by these
integral expressions even in the limit p, -~, i.e.,
for the case without cutoff, even though the AN
spin-orbit potentials corresponding to this limit
are quite unsatisfactory for calculations concern-
ing the AN system itself.

The functions V~~(r) calculated for the A-'He
system have been plotted in Fig. 1 for three typical
sets of OBE parameters appropriate for the AN in-
teraction (as given in Table I and to be discussed
in Sec. III) for two cases: (a) without cutoff, i.e. ,
with p =~, and (b) with the arbitrary choice g
=1500 MeV. For case (a), the calculations were
made using the expression (2.23) with the appro-
priate coefficient (mC„"A ) for each meson ex-
change included; in case (b), for each meson-
exchange term, there was subtracted a corre-
sponding term obtained by replacing m by p, in the
potential and changing the coefficient of the poten-

tial in accord with the prescription (2.37). Figure
1 shows that this cutoff has quite a weak effect on
the shape of the potential V~~. All the calculated
curves are quite well fitted by Gaussian forms

1' 2 /A2e "& ~" (to accuracy better than +5% as far as rA
= 2 fm), the values for A being about 1.25 fm for
p, =~, and 1.28 fm for p. =1500 MeV. These pa-
rameters are naturally somewhat larger than the
value a=1.175 fm appropriate to p(r), the largest
being for the AN potential which is damped for
small r~ by the cutoff p. . However, the magnitude
of V~~ is quite strongly affected by the cutoff p. ,
the reduction factor being 0.70 for SVH, 0.63 for
BDI, and 0.65 for the Deloff parameters. These con-
clusions are in good qualitative accord with the
expectations discussed in Ref. 38, for the case of
the AN force range small relative to the 4He radius.
We shall compare the results obtained for these
two prescriptions concerning the AN spin-orbit po-
tential in Sec. IV.

We conclude this section with a brief comparison
between the discussion above and the situation for
the ~-'He system. There are two complications for
the latter case: (a) the great strength of the long-
range tensor force effective in the NN system;
and (b) the requirement of antisymmetry for the
wave function of all the nucleons in the N-'He sys-
tem, which links the outer nucleon with those in
the 4He system. These complications result in
large contributions to the N-'He P-wave splitting
beyond those which result from the sum of the two-
body NN spin-orbit potentials. Sugie, Hodgson,
and Robertson" have shown that these two effects,
taken together, can account for about 30% of the
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FIG. 1. The A-4He spin-orbit force VL& (r)(MeV) vs the A-4He relative coordinate r. Solid line: SVH parameters;
dot-dashed lines: BDI parameters; dashed line: Deloff parameters, used to determine the AN OBE spin-orbit inter-
action. (a) Without cutoff in the AN spin-orbit potential. (b) With cutoff, given by the subtracted mass p, =1500 MeV
(as discussed in Sec. IIB).
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TABLE I. The values of the OBE parameters used in
this paper for the calculation of hÃ spin-orbit force.
The parameters given are the electric and magnetic p
couplings to nucleons, and the corresponding F -D mix-
ing parameters fv and f z+; the BBV unitary singlet cou-
plings Gv@ and Gv+; the scalar mass and its coupling
constant to nucleons, and the scalar F -D mixing param-
eter fs. [Deloff does not specify the mixing parameter

fv explicitly. However, he interprets the ~ meson as
Vp the I =0 member of the octet V(8), and assumes the
tensor coupling for NNVp to be zero. From (2.3), this
requires fv —-0.25, the value we have adopted here for
the Deloff parameter set. Deloff also omits the unitary
singlet vector meson V', which is equivalent to assuming
zero for all its baryonic couplings, in particular for its
BBV' tensor coupling. With these assumptions, then,
the tensor couplings NN~ and NNP are zero for both the
physical ~ and the physical P, a situation which is gen-
erally believed to hold rather well. ]

Meson
exchanged Parameter BDI Deloff SVH

Vector

Scalar

G„„,/ 4m

fE

G~~, go~

fN

G /v4n

Gv+ /~4

G~gp/ 4m

1.27 1.78

0.63 —0.84

5.09 2.59

0.43 —0.56

6.14

6.14

2.48

0.0
0.0

5.25

1.0
1.0
4.65

0.4

0.0
0.0
3.95

fs (-0.5) —0.5 (—0.5)

observed splitting. The 'He ground state includes
an admixture of D state to the predominant S state,
due primarily to the (first-order) operation of the
NN tensor force. When the N-4He wave function is
antisymmetrized with respect to all five nucleons,
this NN tensor force contributes to the N-'He P-
wave splitting through its exchange matrix element
between the P-wave nucleon and a product of the
S state and D state of the ~He wave function. With-
out the complete antisymmetrization of the N-'He
wave function, this tensor-force matrix element
would vanish.

For the A-'He system, there is no antisymmetri-
zation between the A particle and the nucleons,
since A and n are physically nonidentical particles.
In any case, we have no reason to expect a strong
tensor force in the AN system. This could arise
most directly from single P exchange, K, g, and

q
' exchange being permitted; however, these par-

ticles are all rather massive and give rise only to
rather short-range tensor forces (in comparison
with (m, ) ' for the OPE process which generates
the NN tensor force), which are correspondingly
ineffective for the interaction of a A particle with

nucleons in a nucleus. Hence, we expect the A-'He
spin-orbit potential to be given dominantly by the
sum of the two-body AN spin-orbit forces, as we
have assumed in this section.

III. OBE PARAMETERS

In principle, we could calculate both the central
and spin-orbit A-4He potentials from the AN OBE
two-body potential. To calculate the A-4He cen-
tral potential V, in this way would require a real-
istic treatment of the AN correlations in the A-'He
wave functions, and this potential V, would almost
certainly not lead to the BA value observed for
~He. Instead, we have chosen to use for V, the
phenomenonological potential of Dalitz and Downs, "
which is adjusted to fit this B~ value. We use this
potential for A-'He scattering for incident A ener-
gies up to 20 MeV. This assumes that the A-'He
central potential is not appreciably energy depen-
dent for this energy range, and this appears a
reasonable assumption, since we do not anticipate
significant energy dependence for the AN potential
itself over this energy range, nor do we expect
any energy-dependent effects to arise from dis-
tortion of the n particle by the colliding A particle
in this low-energy regime.

The baryonic couplings are not yet well estab-
lished for the bosons which contribute dominantly
to the AN spin-orbit force —the vector mesons ~,
~I), and K*, and the scalar mesons S, and possibly
Si [generally known as IC~(-1100)). In the present
calculations, for the purpose of illustration, we
have taken the AN parameters from three recent
OBE models of the YN or baryon-baryon inter-
actions:
(i) the single-channel AN effective potential of
Deloff"
(ii) the two-channel YNpotentia'l of BDI," and
(iii) the zero-parameter baryon-baryon potential
of SVH."

Deloff began by reproducing the Hamada- John-
ston NN potential with OBE terms resulting from
the exchange of pseudoscalar and vector octets,
as well as of an assumed octet of scalar bosons.
To fit the NN potential, he varied the masses and
coupling constants of the scalar bosons and the
coupling parameters for the NNq, NN~, and NNp
interactions, the pion coupling NNm being assumed
already well known. For the interaction BBV of a
vector meson V with baryon B, Deloff used the
vector (z) and tensor (t) coupling forms, with cor-
responding coupling parameters g and G; with the
form for the BBV vertex representing the absorp-
tion of a vector meson given by

ms (MeV) 490 820 560 &~I = 4a g Xp4' + &
—&„,q'" P'2' v

(3.1)
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where Q' denotes the wave function for the vector
meson and m~ denotes the vector-meson mass,
rather than the coupling form (2.10) discussed in
Sec. II above. The explicit relation between the
coupling parameters (g, G) of (3.1) and (Gs, G") of
(2.10}will be given below.

Having obtained the NN OBE parameters in this
way, Deloff, "then considered the quadratic equa-
tions determined from them for the SU(3) mixing
parameters for each octet (the mixing parameter
f~ for the tensor coupling of the vector octet was
fixed by the requirement that the tensor couplings
should be zero for both NN&u and NNP) The. as-
sumption of SU(3) symmetry then fixed the cou-
pling constants appropriate to the AN interaction.
Of the eight solutions found for the mixing param-
eters f» f~, and f» only one solution gave a quali-
tatively reasonable fit to the AN s-wave scattering
data. This solution had the parameters f~ =-0.62,
(G „«)'/4 v = 38, m, = 820 Me V, and m, = 910 Me V,
for the scalar boson octet; this large value for the
coupling constant G», is due in large part to the
large mass values obtained for the scalar bosons.
The resulting AV potential was somewhat too
strong to give a satisfactory fit to the AN data.
Kith a change to the mixing parameter f~ =-0.5
(for which G~~„i =0) and a change of (G«, )'/2 from
9.3 to 9.1 —these two changes together reduce
(G„«)'/4v to 27.3 —Deloff found that his potential
gave good agreement with the experimental data
on low-energy AN scattering.

The BDI calculations considered both AN and
ZN channels explicitly, so that they were in a po-
sition to compute the scattering, charge-exchange,
and reaction processes for both channels. For the
vector mesons, they treated the cu and Q mesons
as SU(3} eigenstates, the P being octet, the ~ being
unitary singlet, and so coupled universally to all
the baryons. BDI also adopted the vector and ten-
sor coupling form (3.1) for the vector-meson-
baryon interactions BBV. The scalar meson was
assumed to be a unitary singlet (denoted by a), and
so to have a universal coupling to the baryons. The
BDI model constrained the 'S AP interaction to be
more attractive than that for the 'S, state, and fit-
ted the Ap scattering data from zero energy to the
Z production threshold. The adjustable parameters
were a spin-independent hard-core radius, the
scalar mass and coupling constant, and the cou-
pling of ~ to baryons. Small adjustments were
also made in fp and in the vector p coupling con-
stant g»~'/4w, to give the required spin depen-
dence in the Ap interaction. In particular, the
p coupling used was g» 2/4v = 0.32, rather lower
than the range 0.6-0.7 deduced by Sakurai" from
a number of independent effects.

The final parameters given in the analyses by

BDI and by Deloff are listed in Table I. For the
I3J3V interactions, these are given in the (G, G")
form corresponding to the interaction form (2.10),
rather than the (g, G) form used by these authors
for the interaction form (2.1). The general rela-
tion between them for the diagonal BBV interac-
tions is readily obtained, with the general results':

~B E
2

g= =G —.=2G
M

(3.2a)

GE
m Q (3.2b)

for arbitrary momentum transfer q', for the nu-
clear-force calculations, the coupling amplitudes
required are those for q' =mv'. These relations
(3.2), for the particular value q' =mv', have thus
been used to obtain the parameters GE, G", and

f~, f~ given in Table I from the parameters given
in the original papers.

Three features of the BDI parameters deserve
mention:

(i) The large ~ coupling to baryons. This is in
agreement with the OBE potential models for NN
scattering. "'"However, it should be mentioned
here that OBE calculations which fit the NN ampli-
tudes directly, "by using dispersion relation, K-
matrix, or other techniques to unitarize the Born
terms generally obtain much smaller ~ coupling
[(G«}2/4m=2-3, compared with (G~«)'/4v =20
for a potential model].

(ii) The scalar mass m~ =490 Me V. This result
is characteristic of many OBE analyses for the
NN interaction, which require a low scalar mass
between 400 and 550 MeV.""This low scalar
mass is needed to provide central and spin-orbit
potentials which fit the NN phase shifts, but it
appears to disagree with the present indications
that the I=O mm s-wave phase shift shows a reso-
nance for a mass value about 700 MeV, or perhaps
even higher. ~ " However, the width reported for
this resonance appears to be very large (»100
MeV), '»" and a recent OBE calculation for the NN
interaction" also indicates a very large width
(a300 MeV} for the scalar meson S,. It is possible
that the low mass m ~ = 500 MeV required by the
OBE calculations (which treat S, as a zero-width
particle) results from the need to simulate a
higher-mass particle with a very large width. It
is also true that the S,-exchange term is used to
represent not only the terms arising from reso-
nance nm exchange, but also those arising from ex-
change of I= 0 s-wave mm pairs with low mass,
which give rise to relatively long-range attrac-
tions and which are correspondingly effective in
binding.

(iii) The possibility of "double-counting. " Using
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G„~q/G„~p ——p(2M'~/e) = 4.65 . (3.3)

SU(6) coupling also implies that the physical p
does not couple with nucleons, and that the magne-
tic coupling of the physical co with the A particle
vanishes; thus G« =0. With this last relation,
the mixed terms in V„(V,) are strongly asym-
metric, being proportional to o~ ~ L, up to terms
of order (m/M)'. However, this term gives no
contribution to V~~ for the A-'He system, since
their sum over the nucleons of 'He gives zero.

The SVH analysis for the NN interaction did not
include scalar-boson exchange, but included multi-
pion exchange by the inclusion of two additional
channels, NA(1236) and A(1236)A(1236), taking in-
to account only the excitation of each of these chan-
nels by OPE (with some "unitarity suppression")
from the NN channel. In fact, these two channels
Nh and AA are both closed in the low-energy re-
gion of interest for the NN interaction. In place
of the potential resulting from these off-diagonal
couplings, we have included a scalar-boson ex-
change. With the mass m~ =560 MeV, we varied
the coupling constant G„~, until the NN potential
obtained with this scalar exchange and the vector
and pseudoscalar exchanges of SVH fitted the Reid
potential, ~ a phenomenological NN potential which
reproduces the empirical NN phase shifts for J

an OPE potential in the two-channel Schrodinger
equation sums up the ladder diagrams for pion ex-
change between (A, Z) and N. The inclusion of an
I=0 scalar boson exchange, since it is intended to
account for all the I= 0, J' = 0' mm exchange, both
resonant and nonresonant, may duplicate some
fraction of the effects already included in the
double iteration of the AZm vertex which gives A- Z + v- Z + m+ m. How significant this "double
counting" may be is not known. Essentially, this
is an old problem, much discussed for the calcu-
lation of the NN potential, ""that is, the question
of what contribution the iterated OPE graph makes
to the two-pion-exchange potential, but the prob-
lem arises here in a particularly acute form.

The third parameter set we have considered is
that for the zero-parameter NN potential of SVH."
The SVH potential assumes that the electric and
magnetic couplings of the BBV amplitude trans-
form simply under SU(3) [cf. (2.3)]. The electric
couplings are pure F type (f„=1) and are de-
termined by the coupling G«, known from other
considerations; SVH actually choose (G~~~)'/4v
= 1.0, somewhat larger than the values of Sakurai. "
SVH also assume SU(6) coupling for the vector
mesons, which requires f~ = 0.4 and leads to a
definite ratio between the magnetic and electric
couplings,

IV. RESULTS AND DISCUSSION

Using the A-'He central potential of (2.2) and the
spin-orbit potentials from (2.4) and (2.13)-(2.18),
we have calculated the differential cross sections,
the polarization angular distributions, and the
forward-backward asymmetry D for A-'He elastic
scattering from 1-20-MeV incident A kinetic en-
ergy where
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FIG. 2. Differential cross sections for A-4He elastic
scattering vs c.m. angle 8, for A lab kinetic energy TA
from 5-20 MeV. Solid line: SVH parameters; dot-
dashed line: BDI parameters; dashed line: Deloff para-
meters; (All parameters with subtracted mass p, =1500
MeV) .

~ 2 for the energy range 0-350 MeV. We found
that (G'„»)'/4v = 15 gave reasonable agreement with
the Reid potential, in particular for r outside the
centrifugal barrier, in P and D states. We as-
sumed that the scalar boson S, had equal coupling
to N and A (i.e., either that S, is a unitary scalar,
or that the mixing parameter f, ha, s the value
-0.5); in Sec. IV we discuss the behavior of the
A-'He scattering as the scalar coupling G«0 is
varied.

The SVH parameters are given in Table I. The
u contribution is much smaller than in the Deloff
or BDI analyses. On the other hand, the K* ex-
change contribution is quite large, and we find
that the resultant spin-orbit force using the SVH
parameters is very similar to that with the other
two parameters sets."
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I do 0 do'

o dAf —d(cosa) —f —d(cos8)-j.dA

do—d(cos 8)

(4.1}

=mC„A, g, r„r„r„r,Y, m r~ —r,

x (Sz + S,) ~ ~rA —r, ) x M„p -I p„

x q, (rA, r, ; r„r4)Q(r, )d' r,d' r, cP r,d' r,
+3 cyclic terms

(4.2)

We calculated the A-'He spin-orbit potentials V~~
corresponding to exchange of a scalar boson S,
and of the vector bosons cu, P, and K*, using each
of the three parameter sets listed in Table I. In
Figs. 2-4 we plot the differential cross sections,
polarizations, and D, respectively, for various
values of the A incident kinetic energy T~.

Since the K* OBE potentials contain the space-
exchange factor P~„, the contribution of the K*
potential to V~~ for the A-'He system should real-
ly be given by the integral form

V„(K*;r,}1,. S,y(r, )

the four terms corresponding to the interactions
AN,- for i = 1 to 4, in turn. Here g4 denotes the 'He
spin-space wave function and Q denotes the wave
function of the A particle relative to it. In order
to simplify this expression and to lead to an alge-
braic expression for the potential V~& (rather than
an integral operator), we make the approximation
of assuming that all AN spin-orbit interactions in
this A-4He system occur in relative P-wave states,
so that we may replace the space-exchange opera-
tor P~„by -1. Since the spin-orbit interaction
vanishes for AN relative S-wave states, the main
error made in this approximation is that the spin-
orbit interaction effectively adopted through this
assumption has an incorrect sign for AN inter-
actions in relative D-wave states; the importance
of this error decreases rapidly with decreasing
range for the AN interaction [i.e., with increasing
mass m, the error involved being of order 1/ma,
where a denotes the scale parameter in the 'He
density distribution (2.2)). Hence we use the ex-
pression (2.23) also for the K* contribution to the
spin-orbit force, after the replacement P~~=-1
in the expressions (2.16)-(2.18).

The differential cross sections and polarizations
are qualitatively the same for the three sets of
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SPIN-ORBIT COUPLING FOR A-'He SCATTERING USING. . . 759

parameters. The central force provides most of
the differential cross section, and is substantially
weaker than the corresponding central force in
n-'He scattering. The polarization curves given
in Figs. 3(a) and (b) show considerable sensitivity
to the precise choice of coupling parameters for
the spin-orbit potential, and much greater sensi-
tivity to the presence or absence of a cutoff in
this potential. For example, at TA =12 MeV, the
maximum polarization calculated for the Deloff
potential falls from 0.77 to the value 0.57 when
the cutoff p. =1500 MeV is introduced, whereas
the SVH and BDI values are relatively little affect-
ed; at TA =20 MeV, the maximum polarization
calculated for the BDI potential rises from 0.35 to
0.93 upon introduction of the cutoff p, =1500 MeV,
whereas the SVH and Deloff values are much less
affected. However, generally speaking, the cal-
culated polarizations PA(g) have a remarkable
qualitative similarity for all three parameter sets,
considering the large differences in the input pa-
rameters of Table I. All three of the models used,
with or without cutoff, predict large polarization
for the A laboratory kinetic energies TA between
10-20 MeV. As shown in Fig. 3, the polarization
is positive at almost all points, rising to a maxi-
mum about 120'in the c.m. frame. With the Del-
off and BDI parameters, the ~ provides a major
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FIG. 4. A-4He forward-backward asymmetry D [defined
by (4.1)] vs A incident energy TA, for lab energies 0.1-20
MeV. Our results (OBE) and the results of Gibson and
Weiss with central force only (GW). The curve labeled
OBE gives the asymmetry parameter D calculated as
function of Tz for the SVH potential specified in Table I.
The BDI and Deloff potentials give essentially the same D
values for TA below 5 MeV; for TA ——9 MeV, the calculat-
ed values for D were 0.245 for BDI and 0.20 for Deloff,
which lie close to the value 0.19 for SVH.

contribution to the spin-orbit force, while the K*
and So give the largest spin-orbit terms in the
SVH analysis.

We should emphasize here that the A-'He spin-
orbit potential comes from only a part of the AN
spin-orbit potential. As remarked earlier, the
summation over all four nucleons of 4He gives
zero for all AN spin-orbit terms proportional to
0„~L. For example, let us consider the terms
(2.12)-(2.15)due to &u exchange, just to lowest order
in (m JM)'. It is convenient to express all of the
coupling constants needed in terms of the electric
NNp coupling constants G«. With the SVH pa-
rameters, these coupling constants are

E E
GNN w 3GNNp y

E E
GAA w 2GNNp t (4.3)

For the purpose of illustration, let us also approx-
imate MN =MA =M and take out the common factor

C (r) -=m„Y,(m r', (4.4)

to give the net result for the AN system"

V „(&u)= C „(r}[-2.58S ~ L + 5.58S "
~ L ] . (4.5)

For the partial waves 'P, and 'P„ the ~ exchange
contributes a weakly attractive spin-orbit force
(i.e., a spin-orbit force which contributes a nega-
tive energy for positive S ~ L; note that S L takes
the values +1 for the 'P, state and -2 for the 'P,
state}. For the partial waves 'P, and 'P» the spin-
orbit potential S" ~ L contributes an off-diagonal
term linking these two states, whereas the S L
potential contributes again only in the diagonal
terms, so that it is difficult to estimate the net
effect of the two terms in expression (4.5). For
A-4He, on the other hand, the S L and S" ~ L
terms contribute equally, since the iN ~ L terms
average to zero, and the net v-exchange spin-orbit
coupling is then rePulsive, being then proportional
to +3.58S~ ~ LA and due entirely to the electric
NN~ coupling.

We should emphasize hgre that the spin-orbit
potentials we have included in the discussion of
Sec. IIAare only the diagonal terms for the AN
channel. For the one-channel approach of Deloff, "
this is at least a consistent point of view. However,
in a calculation of AN scattering including both
AN and ZN channels, a spin-orbit component for
the effective AN Potential can arise in other ways.
For example, even if there were no diagonal AN
spin-orbit interaction, the existence of a strong
spin-orbit potential in the ZN potential V(ZN- ZN)
or in the off-diagonal potential V(AN- ZN) would
give rise to a splitting between the P phases for
low-energy AN scattering and, in general, there-
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fore, to some spin-orbit component in the effec-
tive AN potential for the low-energy region. The
importance of these indirect effects in generating
an effective AN spin-orbit potential is not yet
known. To complicate this situation, there is also
the possibility emphasizedby Bodmer" for the
A-4He system that AN effective interactions which
result from interactions passing through a ZN in-
termediate state might be significantly suppressed
for a A particle in interaction with 4He, since the
A-4He system has I=O, which is not possible for
the Z-'He system (although it is still possible for
intermediate states Z-'He*, with I =1 excited
states 'He"). We shall not discuss these questions
further here, since our purpose is primarily to
illustrate the order of magnitude of the spin-orbit
effects to be expected in low-energy A-'He scatter-
ing, the factors which influence them, and their

IOO

IO

O. l

O. I

E „, (Mev)
IO

FIG. 5. Predicted total cross sections for A-4He elas-
tic scattering vs A lab energy E;„, . Our results (OBE)
and results of Gibson and gneiss with only central poten-
tial (GW) are given. For comparison the n-4He total
cross section (N) vs neutron incident lab energy is shown.
(The curve OBE corresponds to the SVH parameters.
The values calculated for BDI and Deloff parameters lie
very close to this curve. For TA =1 MeV, the three calcu-
lated values agree to three significant figures; for TA ——5
MeV, the BDI value lies 2% higher, the Deloff value only
0.5% higher; for TA=9 MeV, the BDI value lies 8% high-
er, the Deloff value only 1.5% higher. )

relationship with the AN interaction, rather than
to attempt any definite calculation of the A-'He
spin-orbit potential.

In Fig. 5, we have plotted the calculated cross
sections for A-4He elastic scattering vs the in-
cident laboratory energy E (the curve marked OBE
in Fig. 5). For comparison, we have also plotted
the cross sections calculated by Gibson and Weiss"
for their central potential (GW), with no spin-
orbit force (CA =0), and also the experimental n-
4He total cross sections, labeled N on Fig. 5. It
is evident that the two predicted A-4He total cross
sections are qualitatively different in character.
The reason for this difference is the fact that,
with the GW potential which gives the correct B~
value for AHe in their Hartree-Fock calculations,
Gibson and Weiss obtain a P-wave A-'He reso-
nance at a c.m. kinetic energy somewhat less
than 1 MeV in their Hartree-Fock calculations for
A- He scattering, even without any A-4He spin-
orbit interactions. As they remark, the addition
of an attractive spin-orbit force (CA &0) will in-
crease the A-'He attraction in the P3/2 state,
whereas the addition of a repulsive spin-orbit
force (C~ &0) will increase this attraction in the

P„, state. In either case, the addition of quite a
moderate spin-orbit force (CA & 0.5 for the P„,
case, or CA s-0.25 for the I'„, case) would lead
to the prediction" of a P-wave bound state ~He*,
on the basis of their calculations.

Our approach and that of the GW calculations
clearly lead to si.gnificantly different conclusions,
which reflect primarily the much larger P-wave
phase shifts given by their Hartree-Fock calcula-
tions. For example, the forward-backward asym-
metry D shown in Fig. 4 is markedly different in
the two calculations, and this asymmetry is domi-
nantly an S-P interference effect. For energies of
1-8 MeV, our calculation using the A-4He Gaus-
sian central potential (1.1) and the SVH spin-orbit
parameters (the case OBE in Fig. 4) gives small
negative values for D, whereas the GW calcula-
tion'4 gives D- 0.8.

It is a question of interest to understand the de-
pendence of the properties predicted for A-'He
scattering on the shape of the A-4He central poten-
tial, in view of the qualitative difference between
the predictions resulting from our calculations
and those of Gibson and Weiss. At present, our
indications are that the A-'He scattering proper-
ties predicted have a relatively weak dependence
on the shape of the A-'He central potential, and
we are inclined to attribute the larger part of this
difference to approximations inherent in the Har-
tree-Fock approach to continuum scattering prob-
lems. "

With the BDI and SVH parameters, we assume
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that the S, meson couples to all baryons with equal
strength. There is no particular reason to be-
lieve that the T =0 scalar boson is a unitary sing-
let; indeed, it is possible that the experimental
candidates ~(700 MeV), 5(960 MeV), and K(-1020
MeV) may form an octet of scalar bosons. " If
the S, were a member of an octet, its couplings
to N and A would be related by the F-D mixing
parameter fs:

~s 2(1 fs}-Gs
hhp 1 4f NNp

s
(4.6a)

Gs 1+ 2fs Gs
Nhg 1 4f NNP

s
(4.6b)

From (4.6) we see that the case f~ =-0.5 has the
same effect for the AN system as if the S, meson
were a unitary singlet; that is Gggp Ghhp and
G„h~=0. Thus, for AN scattering in a single-
channel model, there is no way to distinguish be-
tween the possibility of a scalar octet with f~
=-0.5 and the case of a unitary singlet Sp."

We have calculated the A-'He polarization using
the SVH parameters but varying the scalar mix-
ing parameter f~ through the values f~ =-0.5, 0,
+0.5, and+1. 0. We have assumed that the T=-,'
scalar boson has mass m(S i}= 1.0 BeV, and we
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FIG. 6. Variation in A- He polarization with changes
in the scalar F-D mixing parameter f&, for the case with
the SVH parameters used for vector couplings and the
cutoff given by subtraction with mass p =1500 MeV. The
polarization Ph(0) is plotted vs c.m. angle 8 for several
values of the A lab kinetic energy, Th.

have neglected the space-exchange character of
the S ~-exchange potential, taking Ph„=-1, as
discussed earlier in this section. The calculated
polarization P„(B) is plotted in Fig. 6 for the case
of a cutoff p, = 1500 MeV, for three values of the A

incident energy Th, and it will be seen that the
polarization is sensitive to large changes in the
scalar mixing parameter f~. The case f~ =-0.5
is identical to the dot-dashed curves in Fig. 3(b),
and is included for comparison. The polarization
values range from -0.1 to +0.8 for Th between
5-20 MeV. In all of the curves, the qualitative
shape is the same but the maximum polarization
for a given energy is rather different. For pure
F-type coupling (f~ = I), there is no S, contribu-
tion to the A-n spin-orbit force, and the S~ con-
tribution is repulsive; for pure D-type coupling
we have Ghhp 2G„gp and a further attractive con-
tribution from Si exchange; and for f~ =0.5 we have
repulsive contributions from both S, and Sy ex-
changes. As a consequence, the maximum polari-
zation is considerably increased for f~ = 0 and de-
creased for f~ =0.5 and I, relative to the case f~
=-0.5. Of course, since scalar exchange provides
a large part of the central OBE AN potential,
these variations in f~ would also produce large
changes in the AN central potential, but here we
are considering only a phenomenologica]. represen-
tation for this central potential.

In conclusion, we have taken a phenomenological
central potential for the A-'He interaction, and
we have predicted the A-'He spin-orbit potential
from OBE models for the AN spin-orbit force.
With this potential, we have calculated the cross
sections and polarizations for A-e elastic scat-
tering for A incident kinetic energies 1-20 MeV.
We have used the parameters from three different
OBE models which have been proposed for the AN
interaction, both with and without a cutoff at short
distances, reaching qualitatively the same re-
sults for each of these six cases. It was shown
that (as was first pointed out by Downs'0} large
antisymmetric spin-orbit AN potentials can re-
sult from vector-meson exchange in the OBE ap-
proximation. The spin-orbit force effective in
A-'He scattering results from summing over the
nucleons of 'He, and this may differ significantly
from the AN spin-orbit force. We compare our
results with the predictions of Gibson and Weiss,
who calculated A-4He scattering using the Hartree-
Fock approximation, and we show that the calcu-
lated total cross sections, forward-backward
asymmetry, and polarization angular distributions
are all significantly different for the two calcula-
tions. Measurements of the total A-4He scattering
cross sections for incident energies ~5 MeV should
distinguish between the predictions of the two mod-
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els; alternatively, measurement of the forward-
backward asymmetry between 1-10 MeV could re-
solve the differences in the two calculations. In
both calculations, the A polarization effects pre-
dicted for A-4He scattering in this energy range
are large for spin-orbit interactions of strengths
which appear reasonable in the light of OBE cal-
culations of the spin-orbit component of the AN

potential.
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Semileptonic processes between members of a common isotopic multiplet provide a nearly
model-independent test for currents with anomalous or "second-class" G-parity properties.
For such processes the implications of the presence of second-class currents are discussed
for P decay, muon capture, and elastic neutrino scattering.

I. INTRODUCTION

Recent experiments by Wilkinson and Alburger
on P decay rates of mirror transitions' have sug-
gested the possibility that the hS = 0 semileptonic
weak current may contain a component which is
anomalous under the G-parity operation. ' Al-
though it is conceivable that the Wilkinson effect
may be due to differences in nuclear wave func-
tions caused by electromagnetic interactions, it
is important to determine to what extent such anom-
alous or "second-class" currents are known to be
absent in weak processes. In this regard we have
recently suggested analog P decay experiments, '
since there exist for this case terms in the decay
amplitude which can only be produced by a second-
class current and which conversely must vanish
in the absence of a second-class interaction. ' De-
tection of such terms in the decay spectrum would
then signal the presence of these currents in the
semileptonic weak Hamiltonian.

In A (see Ref. 3) we examined nuclear P decays
in which the parent nucleus was unpolarized with
both electron and recoil directions being observed,
transitions involving a polarized parent with only

the final electron observed, and decays from an
unpolarized parent into a daughter which subse-
quently decays electromagnetically, both the elec-
tron and photon being observed. The second-class
interaction was assumed to involve only the axial
current, and conserved vector current (CVC) and
time-reversal invariance were assumed through-
out.

In this paper we enlarge these considerations to
include a more general type of P decay process,
and we examine additional analog reactions asso-
ciated with the semileptonic weak Hamiltonian. In
Sec. II we relax the assumption of T invariance
and consider the decay of a polarized parent with
both electron and recoil observed in order to look
for possible T-violating second-class effects as
suggested by Kim and Primakoff' and also in order
to examine additional tests for T-conserving sec-
ond-class interactions. In Sec. III present experi-
ments on analog muon capture are treated in order
to see what limits on second-class terms are cur-
rently implied, and new experiments which may
help to resolve the situation are suggested. Final-
ly, Sec. IV discusses second-class terms in neu-
trino scattering on nucleons.


