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The contribution of the "induced-tensor" term in allowed nuclear P decays is predicted in
the impulse approximation. Current experimental results are compared with these predic-
tions and additional experiments are suggested which could verify the existence of such an
effect.

I. INTRODUCTION

In this note we wish to point out a result which
is perhaps known to many, but which has not been
previously stressed, concerning the so-called "in-
duced-tensor" term in allowed nuclear P decay. '

We shall assume the conserved-vector-current
(CVC) hypothesis' and the validity of the usual cur-
rent-current interaction; then the P decay ampli-
tude is given (for electron decay —modifications
suitable for positron decay will be included at a
later stage) by

~GT =
~&

cosec( p„lV„(0}+A„(0)~&, )f~,

(Gvm '=10 '), Gc the Cabibbo angle, and l" the
matrix element of the lepton current

l" = u(p}y" (1+y, )v(k)

Let py p2 p k denote the four momenta of parent
nucleus, daughter nucleus, electron, and neutrino
and My M2 represent parent and daughter masses.
We define also

I =Px+P2~ O' =Pa P2 P+& y

M= ', (M, +M, ); h—=M, -M, .
where G„ is the usual weak-coupling constant Then to first order in recoil quantities the decay
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spectrum is

d~=, F (Z, Z) 1+~T~' &E-E, -2p k

x (Eo —E)'pzdzdQ, dQ, , (2)

where F (Z, E) is the usual Fermi function and a.c-
counts for the dominant Coulomb effects, E (p) is
the electron energy (momentum), k is a unit vec-
tor in the direction of the neutrino momentum, and
E'p is the maximum possible electron energy

1+m. '/2M a
1+ ~/2M

We write for the amplitude of a general allowed
(64= 0, +1;no) transition'

&plv„(0)+A„(0) ln)l"

1 ~ 1 N'k;M=
2M

aP lb~I 6w' i4M-C~

x [2f) i,q, + i e„„l'(CP" dq")], -
(3)

where J', J' are the spins of the parent and daugh-
ter nuclei, respectively, and M, M' represent the
initial and final components of nuclear spin along
some axis of quantization. Here repeated Latin
indices are summed from 1 to 3, while repeated

Greek indices imply a four-vector contraction
with the metric gpp gyp g22 F3 + 1. Using
standard notation

a =gyMp,

C gA GTq

M~, MGT being the Fermi and Gamow-Teller matrix
elements, b is the so-called "weak-magnetism"
contribution which, between nuclear analog states,
would be given by

b =A — MF&v 5

where A is the mass number and p~ is the iso-
vector contribution to the magnetic moment mea-
sured in units of the proton magneton. The last
coefficient d, usually called the induced tensor, is
uniquely correlated with the existence of second-
class currents if z, P are isotopic analogs. 4 On
the other hand, if a, P are not members of a com-
mon isotopic multiplet, the presence of such
terms is not forbidden by G-parity considerations
even in the absence of a second-class interaction.
d may then be considered as an alteration imposed
by the presence of strong interactions on the usual
axial-vector matrix element.

II. INDUCED TENSOR AND IMPULSE APPROXIMATION

It is of interest to ask how large this "induced" first-class contribution to d is expected to be. We can
answer this question, at least within the context of the impulse approximation. In order to relate the dis-
cussion to familiar results, we first discuss the vector current. For neutron decay, one finds

(f „I V, ln„) = ~ a(p, )[g, (q')P„- ig, (q')a„.a la V,),
1

(4)

where g~(0) = 1 and g„(0)=
tup —l).„=4.70. In terms of Pauli spinors, correct to first order in p/M, we have

(p&lq tq) l „)t =q, q tq')(t'—~ tp, p, ) t) ~ q„tq') ttxt (5)

which suggests the impulse-approximation prediction

v, =gr(q')PT, 'e "'q,
5

v= —i[g~(q')PT,'(e ' t'~, vj+g„(q')PT,'e ')'qi xg]/(mp+m„).
5 f

Taking the lowest nonvanishing order in q we find

v, =g, (0)QT,',

0 = -i[g„(0)QT', a, xq+g„(0)g T;L,. xq]/(mp+m„) + —,
' g„(0)gT', [H, r,q. r;], (7)

where Il is the Hamiltonian, and the spin-orbit interaction has been neglected. If the last term is disre-
garded as being effectively second order in q, then we have the usual impulse-approximation result
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n =g, &PII& ~;II ~&,
j (8)

f =l.g, &Plfgr('L;ll~&+ g &PIIIP~;~; II ~&l

where
I n&, Ill& represent the nuclear wave functions for the transition in question and terms of order Eo/~

have been neglected.
We may treat the axial current in the same way assuming, for simplicity, the absence of a second-class

interaction. ' Then we have for neutron decay

&t„l&,(o) ln„& =~(p2)g~(q')y„y, ~(p&&,

where g„(0)=-+ 1.23 or in terms of Pauli spinors, correct to first order in q/M,

&t„l&,(0)ln, ,&f"=X,'g„(q') o 1-~ t, n (p, +p, ) X. , (10)

which suggests the impulse-approximation result

ZTHe ""o &)
Ao = Egg(q )

mp+ mn

A= -g„(q')P~;o,

i Q r,' o; xL,. . .

A = (0)' ~A m+mp n

A = -g~(0) Z r,'~» ~

—2g„(0)g r('[H, g, r,.q r,.l.,

Taking the lowest nonvanishing order in q and neglecting spin-orbit effects, we find

(12)

When the latter term in Ao is dropped as before, we find the impulse-approximation predictions

c = g~ &0 II Z r,'c~ II n& +
& p II i g v,'v, x L, II o.'&

5 p n

(13)

&&II fZ ~;~; «; ll ~&,
p n

where terms of order Eo/iM have been neglected. Thus a nonvanishing term is predicted by the impulse
appr oximation:

d= &g,& Pllf Z—r;~; «; ll ~&.

We note that the operator i+,.7'. a;. x L, is found to vanish between analog states as required by g-parity con-
siderations. '

III. EXPERIMENTAL VERIFICATION

It remains to suggest where a term of this type might be seen. Being a first-order recoil term, its con-
tribution is generally of the order E,/m = 10 '-10 ' compared with the usual allowed terms. However,
its effect is more noticeable in a P-y (or P cI) correlation experim-ent. Suppose a parent nucleus of spin J
undergoes an allowed p decay to a daughter nucleus of spin J', which subsequently decays emitting either a
photon (or an cy particle) to a final nucleus of spin J". We assume the parent nucleus to be unpolarized and
we integrate over the neutrino direction, considering the spectrum in its dependence on the electron vari-
ables and on the direction of the photon (or a particle). The latter is characterized by a unit vector K
along the direction of the photon (or a particle) momentum in the lab frame (rest frame of the parent).
The spectrum is found to be'

]
d&u= E,(Z, E)

2 5 &Eo —E) PEdEd55, dQ» f,(E)+g(E) +Xg g f,(E)
/

(14)
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where the upper (lower) signs refer to electron (positron) decay, v* is the velocity of the y ray (or o parti-
cles) in the center-of-mass frame of the daughter, ' and

f (E) = (a('+
~

c~' ——~[(c)'+Rec*(b+d)]+ ——(3~ a~'+5(c('+2Rec*b) —— ' [2(c~ +Rec~(2b+d)],2 F 1m,
3m 3 jg 3 )/IE

(15)

g(E)= ' -i I'+ 1- ' —
I

I'+-'I I' 1-
3M'* 3 10 3M~* 3 100

The terms in v* reflect kinematic-shift effects associated with the transformation to the lab frame from
the rest frame of the daughter nucleus, where the radiative decay is most simply characterized.

In (14) and (15) ~& &. is a coefficient depending on the spine involved. If the o. particle is in a state of

orbital angular momentum 1 (e.g. , j'~ =1; J"P =0') then we find

Xz z
=

"Iq~ q Tq''. z" (L = 1)

with

—j'/(2 j'+ 3), J'= J—1

(16a)

(16b)

and

—(j'+ 1)/(2J' —1), J' = J + 1

2(2J' + 3)/J', J/ —J/ 1

v~. g. (L = 1) = ( —2(2j'+ 3)(2J' —1)/j'(J'+ 1), J"= J' (16c)

2(2J' —1)/(J' + 1), J//= J'+1
while for electric or magnetic dipole photon emission

~; ~(EI, /dl) =Z, ~x[--,' T», (L=1)].
Similarly, if the n particle is in a state of orbital angular-momentum 2 (e.g. , j'~ =2'; j"~ =0'), we find

~z z" nz r &i J (L = 2)

where q~ & has been defined in (16) and

20 (2JI + 3)/jl
——", (2j'+ 3)(j' —5) /j'( j'+ I),

rp g (L = 2) c ——', (2J' + 5)(2j' —3)/J'(J' + 1),
——", (2j' —1)(J'+ 6)/J'(J' + 1),
—(2j' —1)/(j'+1),

J// J/ 2

J// —J/

J// —J/

J"=J'+1
J// —J/ + 2

(17)

while for electric or magnetic quadrupole photon emission

p. ( E2, M2) = g~ ~i x ~ Tg pi(L = 2) .

Similar expressions, of course, hold for higher L, values and multipole radiations.
The important point is that the P-y correlation

~(E) = ~&,&f.(E)/f, (E) (18)

is already of recoil order so that the d coefficient can make a substantial contribution. Unfortunately, the
weak-magnetism term 5 is also present, and d may contain contributions from second-class currents. In
order to eliminate these difficulties one may measure P-y (or P-o.) correlations on mirror pairs (e.g. , Li,
O' 8" N" etc.). We find
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E b d~ d~ E[E(11——', X~g «t) —2EO(1 —~ A. ~««i)]
20M c 6M

E b ~d d~ E[E(ll —s A.««) —2EO(1 ——', A.««)]«'~ 20M c c c 6M v*

where we have separated d into first-class (d, ) and second-class (d») components. " Then

(19)

(20)

and is a measure of weak-magnetism plus second-class d contributions while

E ~d ~ E[E(11—5 A.««~v) —2EO( —~g A.~ «)]
10M c 3M (21)

becomes essentially a measurement of the quantity d, /c —the "induced tensor. "
Five cases appear amenable to experimental searches for this effect:

(i) Li (B') ~ Be'*(2.90 MeV)+e (e+)+ v, (v, )

He'+ n(L = 2), logft = 5.6 (5.6)

(ii) B" (N") ~C"*(4.43 MeV)+e (e )+ v, (v, )

C +y(E2), logft = 5.1 (5.2)

(iii) F'o (Na") ~Ne"*(1.63 Me V) + e (e ) + v, (v, )

+ Ne2O+ y(E2), logft = 5.0 (5.0)

(iv) Na'4 (Al") ~Mg"*(4.12 MeV)+e (e )+ v, (v, )

+Mg"*(1.37 Mev) + y(E2), 1ogft = 6.1 (6.4)

(v) Mg'8(P") ~ Si'8*(1.78 MeV) + e- (e') + v, (v, )

Si~+ y(E2), 1oggft = 4.9 (4.7) ~

(22)

o (E) —o+(E) = — " = (7.73 +1.32) x10 2,

n (E)+ n, (Z}=—1-~ +E d E(2E, +E)
M c M'v*'

= -(0.77y1.32)x10 2.

(23)

Thus we find

(b —d«)/Ac = 6.61+ 1.13,
d&/Ac = 1.68 + 1.13 . (24)

In order to obtain an approximate theoretical
estimate for these quantities we have calculated,
using the ¹isson model, expected values of b/Ac,
d, /Ac for the nuclei suggested above in the im-
pulse approximation. The daughter states were
assumed to belong to pure K=0 rotational bands.

The first of these has been studied experimental-
ly by Nordberg, Morinigo, and Barnes. " They
give

o. (E) =(3.48+0.66)x10 ~

for E = 11 MeV,
a, (E) = —(4.25 + 1.10)x 10-'

which yields (A~««. = 10)

Since the operators Q, T,'o, , g, T', L, , ig,..r, o; L;
all have ~~~ ~1, they are unable, except for the
mass-12 system, to connect ground states of the
parent nuclei to K= 0 band daughters without some
sort of K band mixing in the parent, as evidenced
by the relative smallness of the Gamow-Teller
matrix elements indicated by (22). We have thus
assumed —except for mass-12 —simple K = 1 band
mixing in order to estimate b/Ac, d, /Ac. The K= 1
wave function is then connected to the K=O daugh-
ter state by the operators we consider. The K=1
state considered to be mixed into the ground state
is that state for which the projection of the extra
nucleon minus the projection of the corresponding
vacancy is equal to unity. For example, for Li'
we assume an extra neutron to be in the Nilsson
orbit having the form ~NjlQ) =

~ 1212) in the limit
P-0 and a vacancy to exist in the

~
1—,'1—,') Nilsson

proton orbit (both with respect to Be' ), and we
find"

d~ (p;1~1~ ~i(o xL) ~p; 1212)
Ac (P; 1—,'1z (o )P; l~zl z)

Results of this calculation are given in Table I as
a function of the deformation parameter P for Nil-
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TABLE I. Values of b/Ac, d&/Ac as a fraction of the
deformation parameter, P, for the Nilsson wave func-
tions given in column 1.

Bes

C12

Ne20

I zl 2-'.
&I

z52z2'&*

Mg 4

SP'

P
b/Ac

P
b /Ac
d( /Ac

P
b /Ac
dr Ac

P
b /Ac
dgAc

t
b /Ac
dq/Ac

0.0
4.63
0.00

0.0
3.42
1~ 50

0.0
5.45
0.00

0.0
5.45
0.00

0.0

0.1
5.23
0.73

—01
4.18
1.48

0.1
5.74
0.64

0.1
6.10
0.80

—0.1
4.86
1.25

0,2
5.92
1.59

-0,2
4.95
1.99

0.2
6.30
1.50

0.2
6.80
1.67

—0.2
5.08
1.88

0.3
6.65
2.48

—0.3
5.72
2.73

0.3
6.94
2.40

0.3
7.53
2.56

—0.3
5.53
2.64

sson particle-vacancy wave functions given in the
first column. Note that the deformation parameter
P is assumed to be the same for both parent and
daughter nucleus, and that the mixing amplitude
for the ~K = l) states is not needed, since we are
taking a ratio. It is hoped that although specific
values of 5, d„c are quite sensitive to the mixing
parameter and to the nuclear wave functions, the
ratios b/Ac, d, /Ac should not be. Thus in the
mass-8 system, the predicted values for d, /Ac,
b/Ac are in agreement with the experimental re-
sults for reasonable values of the deformation:

P = 0.2-0.3." Of course, the experimental value
for d, /Ac is not inconsistent with zero, so that im-
proved experiments of the Be' system as well as
the other suggested cases are required in order
to verify the existence of an induced tensor. "

We note in passing that the agreement of (b —d„)/
Ac with the theoretical prediction for b/Ac argues
against a large negative value for d»/Ac in the
system as would be suggested by an interpretation
of the Wilkinson experiments in terms of second-
class currents. " Recent work by Wilkinson and

Alburger on the Be' system is also inconsistent
with this interpretation. "

Finally, if second-class currents are assumed
not to contribute in these decays so that d» = 0, an
additional type of experiment suggests itself in
order to determine the presence of d, . For in-
stance, in the mass-24 system, if the radiative
width of the 4' analog state of Mg'4 to the 4.1225-
MeV, 4' state of Mg" could be measured, then
by the CVC hypothesis the weak-magnetism term
5 would be known. " A careful measurement of the
P-y correlation in Na'4 alone would then be suf-
ficient to determine the presence or absence of
an induced-tensor coefficient.
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2M gg &»q'y5 "Q i)
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