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This paper is devoted to the study of elastic scattering processes with the use of nonlocal

separable interactions. An explicit and general expression for the transition amplitude has

been given which includes Coulomb effects and possible excitation of the particles involved.

As a first application of the formalism it is shown that a striking improvement of Mongan's

results can be obtained in p-p elastic scattering just by including Coulomb effects at low en-

ergy. We have then studied the nucleon-n elastic scattering below 50 MeV and the n-e elas-
tic scattering below 100 MeV, and the results obtained are in very good agreement with ex-
perimental data.

I. INTRODUCTION

Nonlocal separable potentials have been exten-
sively used in the description of two-body inter-
actions, and the main reason for such a choice is
their extreme convenience and simplicity. They
provide, for instance, a simple analytical form
of the transition amplitude in elastic scattering
phenomena, and for this reason have been used
in the description of the nucleon-nucleon interac-
tion. ' ' In connection with this, we have tried to
see if nonlocal separable potentials could describe
the more complicated n-a, p-a, or n-n interac-
tions. In these cases, Coulomb effects or the in-
ternal structure of the n particle may play a prom-
inent role. Of course, the chosen nonlocal separa-
ble potentials must fulfill the usual conditions of
time-reversal and rotational invariance, Hermit-
icity, and correct threshold behavior. We have
then shown that Coulomb effects could be included
in the process just by expressing the nonlocal sep-
arable potential in a 'Coulomb representation"
rather than in the usual "impulse representation. "
In other words, an integral transformation leads
to a new form factor which took into account Cou-
lomb effects. On the other hand, the internal
structure of the o. particle involved has been de-
scribed by considering the different possible states
of the e particle and essentially its lowest inelas-
tic threshold.

In the second section an exact and analytical ex-
pression of the transition amplitude in any elastic
scattering process is established. The third part
is devoted to the choice of the potential shapes
even when the Coulomb field is present. In Sec. IV
we show how the discrepancy appearing at low en-
ergy in the p-p elastic scattering between the ex-
perimental data and the calculated phase shifts can
be removed even when the form factors and param-
eters introduced by Mongan' are used.

In Sec. V, our formalism has been applied to the

II. TRANSITION AMPLITUDE

A. General Expression

We consider the scattering of a structureless
particle on a target, the eventual structure of
which is described by a Hamiltonian 6 . Its eigen-
states and eigenvalues will be defined by the rela-
tion

hnI ( nt) eat I 9 nt) '

The total Hamiltonian H may be decomposed in
three different ways

H =ha+Ha+ Vc+ V„=Hac+ V„=ha+He+ V„. (2}

The operators Vc and V„denote, respectively, the
Coulomb and nuclear interactions, while H, is the
usual kinetic energy operator, the eigenstates of
which are denoted by ~

K):

H n ~ K) = (O'K /2m *)
~ K),

1 1
+

incident target

The Hamiltonian Hc describes pure Coulomb scat-
tering:

Hc =Ho+ Vc

H c I Xg) = &r I Xtt& ~

and we introduce the Hamiltonian H„c =h +Hc
with its eigenstates

Hac I 9 at» Xtt& =enitt I tnt Xt&

(4)

a4E ni E (6)

description of nucleon-o. elastic scattering below
50 MeV, while Sec. VI is devoted to an e-e elas-
tic scattering study below 100 MeV. In all par-
ticular cases considered here, form factors and

parameters have been determined through a phase-
shift expansion of the scattering amplitude.
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The transition amplitude is now expressed as

(7)T =Tc +Trt = 2 &Sz p &i p F I ic I Sr&tr Pnt Xr')+&S»(rp &Pnp Xt I i&vl 4r'&

Sl&I SF &F

where Sr(rr and S»&t» denote the initial and final spin states, while
I gr'& is solution of the total Hamiltonian

H, solution of the following equation

(8)Itr'&= 2 ISr(tr P t Xr')+E H
l«&ltr'&.

S aI I ac+~~

The transition amplitude T„ is now projected onto the common eigenstates
I K, 9&„&) of H, and h„which

form a complete basis

v = Q S I &x, „v.„x,l&(, v. ;&x&&&a, v. , l
v„lk', v„,&xi'«c', v., l&;&.

SF&F if

If the internal Hamiltonian h„of the target has a purely discrete spectrum, S,.f will represent a discrete
summation, while for a continuous spectrum it will denote an integration on the eigenstates I cp«& and

I v .;).
The nuclear potential V„ is chosen to be nonlocal separable with p terms, and the decomposition of its

matrix elements on a 'JJ&»)~„basis leads to the following:

(Kx &i&n& I
i'&vlK'x (&&ar&

= 5 t' 'C«'p g&ip(K)gr rp(K'}'f '9«s&z&&(K)t "'9(r's&t«&K').
p l l'S J'p

The '&j«s&z„(K} are defined as usual by the relation

g(,s&t„(K}= Q&lmSo I
Jtt&1', „(K)I s(r& x

(10)

where J=l+S and S is the total spin of the interacting particles, S =S, +S,. The i' factor ensures the time-
reversal invariance of the spherical harmonics.

We use the above decomposition (10) in expression (9) of the transition amplitude and thus obtain

TI&f l l'P F lSiP I l'SfP ~

if l l'pS Jjf

We have set

(fr }is(p = g Jf&SF(rex

Pap�

& Xp I K, V «)g& ip(K)J(ls&t«(K)rf K,
SFa

(~r )&sip J~gl r'p(K')'tj('t s&tp(K'}&K'' Par I &I&t'&rf K'.

(12)

(12)

B. Evaluation of (K', &t& at I &j&r')

Using the definition (8} of
I &j&r') we get

1(K' tnt I&j&t'& = 5 &K' (i&nr ISr(tr (star Xr)+&K'&(&&at IE H
. i &vI&j&t&.

SI&r F -Ha~+Sf (15)

The purely repulsive Coulomb potential has no bound state and thus the scattering states of the Hamiltonian
Hc form a, complete basis' as well as the eigenstates IX», y, ) of the Hamiltonian H c on which the above
relation can be projected

2
&K x (Sar I 4t) = ~ (K x tpat I St(ttx &i'atx Xt&+ ga I (K x &i'at IX»x &&Pnr&& a a a ~ &X»x Pn«I l&vIkt&dKZ a ~ a ~ ~ ~ 2+ + E~ ak N I

(16)
We have set

K,' = (2m*/0')E

K +Knp' =(2m*/ff )cap».

(17)

(18)
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We introduce a new projection on the
~
K, &p,& basis to make the nonlocal matrix element of the nuclear in-

teraction appear,

&X», y.al Y» I Cr &
= $ &X», V ..IK, V..&«'&K', W.a I Y» IK", Va-&dK "&K

k'k"

With the use of relation (10) we get the following:

(19)

&x;, v., il v, ltli- S g c,",",j&x,', v..ilK', v..)g,'.*,«')V, .„,„,&r')da'

k k" LL'$'q
gfjf r

A

gr a v(K ) JJ ~I$ )r &&

(K")(K" i rp oa, I 4r )d IC' (20)

Let us use the orthogonality properties of the
~ p„,.& eigenstates and the definition (14) of (Jr )~,z, ,„, to write

(K', &tr„r ~
&j&r') in the form

&K'~ &ir«r I &Pr&
= g &K'~ &&r«r I srrrr& &tr«r» Xr&+ ga g g Crr, 'v(dl )r. 's'k "a

Sfof k" LL'S'q
J'jf '

&x»l "K&& Kl x&»ig;.'( K)nj(LS')r'a'(K )K 2 Ka K 2Z, -X -Z., +z~

We can express (K'~y») in the configuration space

(K'IXrr& =Jf &K'lr&dr&rlX»&.

We decompose &K'~ r& and (r~ Xrr& on a spherical basis

(21)

(22)

&r~y'»& =(2tr} "'—,Q i "e"'"F„(Kr)Y&,(K)Y„,(r),
Xv

&K'~ r) =4tr(2tr) "' Q i "j„.(K'r)Y„„(K')Y„*...(r) .
Vv'

The Coulomb phase shift 0 z is defined by

&r~ =Argl'(X+ I -iq),

(23)

(24)

where ri =trt*Z, Z /If'aK is the Coulomb parameter. If we introduce the integral transform Fq(KK') of Fq(Kr)

F„(KK') = j r,(K'r)r'dr,
I' Fr,(Kr)

(25)

we get

&K' ~p'& =—ge""~F„(KK')Y„„(K')Y*„„(K) (26)

and thus the following expression for (K', &ir r ~
pr'&:

2

( t'@&&rior&= +&K ~9 ofISrori p&&r~Xr&+ ga g Cr, r, ', (dr)r, aa»,
Sf f k" LL'S'q

&& )Fr (KK')Fr, (KK"}gr,„(K")ti&ra, )r,a, (K') a a a K dKK"'dK" .J K ' —K'-K, '+is (27)

C. Evaluation of (Jr)tP»ra

The orthonormality properties of ti&ra»„and the definitions (13) and (14) of (Ir'), Pa*,aand (Jr'), Pa. ,alead to th.e
following expression for (Jr'), Pa»

gP + gjfg 2m ~ JS ZS +(j ), ar =(I ), r +
~ ~C,. ~ G, .r (J ) (28)qL'

k rt
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We have set

h,P„(K)hrts, (K)
r ypq K 2 K2 K 2+LE.E nj

(29)

E. Expression for Gr&~
JS

The factor G„~, has been defined as in (29)

2
h t ry(K) F) (KK )gt ry(K )K dK

7T J
(3o)

(dr ))'sr = S(dr )t's r

For the sake of simplicity we can sum over j and
define

.s hf,'~(K) hr'r'. (K)
E aj

We can separate its real and imaginary parts by
setting

G'„'„= (A rts—„iB'„-'„).

If now we use the well-known property

(Ir'))'"st = $(lr+)t'"s*r'
J'S JS

Gr p. = Gr gp, .

The transition amplitude T„expressed in (12)
takes now the simpler form

(31) 1 1 —ts5(x- x,)
X XP +ZE E~P X XP

it appears that

B»~, = 2Kzh»r, (Kz)h»q(Krr) .

(38)

(39)

T» = 2 Ct t'p(I»)tsa(dr')t "sn ~

r r's0
Jp

s JpD. Evaluation of (Ir ))s&

(32) The imaginary part is expressed directly with
the form factors, while the real part will be often
evaluated numerically.

III. FORM FACTORS

We use the orthonormality of the eigenfunctions

y„r to simplify the expression (13) defining (Ir,)»,

)I;)',",= P j&s, „x lz&r',*,(@v„„„(ic)axe
SF&F

yF K grFr K lmSO JP
SF&F

ma

x 5,s 5„Y, (K)dK. (33)

The decomposition (26) of (y» I K) leads now to the
following:

(I»)rsa =— Q e""(lmSrrs
I Jtr) Fr,(K»K)

aF m All

x Yr,„(K»)Y~ (K)grrss, (K)Y, (K)d K, (34)

(Iz)," =e") Q Yr (Ks)(lmSrr»I Jtr)h, ra(K»).

The choice of the interaction is often the main
problem of any theory. We know that the scatter-
ing potentials must fulfill certain conditions such
as Hermiticity, time-reversal invariance, etc. ,
but a large indeterminacy on their form remains.
Generally speaking these interactions are chosen
in the configuration space, as it is easier to imag-
ine their physical representation. Nevertheless,
it is absolutely equivalent to infer directly an in-
teraction in another representation. In fact, it is
just the matter of an integral transformation to ob-
tain the interaction in the more suitable represen-
tation. For convenience, we shall thus start by
choosing the nonlocal form factors in the config-
uration space and then construct more elaborate
form factors in the (K) momentum space or (y~»)
"Coulomb space. "

A. Form Factors in Different Representations
aFm (35)

The same procedure should lead to the following
result:

(Ir))'"sa =e ' + Yt' '(Kr)(l'm'Srrr

Id&)hydra(Kr)

~

(36)

These expressions substituted in (28) and (32) give
the desired transition amplitude. As we shall see
later in some applications, we can thus get an ana-
lytical and exact expression for T„.

The matrix elements of the nonlocal separable
potential V„have been defined in the momentum
space by

(K, 9.)I &»IK', Var) = Z C»', gt'r', (K)gr'r'v(K')
r r'Sp
Jp

A

Ju s)r)) (K)JJtr s)ra (K ) . '

(4o)

It can be easily shown (Appendix A) that an analog
expansion can be obtained in the configuration
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space or in the "Coulomb space, " i.e. ,

(r (/)s((I i//lr', (/) /) = Q Cll sU)(s(r)'U(~~(r')
l )'SP
Jp

A

x%„,)( (41)

form

2 1/2
h~s (K) (2l+1}l!C)(q)i@

xg b, j,(Kr)D))sr(r}r' dr,
0

(49)

(X/r Vn(l }')2 I X/r e V ~/) = + C i) rh) is(K)h')/'2(K)
) l'SP
Jp

j(i S)J2 (K}9(l'S)Ja (K }'

(42)

The different form factors obtained are linked by
integral transformations

2
g)/ss(K) = —

J j)(Kr)0)ss(r)r'dr

while g(sr(K) is obtained by evaluating the integral
1/2 oo

g„sr(K) = — j,(Kr)'Q», (r)r'dr.
'tT $0

(50)

We can, for instance, take a Yukawa form factor
in the configuration space

JS
e F')y) r

~;;,(r) = ~s

=—
i F,(KK')h, is(K')K' dK',2

(48) The corresponding form factors g)/s(K) and h))ss
become

2 1/2
'0, /2(r) = — j ) (Kr)g),.sr(K)K'd K

2 1/2 "'h-(K)K dK,

1/2
hJs (K) l( }1)Js( ) 2d

7r r

F) KK' g);p K' K' dK'.

B. Determination of g)/s(K) and h)/&(K)

(44)

l/2 (l+ 1))
gl)2( }

)l (2!+1))) [K2 (pZS)2](l+2)/2

23.XF l+2 2l i+21 2 I Jgx2K +(P)yp&

2 1/2

h, /s(K) = — (2l + 1)!!C)(q)

K' (s+ 1)!
s [K2+ (P Js)2] (s+2)/2 (2s+ 1)) )

s=l

(52)

F, (Kr) =(2l+1)!!C)(t!}Qb,j,( Kr),Kr s=l

where

[(1+@')(4+pa) . . (l'+pa)])/'

(46}

Co(t!) =,2
= 2m (47)

The b, coefficients are defined by the recursion
relation

b, =1,

Let us express the regular Coulomb wave func-
tion in terms of spherical Bessel functions'

s s+3
K2+ PJS 2 (58)

2

xF s+2, —,s; s+-„y 2 y 2yK2+p 2 (54)

The F(a, b; c; Z) function is an hypergeometric
function. As these form factors are in general
rather complicated, we shall use them just as an
indication in the choice of the more convenient
form factor. In the simple case where only the
1=0 contribution is considered, i.e. , g)/sr(K) =g~(K)
= 1/(K'+ P»'), we can express h~(K) either in the
serial form

K' (s+ 1)!
()2( } ()(!}~ s(K2+ p

2}(s+2)/2
s=0

2l+3
) 1

or in an analytical form'

h ( ) c(lst)ese=ps(e, re e
'e—e) . (55)

2s+ 1
b, =

s(s+ 1) —l(l + 1)

(s —1)(s —2) —l(l + 1)x ebs-1 2s —3 bs-2

s& l+1. (48)
We thus obtain the form factor h f&~2(K) in the serial

The next section will be devoted to a straightfor-
ward application of these expressions.

IV. PROTON-PROTON ELASTIC SCATTERING
AT LOW ENERGY

In this particular case great simplification oc-
curs, since the target has no internal structure.
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For the singlet states (S =0, j= l = l') the matrix
element of the nonlocal separable potential is writ-
ten in the simple form

(K~ V„)K') = Q CIF gIF(K)gIF(K')Yl (K)Y,* (K').

(56)

The transition amplitude is then evaluated through
its simpler value

and

(&1)I 2=(fr'}I* p+ h-2 QCIGGIoG(~1')I 2
a

(Il }I 2 e"'Yl*„(Kr)h„(Kr}

(1 )F~IG=e"'YIm(KF)hI2(KF) 1

' h 12(K)h „(K)
Kg —K +st

(57)

(1F}I 2( h11 }I

and we have now

It has been shown' that the nucleon-nucleon elastic
scattering can be described by a two-term non-
local separable potential (p, q ~ 2} if we introduce
the following functions:

2m' 2m*
h, =h„(K)(1—,C„G„, , C„G,„h„(K)

2m* 2m*
h, =h„(K)(1—

h, C„G„, + 2, C„G„,h„(K)

2m* 2m* 2m
I2 l x l zx I2 l2 f22 g2 l x l2 l z2 l2z ~

(59)

The transition amplitude becomes expressed as

e2i a

TN =g Ytm(Kt)YI Kh(KF)[CIIhll(KF)('ll+ C hI2(K12)rF]2.2 (60)

The scattering amplitude expanded in partial waves gives, by comparison with the above expression, the
phase shift 5,

(61)

We thus obtain

f„I(B)= 2. e""(e""' —1)PI(cos8)
2l+1

I

2(2l+ 1)e""[X„'h„(K }b,F+AI» 'h 12(KF}62]PI(cos8) . (62)

For simplicity's sake, we have set

X„'= -(2m*/h')(ll/4)C, .

It is then easy to extract the phase shift 61 (see Appendix B)

(63)

h„'(Kr)+ylh12'(Kr)+ A. „lh12'(Kr)+AI22h„'(Kr) —2A„h„(2Kr)h„(Kr)
tan5, = 2K~

11 ++Ill + YIA122 + (+Ill l22 l12
~Y 2

~/1

(64)

&I =&»»12 (66)

Nucleon-nucleon elastic scattering has been pre-

In this expression we have used the separation of
G», into its imaginary and real parts

(65)

and set

viously studied with the use of nonlocal separable
potentials up to 400 MeV by Mongan. ' With only
four free parameters, the fit obtained was excel-
lent between 20 and 400 MeV. Nevertheless, at
low energy (&20 MeV) an important discrepancy
appeared because the Coulomb effects were not
taken into account.

As only the S, phase shift is significant in the
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Mongan's
parameters

Proposed
parameters

Cz (MeU/fm)' 302 305 (pp —- 7.953 x 10 )

(MeU/fm)1/2

a~ (fm ')

aA (fm-1)

27,33

6.157

1.786

27.20 (Ap = 5.724 & 10 )

6.157

1.786

TABLE I. p -p scattering. Parameter values. thus obtained. Finally, by a slight modification
(less than 1/o) of two parameters, we obtained an
excellent fit below 20 MeV (Table I and Fig. 1).

It can be seen from the expression for q that an
increase in the incident energy gives a smaller q,
and C,(q) trends to unity as h~(K) trends to g~(K)
[(47) and (55)]. It thus appears that the new h~(K)
form factor can be used at any energy in p-P elas-
tic scattering and gives an improvement over Mon-
gan's results.

V. NUCLEON-G ELASTIC SCATTERING

P-P elastic scattering, Mongan used the nonlocal
separable potential

V,(KK') =g„(K)g„(K') g„(K)g—„(K'),
where

g„(K) = Cs/(K'+ aR'),

g„(K) =C„/(K'+ a„') .

(67)

(68)

In that simple case we can use the h~(K) defined in
the previous section in (54) or (55} to include Cou-
lomb effects. The linkage between Mongan's pa-
rameters and ours is easily obtained

(I/A. ) = -(2m*/g )(v/4)C

y, = -(c„/c,)'. (68)

We first evaluated the 5 phase shift without Cou-
lomb effects, using Mongan's form factors and pa-
rameters, to show that a discrepancy appeared
below 20 MeV. We then replaced the g,~(K) form
factors by the h~(K}, keeping the same parame-
ters. Figure 1'"shows the striking improvement

In this case the total spin S is equal to —,
' and

parity conservation gives I, = l'. The general ex-
pressions (32), (35), and (36) simplify into

(~1 )tP (II) lk g2 Zc I GJp (~l)l

(I,')„" =c" g &*, (K,}(lm'-', o, (Jp)h„,(K,),

(f~)'„"=e"~ Q I', (K~)(l -m,

'
~o~Jp)h', ~,(K~).

(70)

(Ir)r"
I —(2m*/h )C, G,

(71)

The transition amplitude T„may thus be written

In the study of n-n and P-a elastic scattering,
it appears that the phase shifts do not vanish, " "
and a one-term nonlocal separable potential is suf-
ficient to describe the experimental data. " As
p= q=1, the above equations are greatly simpli-
fied and we get, for instance,

so

75
I /2

Tp

1.0

0.6
23 3 5 E lab (MeV)

I&2

5p
150

25 100

O
0 '

0 10 15 20 25
E lab (MeV)

0
50

0 10 20 30 40

E lab (MeV)

50

FIG, 1, &p phase shifts in the p -p elastic scattering:
(- ~ —~—~ ), Mongan's form factors and parameters;
(—----), PBE form factors and Mongan's parameters;
( ), PBE form factors and proposed parameters.
The experimental data are from Hulthen and Sugawara
(Ref. 9) (o); and Noyes etal. (Ref. 10) (6).

FIG. 2. p-n scattering. Real and imaginary parts of
phase shifts for L =0. The experimental data are from
Brown, Haeberli, and Trachslin (Ref. 11) (A); Barnard,
Jones, and Weil (Ref. 12) (o ); Weitkamp and Haeberli
(Ref. 13) (&); Thompson, Epstein, and Sawada (Ref. 14)
(~); and Davies el al. (Ref. 16) ( ~ ).
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TABLE II. p -n scattering. Parameter values. TABLE III. n -n scattering. Parameter values.

(fm3)
p

J'

(fm-')
PleJ

(fm i)
l

(fm3)
~leJ

(fm i)

pi/2
0

g 3/2
i

pi/2i

g 5/2
2

g3/2
2

g 5/2
3

g 7/2
3

g9/2
4

g 7/2

8.13x 10

6.02 x 10

1.6 x10 '

6.Q x 10

4.0 x 10

x 1p-'

1.1 xlp 2

5.6 x 10

2.34 x 10

0.83

1.25

1.0
1.2
1.4
1.4
1.4
1.3
1.3

0.83

0.5
0.8
1.2
0.7

1.0
1.0
0.9
0.6

4.p x1p '

6.0 x 10-'

5.0 x 1p-2

1.5
0.2
1.0
1.0
1.0
2.0

pi/2
0

g 3/2
i

g 1/2
i

g 5/2
2

g 3/2
2

g 7/2
3

g 5/2

g 9/2

g 7/2
4

7.7 xlp '

6.2 x1p-'

1.7 x 1p

6.4 x].0-2

4.0 x 10

1.Q x10 2

1.Q x 1Q

5.8 xlp 3

2.34 x 10

0.87

1.25

1.0
1.2
1.4
1.4
1.4
1,3

1.3

0.87

0.5
0.8
1.2
0.7
1.0
1.0
0.9
0.6

4.0 xlp 3

6.0 x10-3

5.p x 1Q

1.5
0.2
1.0
1.0
1.0
2.0

in the simple form

(I,');"(t, );~
N l 1 2m+ Il2 QJGJ t

l Jp

substituted into the scattering amplitude (61) it
gives

(I,'), *(I ) "
f„(8}=Sw Q

l Jli

with

(72}

(73)

We use now the facts that J= I*~ and that K, =K~
=K~ in an elastic scattering process to define scat-
tering amplitudes with or without spin flip

f„'(8)=f„'(8)= 2g e"' P, (cosg)

(l + 1)htI(KI)h;~(KI) lh„(KI)h, F(KI)

ft t(g) g 2e2in iP (8)e'4'

(t I)-I GI2m~ 7T

l @2 4 l (74)

x( lO-,'iII /III )(lm'-,'tIw ptII )

x Y, , (8)h»(KI)h, ~(K~) . (75)

3/2
T1

1.0

Let us now develop the scattering amplitude for a
given value of the magnetic moments 0, and o~,
when the quantum axis has been chosen along the
incident vector K,

f„(8)= 4v w Q(2l + 1)
lJ

il(KI} iF(KI} hil(KI} tE(KI)
X', + (4/w)G', X, + (4/w)G,

(76)

fit(g) g 2pi a IPI( 8)
e- f 0

hlI(KI)hiF(KI) iI(KI)hie(KI}
C+ (4/w)G', ~-, + (4/w)G-,

1.0

3/2

as
23 3

100

5 E lab(MeV)

0.6
23 30 40 50 E lab (MeV)

0
50 50

0
0

0 10 20 30 40
E lab(MeV)

50
0

0 10 20 30 40
E lab(MeV)

FIG. 3. p-n scattering. Real and imaginary parts of
phase shifts for l =1 and J =2. The symbols are as in
Fig. 2. The (0) data are from Satchler et al. (Ref. 15).

FIG. 4. P-e scattering. Real and imaginary parts of
phase shifts for l =1 and J =$. The symbols are as in
Figs. 2 and 3.
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1.0
T2'

0.7

1.0
5t2

T2

0.7
I

o 23 30

0
5/2 oQ

30

40 50 E lab(MeV)

—'=(lul'+
l
v I'),

where

2Re(u v*)
lul'+ lvl' '

u=f. ( t)t+f ~(tt),

v =f' (8),
with

(78)

(80)

0
0 10 20 30 40

E lab(MeV)

50

FIG. 5. p-e scattering. Real and imaginary parts of
phase shifts for l =2. The symbols are as in Fig. 2.

&&[(I+ 1)(e" i —1)+ l(e"'i —1)],
(77)

The corresponding phase shifts 5r' are obtained by
comparison of these expressions with the usual
expansion'o in partial waves of f„(tt).

fN (&) =2.K pe"'tI', (cose)
1

2sKI r

Ct = tt/2.

As previously noted, we shall pass from the p-u
elastic scattering case to the n-n case just by re-
placing Iit'i(K, ) by g,';(K,). In the elastic scattering
the final state E is identical to the initial state of
the target: It is the fundamental state f of this tar-
get. Nevertheless, the internal structure of the
target may appear through the possible excitation
of its inelastic states. For the u particle the first
inelastic state appears around 40 MeV in the lab-
oratory system. It may thus play an important
role above 40 MeV. We shall therefore use (31)
to write

Gr'= Grg=Gr +Gry (81)

2iKi ttf + (4/tt)Gt' (78)

The differential cross section or the polarization
of the scattered particles will be obtained by eval-
uating the well-known expressions"

1.0
T3

0.7
7/2

1.0

ftt(g) ge2ial+1(g)e&i[e2ihi Pihl ] .
2gKI r

We can now easily obtain the following expression
for the phase shifts

where f denotes the fundamental and e the first
excited state of the target. Then

e""i —1 2[ii,', (K,)]'
2iK, X,

' + (4/tt)(G, '~+ G,',)

From this expression, it is easy to obtain the
imaginary and real parts of the phase shifts. The
results are similar to the a-a case (cf. next sec-
tion). To describe the p-u elastic scattering we

1.0
7/g

Tg

0.7
9/g q 04

0.7

0.6
23 30

15'
40 50 E lab (MeV) 15

0'

53 15'

0'
10 20 30 40

E lab (MeV)

~ ~L L

0

5~
9 15

0
20 30

4 1
S ~
%$

40 50
E lab (MeV)

FIG. 6. p-0. scattering. Real and imaginary parts of
phase shifts for E = 3. The symbols are as in Fig. 2.

FIG. 7. p-e scattering. Real and imaginary parts of
phase shifts for E =4. The symbols are as in Fig. 2.
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have thus chosen two form factors:
K' (s+ 1)!

ht/(K) = (2l+ 1)!!C,(9) bs [K2 (p& )2](S+2)/2 (2 I)!!
s=l

(83)
and

h,', (K) = p,'(2I + I)!!C,(q)

K' (s+ 1)!
s [K2+ (P )2](s+2)/2 (2s + I)f( '

s=l

(84)

These form factors are nearly the Coulomb trans-

form of a Yukawa potential (53), except that the
hypergeometrical function has been set equal to
unity for the sake of simplicity. When the n-u
elastic scattering is studied, we set @=0, and

noting that (2I + 1)!!C,(0) = 1 and 5, = 5„, we get

(I + 1)! K'
lf (21+ I)!! [K2+ (P )2)(1+2)/2 I

~ (I + 1)! K'
gl e Pl (2I + I )!![g2 + (P )2]u+ 2)/2 '

(85)

The X„P,', and p, parameters used are given
(Table II) for the P-o. elastic scattering and (Table

10

I

10

1.997MeV

100

l
~ 11.65 MeV

3.0
b c', 100

'a

10

4.0
100

10
5.0 100

6.016
10 100

10 6.97j
100

100

100

100

10

10
0 50 100 15Q

30
0 50 100 150

ec.m.

FIG. 8. P -n scattering. Theoretical cross sections.
The experimental data are from Barnard, Jones and
Weil (Ref. 12).

FIG. 9. p-0. scattering. Theoretical cross sections.
The experimental data are from Brockman (11.65-17.84
MeV) (Ref. 23) and Allison and Smythe (20.62 MeV)
(Ref. 24).
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III) for the n n-elastic scattering. Corresponding
phase shifts are given in Figs. 2-7. We note here
that a v/2 value of the phase shift (for 5,'" and 5',",
for instance) gives immediately the corresponding
~, parameters. On the other hand, the experimen-
tal 6,'" shows a sharp resonance around 22 MeV.
This compound-nucleus resonance cannot be found

by our formalism which postulates a direct pro-
cess for elastic scattering, but it can be ap-
proached through the usual method. " This
problem has been extensively studied by Hoop and
Barschall" and Darriulat et al."

The validity of the set of parameters determined
has been tested by the evaluation of the polariza-
tion together with the angular distribution of the
scattered particle (Figs. 8-18) " """"""
Finally the nearly identical values of A.'„P,*, and

p,
' for the n-n and p-n elastic scattering indicates

that the nonlocal separable potential in the configu-
ration space is nearly the same for p-n and n-a
interactions. Using a method proposed by Coz,
Arnold, and MacKellar, "we have evaluat:ed the
equivalent local potential for an S wave and a one-

term nonlocal separable potential. For l =0 the

go(ff) form factor defined in (52) becomes

(86)

and leads therefore to the result shown in Fig. 19.
For more complicated form factors and nonlocal
potentials, the evaluation of the equivalent local
potential has not yet been achieved.

VI. n-n ELASTIC SCATTERING

This particular case is the simplest one, be-

50
L

100

50

100

50

50
100

100

E

50

100

100
50

100

50
50

100
100

50 50

100

50

50

24.78

100 150
ec.m.

FIG. 10. p-n scattering. Theoretical cross sections.
The experimental data are from Darriulat et al. (Ref. 22).

I

50 100 150
ec.m.

FIG. 11. p -n scattering. Theoretical cross section.
The experimental data are from Allison and Smythe (26
and 27.68 MeV) (Ref. 24); Bunch, Forster, and Kim (31
MeV) (Ref. 25); Brussel and Williams (40 MeV) (Ref. 26);
Bunker et al. (46 MeV) (Ref. 27); and Davies et al. (49MeV)
(Ref. 16).
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cause of the zero value of the spin of particles in-
volved. The transition amplitude becomes

ZC (fF )! p(~r)& p (87)

where

2m+ +
(~r)tmp (f 1)gamp 2 lq 1pq( 1)lmq q

q

(f,')*...= e"1 Y* (Kr)h«p(Kr), (88)
(f ) p e Y (Ky') frig' p (Ky')

fr„,(K)fr„,(K)

f

Limiting ourselves to a two-term nonlocal separa-

ble poten i,q-t t'al U q ~2) with identical form factors
Af ' = h „., = h „.we obtain the transition ampl itude
by the procedure used in the preceding section

T»= Qe"' (1C~„+Ci,)Y~ (Kr)Y1 (KF)

(89)

(90)

0.6
P (8)

h„(Kr)h, r(Kp)
1 —(2m*/ff')(C„+C„)G, '

The one-term nonlocal potential case is obtained
by se lngtt' C =0 in the above expression. T e
phase-shift expression (82) is still valuable, i.e. ,

e"'~ —1 2[I «(Kr)]'
2iKr X, + (4/rr)G,

'

P (8)
0.4

0

0

0.4

0
0.4

0
04M

I

0.94 MeV

t

1.14

1.35

1.56

1.765

04
I

8.5 MeV

0.4'

0

0.4
0.4'

0 .—

0
0.4"'

0
1.97

0 x'
i 30 / p

o ~q, t'

0 ~
0.4

0

0.4

0—

~ 1

0.4
p 4

0
20.09

0.4
0.4

0

—0.4 5.93

—0.6
0 50 100 150

ac.m.

FIG. 12. p-n scattering. Theoretical polarizations.
The experimental data are from Brown and Trachslin
(0.94-3.2 MeV) (Ref. 11); origo et al. (4.5 MeV) (Ref. 28);
and Brown, Haeberli, and Saladin (5.93 MeV) (Ref. 29).

=1 4 MeV.The dashed curve has been calculated for E = . e

0 50 100 150
~c.m.

FIG. 13. p -0. scattering. Theoretical polarizations.
The experimental data are from Rosen et a .al. 8.5 and 10

30) Busser et al. {12 MeV) (Ref. 31); Garreta,
Sura, and Tarrats {14.23 and 17.45 MeV) (Re . 3 ); ei-
kamp and Haeberli {20.1 MeV) (Ref. 13); and Craddock
@al. (22 MeV) (Ref. 33).
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G, = G„=G,f+G„, (91)

Here too, the possible excitation of the n target
is taken into account by introducing the first ex-
cited state of the u particle, i.e.,

(94)

The imaginary and real parts of G,f have thus the
values

where

m . [n„.(K)]'
4 " " K'-K' —K

(92)

B&f = 2Kcllt«(Kr)]

4 - [h«(K)]' ~r'- K'

On the other hand

(96)

The ground state of the a particle is defined by
K~'=0 while the first excited state E gives

K '=(2m*/@')B . (93)

Let us first consider the incident energy E,
smaller than the excited E . We immediately get 1.008 MeV

p (e)

0.5

0
&3.59MeV

E
10

1.96

1.0 10

0.5 2.98

0
10

1.0

0.5
10

4.00

24.T8 5.028

10

0.5

29
0 ~

~
~

0.5

10

10

6.00

7.013

1.0
0 50

I I

100 150
ec.m.

FIG. 14. p-e scattering. Theoretical polarizations.
The experimental data are from Darriulat et al. (23.59—
24.78 MeV) (Ref. 22) and Craddock et al. (29 MeV)
(Ref. 33).

0 50 100 150
ec.m.

FIG. 15. n -n scattering. Theoretical cross sections.
The experimental data are from Morgan and Walter
(Ref. 17).
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takes a purely real value, since K,' —K ' &O. It
follows that

we obtain

~K '-K'+K'
(97) B„=2K' [h„(KJ)]',

(100)

B„=O.
The use of (95) and (97) leads to purely real phase
shift (see Appendix C)

while A, z and B,z are still given by (95). The
phase shifts take here a slightly more complicated
form (see Appendix C):

Ei &E ~tan5, =
~l + l f + le

Let us now consider EI greater than E . When

setting

(99)
e-"»= ~

B,f+B„7,—1
tan5, „= +

~1+ ff+ 1e I l

(101)

K;"= /K.,'-K, '/ (99) The parameters 7, and R, introduced here have

2
10

8.02 MeV

p(e] 0.6

0.4

1.015 MeV

0
0.4

2.0

10

10

/

245 j /~
—04

10

—0.4

0 k~gf

10 0.4

10

—0.4
16.4

10

I

50
I

100 150
ec.m.

FIG. 16. n -n scattering. Theoretical cross sections.
The experimental data are from Hoop and Barschall
(Ref. 18).

—0.6

50 100
e,

150

FIG. 17. n -e scattering. Theoretical polarizations.
The experimental data are from Sawers ei al. (1.015 and
2.45 MeV) (Ref. 34) and May, Walter, and Barschall
(2.6-16.4 MeV) (Ref. 35).
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TABLE IV. n-n scattering. Parameter values. When two values are given, the first is for h&&Q) and the second
for h) g).

Pff (or e) (fm)

(fm) 3

0.43

0.926

0.98

0.115

1.57

5.p4xlp '

1.7
0.5

2.25 x 10

1.65

4.47 x 10

10

1.70

1.94 x10

p
2

dlf (or e) (fm)

0.06
0

3.4
0.38

1.36
0

4.0
0

—0.8

5.0
0

4.0
0

the values

KrKrhlf (Kr)hl (Kl)
(~, +A„+A„)'+(B„+B„)''

2h, r'(Kr)(X, +A,r+A„)
(&, +A

$f +A «)'+ (B«+B«)

0.5

-0.2

0.5

-0.2

(102)

We must stress the fact that below the energy
E of the first excited state of the n particle, the

imaginary part of the phase shift vanishes inde-
pendently of any choice of form factor. This cor-
responds to the experimental situation, since be-
low 20 MeV in the c.m. the phase shifts appear to
be purely real. As previously done, the form fac-
tors have been chosen to give, for l=O, a Yukawa
form factor, i.e.,

h, r(K) = (2l+ 1)!!C,(r!)
K' (s+ 1)!

x 8 [(K d )2 ~ P 2](s+2)/2 (2s + 1)!!
s=l

(103)
h„(K) = p, (2l+ 1)!!C,(r!)

x
K' (s + 1)!

s [(K d )2 ~ P 2](s+2)/2 (2s + 1)t t
'

s=l

The 5, phase shift vanishes at 19.5 MeV (lab sys-
tem) and has thus been fitted with a two-identical-

—0.2

0.5

t

25

V(MeV}

0

50 MeV

/Z ~
—0.2

—25 I

04
—50

—0.5

50 100 150
ec.m.

—75

FIG. 18. n -0. scattering. Theoretical polarizations.
The experimental data are from Perkins and Glashaus-
ser (23.1 MeV) (Ref. 36); May, Walter, and Barschall
(23.7 MeV) (Ref. 35); and Arifkanov et al. (24.7-34.1
MeV) (Ref. 37).

0 2.5
R (fm)

FIG. 19. n -n scattering. Local equivalent potential
for l =0.
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terms nonlocal separable potential. The Cpy and
C p2 are then rel ated through

YQ CQ2/ Ql I / Q i

where

(104)

VII. CONCLUSION

ff 2 22n4/g2g + 2 (2m'/ff2)Q (0 97)2 fm-2

(105)
Around 40 MeV a rapid variation in 5, and 5,

corresponding to a compound-nucleus resonance
is not explained by our formalism but may be
reached by a one-level Breit-Wigner formula. "
The parameters used are listed in Table IV and
the corresponding phase shifts are shown in Fig.
20 and 21.4O

obtained in p-p elastic scattering even at low en-
ergy just by introducing Coulomb effects in a new

form factor, the Coulomb transform of the usually
used g(K) form factor. We have then evaluated
theoretically the phase shifts in nucleon-nucleon
elastic scattering, and very good results were ob-
tained for the angular distribution as well as for
the polarization of the scattered particle.

Finally, for a-a elastic scattering we have
shown that simple consideration of the first in-
elastic state of the target could explain the real-
ness of the phase shifts below 30 MeV and leads
to an excellent fit of the phase shift up to 100 MeV.
Indeed, the elastic scattering description has not
been exhaustively treated here, but the use of non-
local potential seems to be very promising.

The transition amplitude of an elastic scattering
phenomenon is formally easy to obtain with the use
of nonlocal separable potentials. In practical ap-
plications three kinds of difficulties may appear.

First, the nuclear-interaction matrix element is
expanded in a serial form of separable terms and
this series has to be truncated. Usua1ly at most
only two-term nonlocal potentials are considered.
The second problem arises from the determina-
tion of the form factors. Finally, the introduction
of the internal structure of the target is easily
tractable, only when few excitation states are
taken into account.

We have shown that merely good results can be

0

100

t ~00 —-
K

50

I

20 t 6oL

00 0

20

100

0 0 ($b o

20

50

0

20

0
t 50&~~

20' '"1
0

50~

0
40 60

n 0

BO 100 0 o o
Ci A

E lab (MeV)

FIG. 20. e-e scattering. Imaginary part of phase
shifts. The experimental data are from Darriulat
(Ref. 40'.

20 40 60 80 &00

E lab (MeV )
FIG. 21. n-o. scattering. Real part of phase shifts.
The experimental data are from Darriulat (Ref. 40).
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APPENDIX A. NONLOCAL SEPARABLE POTENTIAL
IN DIFFERENT REPRESENTATIONS

We set

(Kx 'P (xi I Y?c IK x 'P c&c&) Z 'C (i (xg'g((x(K)g) 'g(x(K ) J(lg)) Jp (K+(i s) Jp (K')
1 1 SP

J/f

(A1)

and we want now the expression for (X», &((),. ) V„~X», y, ); i.e. , the matrix element of the nonlocal separable
potential when Coulomb effects are involved:

&x;, g.;)lg, )lx;, g )=Sf &x;, cx.; I)g', gd &cc g"I, g I»"' cx )&cc'", g I xq X) gcc gg"

kk

We use the fact that

(9 (x(19 ccg) =S(gx (p cclxlx' g()(= 6,g'

to obtain

(x;, q'. ; I
x

I x;, cx.; &
= f&x; Ig")gcc"&cc", tx. ; I x, i»"', g.;&gg"'&(c'"I x,'» .

We use the matrix-element value of the potential in the (K) representation (Al) and expression (22) of
(x»~K") to obtain

2 2

&x', qx;)Iv Ix', g„)=(— Y Pc„', " ' ' Jg, (gg")Y,„(g)Y;.(g")g'„*,(g"')))t„xc,(g")
A. j)),' j' l l 'Sl)

(A2)

(A3)

xp((.~)g~(K'")Eq(KK'")Y) ...(K'")Y),...(K')dK "dK'".

The orthonormalization of the spherical harmonics leads to the result

2 2

&x;, g.; I
x

I
x', cx ) =(— P c(,*., g, (gg")g'„',(g")g"*gg"

1 l 'S p

(A4)

We now set

Fl'&&'" gljj &"'&'"'~"' (ls)~I &" (1 s~~
&"' .

g,",, (g)=—fg, (gg &g„',(g )g gg""
to find the formula used to give the matrix element of the nonlocal separable potential

(X», V.; I Y» IX» g V ., ) = g C tc'pht cp(K)hij p(K'8((s)g(KS(('s)gg(K )
l 1 'SP

Jlf

(As)

APPENDIX B. SINGLET PHASE SHIFT IN p-p ELASTIC SCATTERING

By using the formula (62), we get for the phase shift 5, the following:

I
2iX

=2 —h (K )~+—h (K )~
I lz 12 1

It can be shown that the phase shift 5, is always real and we set

(B1)

8 =b„+id, +lx ~ly v b2 = h2„+ i62, ~ (B2)

We thus obtain the following relation:

sin25( 1 —cos26( 2(n, „-ia, ) 1 . 1
ly ~ 12 I
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We can now express tan5,

(1/X„}h„(Kr)(4,6„—b,„a,„)+(1/yr2)hr~(Kr)(g„g„— g,g2, )
(1/X„)h„(K,)(d,,a„+A,h„)+(1/k, )h, (K )(d,,g„+d, r, „)

(B4)

The imaginary parts of 6, and &„ i.e. , 4„and 4„, may be extracted from the definitions (59) of g and

&, and from the decomposition (65) of G», into its real and imaginary parts. lt thus appears that

a„=O, a„=O. (B5)

The phase shift is then given by the simple expression

tan5, = -(n,/a, ) .
If we remember now that

(B6)

(a7}

and

G,„=,'v(A—„, iB—„,),
we obtain

1 1 1
+x= 1+—Arrz+ Ar22+ (At&&At 2—2 At&& ) r

1 1 1 1 21+—A —B — 1+—A —B + A Bs' l ll y l22 g l22 y l 11 y y l 12 l12
l1 l2 l2 l1 l1 l2

This gives expression (64) when we set yr = A. „/A. |2 and use the value (B6) for tan5r.

(B8)

APPENDIX C. REAL AND IMAGINARY PARTS
OF PHASE SHIFT KITH ONE-TERM NON-

LOCAL SEPARABLE POTENTIAL

7r sin2 5„2[h r(rK)r]'(X r+A, r+A„)

1 —T, cos25„2[h,r(Kr)]'(B,r+ B„)'
(C 1)

It follows immediately that

Tr —1 = 4Kr (R' + S ) —4KrS

(c2)

(C8)

and the value (Cl) and (C2) of the parameters R
and S lead to the relation

The relation (90),
e" & —1 2[h, r(Kr)]'

2iKr X, + (4/rr)Gr '

may be written, when using the fact that 5, =5l„
+ R„and T

First Case: E (E

We have seen that

B„=O,

Btr 2Kr[hrr(Kr)]

It follows then

1=0.
The imaginary part vanishes and

tan5„= S/R = Blf
+ lf +

Second Case: E ) E~

In this case B„takes the value

B„=2Kr[h„(Kr)]

and

16K K'[h, (K )]'[h, (K,')]'
(Xr +Arr +A„)'+ (B,r +B„)''

(C5}

(C6)

(c8)

(C9)

8Kr [hu(Kr }]
(Xr +A, r +A „) + (B,r +B„)
&&{2Kr[hrr(Kr)]' —(Brr+ B„))I. (C4)

We can note here that 0 «T, «1. The real part
takes now the value

Blf +Ble l

R 2KIR A. , +A,f +Ale 2KIR

Let us now apply these formulas to different cases. (C10)
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