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Several aspects of the three-body problem with singular-core interactions given by the
boundary-condition model (BCM), are studied. The kernel of the Faddeev equations for these
interactions is shown to have an infinite Schmidt norm even if the two-body interactions are
confined to a single partial wave. This does not necessarily imply that the Faddeev kernel is
noncompact. A proof of the compactness (or noncompactness) of the kernel has not been
found. We consider a family of two-body interactions, with square repulsions of strength V

for particle separation r(ro, which become the BCM in the limit Vo ~. For finite Vo, the
Faddeev kernel has a finite Schmidt norm (and is hence compact) and standard numerical ma-
trix texhniques may be used for solving the three-body equations. Simplified calculations of
the triton binding energy, using two-body s-wave interactions of this type, are carried out
for a number of choices of V(). The two-body potentials for r) ro are not varied. It is found
that the three-particle binding energy has a simple dependence on Vo. The value of the bind-
ing energy extrapolated to the limit Vp = ~ is found to be in excellent agreement with the result
of a previous calculation based on BCM two-particle interactions and numerical methods pre-
dicated on the assumed validity of standard matrix-inversion techniques. Some implications
of these results for more realistic calculations on three-body systems with two-body singu-
lar-core interactions are discussed.

I ~ INTRODUCTION

In a recent series of papers, '' we have derived
and studied numerically the completely off-shell
two-body t matrix for the ease of singular-core
interactions given by the boundary-condition mod-
el (BCM).' We have used this t matrix, for the
special case of a hard-core repulsion, in a sim-
plified calculation of the triton binding energy'
based on the Faddeev equations. ' A similar cal-
culation, with different numerical procedures,
was done by Fuda. '

Alternative derivations of the general BCM two-
body t matrix have subsequently been given by
Fuda' and Brayshaw. ' The latter' showed that the
pure BCM t matrix t, ,~(k'~q~ k) given in Kim and
Tubis (KT)' was unique if one assumes: (a) that it
is analytic in the complex q2 plane except for the
unitarity cut and possible bound-state poles for
negative q', and (b) that

fi, B~(&'~q~&) (2
jq2) -+ oo

The Faddeev equations, which have two-body
off-shell t matrices as "driving terms, " appear
to be the only formalism now available for deduc-
ing the three-body implications of general two-
body BCM interactions. (With the variational
method, one can handle only the specialized case
of two-body interactions with hard-core singular
behavior. )

Brayshaw' has recently shown that the Faddeev
equations do not have a unique solution when two-

body interactions have BCM singular-core be-
havior in al/ partial waves. He was able to de-
rive modified equations which have a unique solu-
tion with correct spacial and unitarity properties.

Brayshaw's analysis does not directly apply to
the calculations of KT,4 and Fuda, ' where only two-
body s-wave interactions are assumed. It does,
however, emphasize the need to carefully examine
the properties of the Faddeev equations in the
case of two-body singular-core interactions.

In Sec. II, we show that the kernel of the Fad-
deev equations, with the two-body interaction
given by the BCM, has an infinite Schmidt norm, "
even if the two-body interactions are confined
to a single partial wave. This does not necessari-
ly mean that the kernel is noncompact, " and we
have not as yet found a proof of the compactness
(or noncompactness) of the kernel for this case.

It seems reasonable to expect that for BCM two-
body interactions, three-body parameters, such
as the binding energy, should be practically ob-
tainable as extrapolated values of corresponding
parameters which are determined for an appropri-
ate sequence "soft-core" two-body interactions.
More precisely, consider a local two-particle po-
tential V(r), with r the particle separation, and
V(r (r, ) = V„V(r)ro) = V(r). For a fixed "outside"
potential V(r) and sufficiently large Vo, we expect
to find three-body parameters to have a simple
variation with V, which allows an accurate deter-
mination of these parameters in the limit V, —

In Sec. III, we give the complete off-shell t ma-
trix for a soft-core interaction which becomes the
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Herzfeld potential in the limit of infinite core re-
pulsion. In Sec. IV, the simplified triton binding-
energy calculation of KT4 is repeated with this
soft-core interaction. The matrix-inversion rneth-
od used in solving the Faddeev equations is fully
justified here because of the finite Schmidt norm
and hence compactness of the Faddeev kernel. "
We show in Sec. V that the binding energy does
indeed have a simple dependence on V„and find
the value extrapolated to the limit of infinite core
repulsion to be in excellent agreement with that
found in KT.' (The calculation of KT' was based
on two-body BCM interactions and matrix-inver-
sion techniques which are valid in the case of a
compact Faddeev kernel. }

Some implications of these results for more
realistic calculations on three-body systems with
two-body singular-core interactions are given in
Sec. VI.

II. SCHMIDT NORM OF THE FADDEEU KERNEL
FOR THE CASE OF TWO-BODY BCM

INTERACTION S

q' —p,' sin( p —p, )r, sin( p+ p, )r,
t~SCM P qip1 =

+ —1q —cosprp

X -cosp1rp+ i —sinp1rp 2 4
. q

Pl

const
qs.s, (p q} =p. , ~ S Cs, (p q}

0

with

(2 5)

p, q
' q'dpdq =1. (2.6)

A sufficient condition for the kernel Ks(pq;p, q, )
to be compact with respect to the Hilbert space
of functions

(p } Pqk(pt q)
(

2 0)p2+ q2+~2 (2.7)

Bound-state eigenfunctions correspond to solutions
of (2.1). The bound-state momentum-space wave
functions, ys s (p, q), are given by

The considerations of this paper are limited to
bound-state problems. We therefore assume nega-
tive values of S, the total three-body center-of-
mass energy. For simplicity, we discuss the Fad-
deev equation for a total angular momentum J=0
state of three spinless bosons which interact via
a two-body s-wave potential. Our notation is that
of Kim. " The homogeneous from of E(I. (1}of this
reference may be written as

with

y p, q dpdq(~,

is that the Schmidt norm of K~,

(2.8}

(2 9)

„P,q, 4(P„q,)
P2+q, —S (2.1}

where

ffs(p, q; p„q, ) =~& S&(PI~S —q'I p,),8 p

(2.2)

(P,'=P,'+q, '- q'),

—

p ~ (p q)- (r/BIt2q+e21

dq, dp~s(p, q; p„q, )
0 ('. 1/v3) l2q-q2l

is finite. "
It can be shown, however, that llffs ll' =~ when

Ks is given by (2.2) and (2.4). Consider, for ex-
ample, the norm of the contribution to K~, which
comes from the second term on the right-hand
side of (2.4). It contains the integral,

&1«»I2q+ q2I qq 2
I= dq'2 dp2 p1 0+ pl 0

p (1/vg)I2q-q21 pl

(1/vs)I2q2+ql p dp1 1
dq2

p (1/&»I 2q2- ql

Vq2 —S
cosp1rp + sinp1rpP,

and t(plls —q' lp, ) is the completely off-shell s-
wave two-body E matrix which is normalized so
that on the energy shell

t(pl PIP) =
p

(2.3)

where 5,(P) is the real s-wave phase shift. For
the pure BCM, with parameters f and r„we have

which satisfies the inequality

(2q+ q, )(2q + q) (i@~)I2,- i

~

~q' —S
cosp1rp + sinp, r,

Pl

(2.10)

(2.11)
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where the p, integration may be done analytically.
We find that

l
OO

q2

,i, (2e+ e,)(2a', + 4)

4, 2q, ' 4x,q2, 2roqx ~3q2q+ cos ~ sin ~

whether or not the calculation of KT gives the
"physical" result (the one obtained by extrapolating
the soft-core results to the hard-core limit).

For the more general case of a soft-core BCM
model with an arbitrary "outside" interaction, we
would use the model for the core region which was
introduced in Ref. 1, with Uo and U, finite and

+ convergent integrals =~ . (2.12) r, (/U, —r, U,)=f. (3.1)

By using similar arguments, it is easy to show
that the norm of the total K~ is infinite. The addi-
tion of a reasonable two-body interaction for r) xo
will not change the situation.

III. OFF-ENERGY-SHELL 1 MATRIX
FOR SOFT-CORE INTERACTIONS

In this section, we give an explicit expression
for the complete off-shell t matrix in the case of
a square-well from for the core repulsion and the
interaction outside the core. In the limit of in-
finite core repulsion, this interaction becomes the
Herzfeld potential. It will be used in Secs. IV and
V to do a "soft-core" version of the binding-ener-
gy calculation of KT.4 We will then determine

V, (r) = (h'/2p)U, &0, r & r, ;

V, (r) = (h'/2g)U, &0, ro& r& r, ;

V,(r) =(h'/2y. )U, =O, r& r, ;

(3.2a)

(3.2b)

(3.2c)

where p, is the reduced mass of the two nucleons,
r, is the soft-core radius, x, is the outer radius
of the "outside" interaction, and the U, 's are con-
stants proportional to the interaction strength.

In extrapolating to the BCM limit, we would fix
r, and f and let U, »~. Expressions for the t ma-
trix for this case may be easily derived. However,
they are very complicated and will not be pre-
sented in this paper.

For each partial wave, the parameters of the
two-body interaction are as follows:

Since the details of deriving the off-shell t matrix are outlined in Ref. 1, we give here only the final
expression,

(ADU, -A, U, )r,'y, (k 'k Ir, ) —A, U, r, 'y, (k 'k Ir, )

, X,(k'a, Iro) (A, —A, ) ', [r'j, (kr')]
7'=70

with

B;(1)—,[r'j, (nor')]
0

7'=7

z-(2)r j (n r ) U
[r,'Xi(k'a, Ir, ) - r.'Xi(k'a, Ir.)]

0 k —a,

+D', (1)—,[r'h,' (a,r')] +8, (1)—,[r'hI ~( nr')]
"=70

, 7

D.(2) ( ) U
[ri'Xi(k'nilri)- r.'Xi(k'ailr. )]

1

(3 3)

d
D, =D, (1)—,[r'j, (uor')] +roj, (n,r, )D, (2),dr' 7'=70

D, (1)=-n, '[roh, '(a, ro)y, (a, n,'I r, ) —roh, (a,r )y, (u', a,'I r,)],

(3.4)

(3.5)

D, (2) = -u, ' -d—,[r 'h, ' (a,r')] lt, (u, u,'I r,)+ —,[r'h, (u, r'))7'=7
0

xi(ai n: Ir,),
I

70
(3.6)

2

~i(1)= D' [(A, -AO)roji(kro)Xi(a, u:Ir, )+(A, —1)r,h', '(a, r, )g, (ka2Ir, )],
1

(3.7)

Q
i ( ) = ' [M, Ao)roj, (kro)y, (a-', n2 I r, )+ (A, —1)r,h~,

' (n, ro)y(kn, 'I r,)],
l

(3.8)
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2

B', (2) = ' QA, —Ao)—,[r'j, (kr')] x,(u, n,'I r, ) + (A, —I)—,[r'h, (n, r')]
r' =rp

xi(kn; I r,),
I

rp

(3.9)

2
+ + t (+)8, (2) = ~ -(A, —Ao)—,[r'j, (kr')] x, (a,'a,'I r, )+ (A, —1)—,[r'h, ' (n, r')] x, (kn,'Ir, )

p

The X, 's are Wronskians defined by

(3.10)

x (kn.'lr, ) =
r, j,(kr, )

(3.11)
(d/dr)[rj, (kr)] I, „, (d/dr)[rh~, '~(u, r)] I, „

and similar expressions for other X, 's. The h, '~(x) are the tth-order spherical Hankel functions of the first
(second) kind, the A, (i=0, 1) are given by

A, =(q'- k')/(q'- k'- U,.),
and the a; (i = 0, 1, 2) by

(q2 U )1/2

In the hard-core limit (U, —~), we have A, = 0, A OUO
= —(q ~- k'), U, /(k" —a,') = 1, and

d—[rji(u.r)] '0
I r.ji(u.r.) I

r=r

(3.12)

(3.13)

(3.14)

for In, I- ~ and Imuo &0, so that (3.3) reduces to (4.11) of Ref. 1.
For the special case of 1 =0 and q &0, which we will utilize in the next section, (3.3) can be simplified to:

q' —k' ro', q' —k' r, x,(k'k Ir, ) —r,'x, (k'k Iro)t,(k'lqlk)= , k, -U U, k„' ~x,(k'klr, }—
2 k U

Ui
' '

k', 2
0 1

Uo sink 'r tanhyp

0

q
' —k' q' —k' D,(1)cosh'y coskr +(1) -(1)q2- k2- Ul q2 k2 Up Do

where

yo=~lq' —Uol= In, l.

„,tanhy, r,'x, (k'u,'I r, ) —r, 'x, (k'n,'Ir, )

Yp 1

, tanhy, r, 'x, (k'n, lr, ) —r,'x, (k'a, lr, )
Yp 1

(3.15)

(3.16)

IV. THREE-BODY BOUND-STATE CALCULATION
WITH SOFT-CORE INTERACTIONS

In this section, we discuss the numerical solu-
tion of (2.1}when the two-body t matrix is given
by (3.15). Factors such as U,/(q' —k —U, ) in
t, (k'lq Ik), which tend to constants in the hard-core
limit, give enough inverse powers of momenta to
yield a finite Schmidt norm for the kernel of (2.1).
The kernel is thus compact and the usual numeri-
cal quadrature techniques for solving (2.1) are
fully justified.

The numerical methods for solving (2.1) are
discussed in detail by KT,' and we will only give
a brief description of them here. In (2.1) we dis-

P(p, q, ) =- Z ~.(q,)f.(p),
m=J,

(4.1)

where the q,.'s are fixed Gaussian-quadrature
points. In the calculation of the triton binding en-
ergy, with two-body s-wave Herzfeld potentials,

cretize the p and q variables with sets of N~ and
N, points, respectively. For the q, integration,
we use N, -point Gaussian quadrature. For the
p, integration, we use the approximate-product
technique in order to avoid the difficulties associa-
ted with the variable integration limits. This in-
volves an expansion of tt( p, q) in a set of linearly
independent functions f (p) for fixed q, namely



EXTRAPOLATION TO THE LIMIT OF. . . 697

in KT,' the following forms were used for the f (p):
m

f.(P)=, m=0, 1, 2, . . . , N, -1,
A+p Q+p

(4.2}

and

f (P) = '+, m=1, 2, . . . , X, —1.
p Q+p Q+p

(4.3)

r2
k„' k, [x((k'klro) —xi+ (k'klro)]

(2l + 3)r,)
k,k

' jl.l(k'r p)ji, l(krp),

(4.6}

with help of various recursion relations involving
the spherical Bessel functions and their deriva-
tives. Combining (4.5) and (4.6), we obtain the
separable expansion":

Both of these choices for f (p) give results of
8.13 MeV for the triton binding energy with N~ = 8
and N, =10.

We present here another possible choice for the
f (P) based upon an infinite separable expansion
of the I matrix. In (3.15), we note that the I ma-
trix has the separable expansion

drrj, (k'r)rj, (kr) =,' g [2(I+2m) —1]
0

&&jt p -y(k'rp}jl+2 1(kr.).
(4.7)

Similarly, we obtain a separable expansion for
the integral

tp(k'(qjk) = QC„g (k')k (k, q) (4.4) l dr rj, (k'r}rn, (kr) =,
k +[2(l+ 2m) —1]

0 m=1
if the integral parts can be expanded in the form
g C g (k')k (k, q). To derive such an expansion
for the integrals, we first note that

r
rp r2

dr r j ((k'r)rj, (kr) = a P, X,(k'k (ro) .
0

"ji+.m-i(
'

o)ni+p. -,(krp),

(4.8)

where n, (kr) is the spherical Neumann function.
In obtaining (4.8}, use is made of the relation

(4.5}

Using the definition for the X, s given in (3.11), it
is straightforward to show that

rp rpdr rj, (k'r)rn, (kr) =,p „,W, (k'k~ro),
0

(4.9)

where the Wronskian 8', is given by

W, (k'k ~r, ) =
1 pgt(k 'rp) r,n, (kr, )

(4.10)
(d/dr)[rj, (k 'r)] ) „, (d/dr)[rn, (kr)] ), „

I dr rj, (k 'r) V(r)rj, (kr),
rp

by use of recursion relations and integration by
parts. The above integral appears in the inhomo-
geneous term of the Lippmann-Schwinger equation

(4.12)

Combining (4.7) and (4.9), we obtain

rp 40

drrj, (k'r)rh, '(ar) =,P +[2(I+2m) —1]
0

m=l

xj„p,(k'r )hl 2 1(a 0}

(4.11)

where h, (ar) =j,(ar}s in, (ar).
A similar separable expansion can be derived

for the integral

for the two-body t matrix of the general BCM.'
The i matrix (3.15) may thus be expanded as

fp(k'~q(k)=Q P a (i)j (k'r;)h (k, r„q).
i =1 m=p

(4.13)

&(P, q, ) = a.i.(P .)+ b.i.(Pr, )
Np Nl

+ g a„j,„,(prp)+ g b„i,„,( jn, )
n=l n=1

(4.14)

with the restriction N, +N, =N~- 2.

(4.13) suggests an expansion of p(p, q), for fixed
q, by the following series of linearly independent
functions:
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With the above choice of linearly independent
functions for f (p), (2.1) is converted into an NXN
matrix equation with V =N, && N ~. The triton bind-
ing energy is calculated by finding the value of S
for which the determinant of the matrix equation
vanishes.

V. EXTRAPOLATION OF BINDING-ENERGY-
CALCULATION RESULTS TO THE LIMIT

OF INFINITE CORE REPULSION

In this section we extrapolate the results of the
triton binding-energy calculations for soft-core
two-body interactions to the hard-core limit and
check to see if the extrapolated binding energy is
in reasonable agreement with the value 8.13 MeV
obtained in KT.4 We fix all the parameters of the
s-wave Herzfeld potential except (h2/2II, )UO (the
soft-core strength) at the values used in KT' [ro
=0.4 F, r, =1. 737 F and (b2/2II)U, =-63.85 MeV].

Using the numerical method outlined in Sec. IV,
the triton binding energies were calculated as a
function of U, . The f (p) given in (4.14) were used.
Binding energies were calculated for U0=65, 100,
200, 300, 103, and 10 F '. The results are sum-
marized in Table I. They were obtained with N,
=12, N~=8, and N0=N, =3. A calculation with the
same f (p), for infinite core repulsion, gives 8.06-
MeV binding energy in excellent agreement with
the previously obtained value of 8.13 MeV.

The accuracy of these results was tested by in-
creasing N~, N„NO, and N, The cho. ices (N~, N„
No, N, ) =(12, 8, 3, 3), (16, 8, 3, 3), (10, 12, 5, 3)
all yielded binding energies differing from each
other by less than 1%. From these considerations,
we estimate our error to be less than about 2%.

To extrapolate our results to the limit of infinite
core repulsion (Uo-~), we assume a simple rela-
tion between the calculated triton binding energy
[Eo = -(b /m)SO) and Uo:

energy for Uo=~. We may express (5.1) as

1
ln = a ln U, —lnb .

0
(5.2)

Thus, if our assumed dependence of S0 on U, is
correct, the plot of ln(1/S„—S,) vs U, should be
a straight line with slope a and intercept -lnb.
Plots of (5.2), for E,(~) =-(b'/M)S„=7. 0, 8.25,
and 8.7 MeV are shown in Fig. 1. The choice
Eo(~) =8.25 MeV appears to be a good estimate of
Eo(~). The dashed line represents a straight line
of (5.2) with Eo(~) =8.25 MeV, a =0.58 and b =3.76.
The extrapolated binding energy thus differs by
1-2% from the results of previous calculations for
the case U0= that were based on matrix-inver-
sion techniques which are valid for a compact
Faddeev kernel.

VI. SUMMARY AND CONCLUSIONS

5.0— + 7.0 MeV

p 8.25 MeV

x 8.7 MeV

The infinite Schmidt norm of the Faddeev kernel
in the three-body problem with singular core in-
teractions, makes it difficult to rigorously deter-
mine the validity of standard numerical quadrature
and matrix-inversion techniques for solving the
integral equations. In this paper, we have de-
scribed calculations which seem to indicate that
these techinques are valid for the case of singular
core interactions in a finite number of partial wave
states. A reasonable extrapolation of the results of
three-body calculations with soft-core interactions
(which give a finite Schmidt norm for the Faddeev
kernel) to the hard-core limit, yields essentially
the same results as the calculation of KT (based
on hard-core interactions and standard numerical

(S„—So) =bUO ', a &0, S„—So &0. (5 1)
40-

a and b are constants and -(b'/1(4)S„ is the binding

I

O

—3.0— +
X
8

Up

(F )
Sp

(F )

Ep
(MeV)

TABLE I. Calculated triton binding energies Ep
[=—(5 /M)Spj as a function of the soft-core strength Up
(jn units of F ) with l /M =41.47 MeV F . 2.0-

I

5.0

j$- +
+

(.0- .-&

I

4.0
I

6.0
I

7.0
I

8.0
I

9.0
65

1.0 x10
2.0 x ].02

3.0 x10
1.0 x10'
1.0 x 104

—0.5277
—0.4624
—0.3729
-0.3378
—0.2671
-0.2173

21.88
19.18
15.46
14.01
11.08
9.01

JnUp

FIG. 1. Plots of ln(1/S„—Sp) versus lnUp with three
different choices for Ep{~) [:—-(5 /M)SJ: 7.0, 8.25, and
8.7 MeV, with {h /M)=41. 47 MeVF . The dashed line
corresponds toEp(~) =8.25 MeV. Up Sp and S„are in
units of F
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quadrature and matrix-inversion techinques).
It is easy to construct examples of integral equa-

tions, with kernels having infinite Schmidt norms,
which may be solved by methods similar to those
used in this paper. A rather trivial one is the
homogeneous eigenvalue equation

~0

f'"'(x) = &(N) &y K(x I y) e (N- y)fi"'(y),
1

g(N y)-=0, for y)N,

S(N y) =-1, for y( N,

(6.8)

(6.8)

f(x) =z dy K(xly)f(y),
I

with

(6.1) and extrapolating the results to the limit N- ~.
Obviously,

K(xly) =H(x)G(y),

H(x) =f~/e,
G(y) = 1/W&.

(6.2)

(6.3)

(6.4)

dx dyiK(xly)l' =
1 1

The eigensolution of (6.1) is obviously

(6.5)

The kernel K(xly), as well as all of its iterates,
has an infinite Schmidt norm

~(N) =~( )N/(N- 1). (6.10)

Hopefully, we will soon find a mathematically
rigorous justification for the numerical procedures
used by KT.4 We are now doing calculations for
bound-state, scattering, and form-factor param-
eters of trinucleon systems for the case of BCM
two-body interactions in a finite number of partial
waves. Calculations are being done using essen-
tially the methods of KT,4 and the results are
being checked by extrapolation of the results of
soft-core calculations to ths singular-core limit.

f~(x) = const &&H(x),

with

(6.6)
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