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Isobaric analog resonances {IAR) observed in the elastic scattering of protons from Pb,
Ba, Sn, and 2 Sn are analyzed in the framework of the shell-model theory of reactions.

Parametrization of the energy-averaged S matrix elements given by the shell-model theory
is discussed, and the dependence of the spectroscopic factors upon the various optical-model
parameters is exhibited. The resonance mixing phases for most of the IAR analyzed here can-
not be distinguished from zero. Damping of the single-particle wave functions arising from
the nonlocality of the optical potentials is consistently incorporated. The nonlocality length
of 0.85 F employed in this analysis leads to an attenuation of the single-particle wave func-
tions by about 15% inside the nucleus. Neutron spectroscopic factors obtained here compare
favorably with corresponding results from the study of (d, p) and (t, d) reactions.

I. INTRODUCTION

Since the discovery of isobaric analog reso-
nances (IAR) in heavy nuclei, ' a large number of
these resonances have been studied in various nu-
clei. Most frequently, they have been observed in
the excitation functions of the elastically scattered
protons; however, in many cases the elastic scat-
tering data have been supplemented by measure-
ments of the cross sections for (p, p'), (p, n), and

(p, y} reactions proceeding through IAR. Soon af-
ter the experimental identification of the observed
anomalies as IAR, Robson2 formulated a theory in
the framework of the R-matrix approachs'4 to ex-
plain the nature of these resonances. Subsequently,
several different theoretical formulations of IAR
have appeared in the literature. ' " It is generally
believed that important nuclear -structure informa-
tion regarding the parent analog state may be de-
duced from analog resonances. Thus, the elastic
proton decay width of an IAR is related to the neu-
tron spectroscopic factor of the parent analog
state. Based upon the theories of IAR, several
methods have been developed for extracting the
neutron spectroscopic factors from the measured
elastic scattering cross sections. Application of
these methods yields neutron spectroscopic factors
that are in good agreement with those determined
from distorted-wave Born-approximation (DWBA}
analysis of (d, p) reactions. It is important to

study the methods for extracting the spectroscopic
factors from IAR in a systematic way. In this man-
ner, one expects to gain more insight into the na-
ture of IAR, as well as develop a useful tool for
spectroscopy. Several methods for extracting
spectroscopic factors from IAR have been com-
pared and analyzed by Harney and WeidenmQller. "
These authors point out that the determination of
the resonance mixing phase, first introduced by
Robson, ' would help clarify a number of unre-
solved questions regarding the external and inter-
nal mixing of the IAR. A knowledge of the reso-
nance mixing phase, it is hoped, would also help
in determining the validity of the statistical as-
sumptions that are involved in arriving at the ex-
pressions for the energy-averaged scattering ma-
trix elements.

In this paper we describe, in some detail, a
method reported earlier and apply it to extract
neutron spectroscopic factors from the measured
cross sections for the elastic scattering of pro-
tons from '~Pb, '~'Ba "Sn, and "Sn. One of
the main objectives of this study was to explore
the dependence of the extracted spectroscopic fac-
tors upon the parameters of the optical potentials
used to generate the energy-averaged scattering
matrix elements. In Sec. II we briefly review the
shell-model approach leading to the energy-aver-
aged scattering matrix elements derived in Refs.
11, 13, and 7 and write down the expressions rele-
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vant to the elastic scattering case. In addition, we
calculate the proton partial width of an "ideal"
IAR, whose parent analog is a pure single-neutron
state. The calculation is done in the framework of
the phenomenological Lane model. In Sec. III we

briefly describe the technique used in obtaining
some of the experimental data analyzed in this
paper. Section IV contains a description of our
method of analysis. The results are presented
and discussed in Secs. V and VI, respectively.

II. THEORY

Reminder of the Shell-Model Approach

The analysis presented here is based upon the
shell-model approach to reaction theory. Theories
of IAR based on this approach have been developed
by several authors. Here we follow a variation
discussed by Mekjian and MacDonald" and in Refs.
13 and 7. The reason for this choice is a practi-
cal one. This stems from the fact that the inde-
pendent-particle Hamiltonian of this shell-model
treatment is very similar to the empirically
known optical-model potentials for neutrons and
protons. In the following we briefly recall the
basic ideas of this formulation.

The nuclear Hamiltonian H is split up into an in-
dependent-particle Hamiltonian K, and the residual
interaction V,

H =Ho+ V,

where

Ho= P(K, + [-,' —t~'] v, (i) [+-', —t~']v~(i)

(2.1)

and

+ [-,'+ t,"]v„(i)) (2.2)

V = Q v(i, k) -Q [-', —t', "]v~(i) -Q [-', + t,"'] v„(i).
j& k

(2.3)

Here K; denotes the kinetic energy operator for
the ith nucleon. Similarly, v, (i) denotes the aver-
age Coulomb potential for the ith nucleon. The av-
eraged one-body potentials for protons and neu-
trons are denoted by v~(i) and v„(i) Finally. , v(i, k)
is the nuclear two-body interaction and t,' the
third component of isospin of the ith nucleon. For
simplicity, we imagine the target nucleus to be a
doubly-closed-shell nucleus with neutron excess.

As a first step, the nuclear Hamiltonian K is
diagonalized on the following set of eigenstates of
Ho: (1) a proton in the proton single-particle orbit
corresponding to the first vacant neutron orbit and
the rest of the nucleons in the shell-model configu-
rations corresponding to the target nucleus, and
(2) the set of 2p-lh states obtained by adding a neu-

The functions g„,satisfy the relation

(kpel Ivy'&= 5gv5(e —~ ) .

We define the matrix elements

v'„,"= (C. I vl q„,&,

v""=(4, lvlc, &,

v'„,"= (c'
I vl q„,& .

(2.5)

(2.6)

(2.7)

(2.8)

The expressions for the energy-averaged scatter-
ing matrix elements may now be obtained if one
invokes the following statistical assumptions

(2.9)

(y( i z) y( z)
& 0 (2.10)

Here the brackets indicate an average over the set
of states f 4,). In the notation of Ref. 13 we now

tron in the first vacant neutron orbit and convert-
ing one of the excess neutrons into a proton. It
should be observed that the independent-particle
Hamiltonian K, is charge dependent; consequently,
the corresponding neutron and proton orbits, re-
ferred to above, are a priori not identical. The
correspondence pertains to the angular momen-
tum and radial quantum numbers of the two orbits
being identical. The states resulting from this
diagonalization are very close to being eigenstates
of analog spin" and also of isospin. ~ In particular,
one eigenstate 4~ is pushed up in energy and lies
close to the energy of the IAR of the parent analog
state obtained as the ground state of the target-
plus-neutron system. With optimum choice of sin-
gle-particle potentials the single-proton state men-
tioned above lies in continuum, usually occurring
very far below the Coulomb barrier as an extreme-
ly sharp single-particle resonance. This difficulty
may, however, be easily remedied by deepening
the proton potential and including the additional po-
tential in the residual interaction. " Next we ima-
gine K diagonalized on the space of more-compli-
cated bound eigenstates of K, than considered
above. This gives rise, in the vicinity of IAR, to
the complicated states 4;, also referred to as
"fine-structure states" and "sea of T& states. "
In addition to the bound eigenstates of K„wecon-
sider the continuum eigenstates of K, involving the
target nucleus and a proton in the continuum with
quantum numbers characterized by p, and energy e.
These functions are denoted by g~. The radial
part of the wave function of the nucleon in contin-
uum which we denote by F~ is the regular solu-
tion of the radial Schrodinger equation. It has the
asymptotic behavior

2mE„,— @ + sin(kr ——2wl -qln2kr+ 5„).
(2.4)
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write the expression for the energy-averaged S
matrix elements

( ) ~(/ ~+ / ) 1 —Y~+2i [+Ps'/I'Ps'] Y
"" I+ Y, +2i[~P,&/PP&] Y,

[I& &&]&/2 [I& &&]~/2

E —g+ ~iG (2.11)

Here 5& and 5„arethe phase shifts determined by
the real potential v~ introduced in Eq. (2.2). The
quantities Y~ and (I'Ps')'" are defined as follows:

Y~ = (v'/~)((Y")')

I f (E)11/2 ( ) ~RE
1+Y, + 2i[A';,'/I", ,'] Y, '

(2.12)

(2.13)

[P(z)]1/2 (2v)1/2Y(z) (2.14)

The average distance between the fine-structure
states is denoted by d, and b z~' stands for

(z) [~~'z]'«=P (2.15)

The definitions of 8 and G may be found in Ref. 13.
In the following they are treated as fitted parame-
ters. The Eq. (2.13) appears to define I'~s in an-(z) .

implicit manner. Actually, the ratio h~s/I'~s is(z) (z) ~

expected to be insensitive to the structure of the
state 4 z; in addition, the quantity F& is small com-
pared to unity in many cases. We return to this
point below. The connection between the energy-
averaged scattering matrix elements [Eq. (2.11}]
and those given by &he 'conventional complex opti-
cal-model potential is established by requiring

,2«~ -" +2'[~P/I'Ps'] Y~
( )1+Y~+ 2i [ A' "/I & '&] Y,

'

Here $), is the complex optical-model phase shift.
Thus, the complex optical model is used only to
parametrize the background part of the scattering
matrix elements of the shell-model approach.
Equation (2.16) may be used to determine Y~ in
terms of the optical-model phase shifts. It is use-
ful to define a resonance mixing phase 4 ~ by the

relation

8 '~~ = 2 arg ( 1+ Y/, + 2i [EPs~/I'P~ ]Y~}. (2.17}

Comparison with the work of Ref. 11 shows that in
the present framework the resonance mixing phase
is brought about entirely by the indirect coupling
between the analog state 4 z and the fine-structure
states (4;j through the open channels g/, s. This
coupling causes a correlation between the matrix
elements V" ' and V'„,"leading to the expression
(2.17) for the resonance mixing phase. Other con-
tributions to the resonance mixing phase have been
discussed by Mekjian and MacDonald" and by Har-
ney and WeidenmOller. " The resonance mixing
phase is also discussed in a somewhat different
framework by Robson and Lane. " Within the
framework of the Kerman and De Toledo-Piza'
theory a specific contribution to the resonance
mixing phase arising from the mixing between the
analog and the antianalog state is evaluated by
Auerbach et al. for the IAR in ' Y. Finally Har-
ney ' and Bund and Blair' have calculated the res-
onance mixing phases for a number of IAR in vari-
ous nuclei and compared the results with the ex-
perimental data.

In the present framework the calculation of the
resonance mixing phase can proceed using Eqs.
(2.17) and (2.15). It is important in this connec-
tion to point out that we assumed that the single-
particle potential v~ was chosen such that the pro-
ton single-particle state with the same angular
momentum and radial quantum numbers as that of
the neutron in the parent analog state is bound.
With this choice, the resonance mixing phase is
expected to be a small positive quantity. The op-
tical-model potential known empirically from the
systematics of binding energies, however, pre-
dicts this state to lie in continuum, where it usual-
ly occurs as a very sharp resonance far below the
Coulomb barrier. If one naively performs a. calcu-
lation of the resonance mixing phase using these
potentials, the single-particle resonance makes a
very large contribution to the integral in Eq. (2.15).
The corresponding contribution to the resonance
mixing phase is large and negative. In a consis-
tent treatment, however, one should deepen the

TABLE I. Parameters of the complex Saxon-Woods potentials used for fitting the background cross sections. The
form factors of the imaginary part and the spin-orbit term are derivatives of the Saxon-Woods form factors.

Vp

(MeV)
WD

(Me V)
Vso

(MeV)
ro
(F) (F)

rc
(F)

rz
(F) (F)

V)
(MeV)

2@Pb
138Ba
120g

"4s

66.35 —0.4'
63.4 —0.4E0
58.25 —0,5EI
56.00 —0,5'

10.20
10.00
10.00
9.00

5.80
5.80
5.80
5.80

1.19
1.23
1.235
1.235

0,75
0,65
0,65
0.65

1.19
1.23
1.235
1.235

1.19
1.23
1.235
1.235

0.77
0.69
0.77
0.78

0.500
0.750
0.866
0.839
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potential v~ until this state is bound~ and construct
the state 4 ~ as described above. The additional
potential would have to be included as a residual in-
teraction. Alternatively, the sharp single-particle
resonance may be incorporated in the shell-model
calculation using techniques discussed by Weiden-
mGller and Dietrich. ~ In either case one would ob-
tain a unified treatment of the analog resonance
and the antianalog resonance. In particular, the
continuum wave functions used to evaluate expres-
sions like Eq. (2.17) would no longer contain single-
particle resonances. One would, however, need
to calculate the coupling between the analog state
and the antianalog state due to virtual transitions
to the continuum. In this spirit we delete the con-
tribution of the single-particle resonance to Eq.
(2.15). This is generally quite straightforward,
since the resonance is very sharp and well below
the Coulomb barrier.

quantities of some phenomenological approach.
Such a possibility is provided by the Lane model.
This model was introduced by Lane~ for explain-
ing the charge-exchange (p, n) reaction. Several
authors"~" have discussed IAR in terms of this
model. The coupled differential equations of this
model have also been solved numerically for the
analysis of experimental data on analog reso-
nances. We use the Lane model with real po-
tentials to calculate phenomenologically the "ideal"
decay widths of the IAR and thus avoid having to
perform detailed shell-model calculations for each
IAR that we analyze.

The single-particle potentials v„and v~ intro-
duced in Eq. (2.2) uniquely define all the parame-
ters of the Lane model, since the form factor V,
of the charge-exchange term (t. T)V, satisfies the
relationship

(2.18)v„—vq
——TOV, .

Lane Model
In the framework of the Lane model one can ob-
tain approximate expressions for the scattering
matrix elements, ' '' '" valid in the vicinity of IAR.

The detailed microscopic model discussed above
is important for clarifying the nature of IAR; how-
ever, for the analysis of experimental data it
would be desirable to replace the matrix elements
V'„,' of the shell-model theory by corresponding

Z{L)
S I p{Q)+ p2

(2.19)

I 38l38
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30
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FIG. 1(a)-(c). Dependence of the calculated cross sections on the values of the resonance mixing phase III'&.
All the other resonance parameters were held fixed at the optimum values obtained by setting ft) & =0.
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where 5& is the real phase shift arising from the
potential scattering due to v~ and where

I'Ps =2T I I &4"~l(v. -v )lk~s) I'
2Tp+1

The function (II)~ satisfies

(K+ v„--,'V, +ho E„„-)P~=0,

(2.20)

(2.21}

where K is the kinetic energy operator, E„„is the
energy eigenvalue, and b, ~ is the Coulomb energy
shift. Finally, the resonance energy E~ is given
by

Eg EnA +AnA
(i.)

where

(g)
(L)

nA 2P E —6

(2.22)

(2.23)

The prime indicates that the contributions to this
integral arising from the proton single-particle
resonance at low energies are to be deleted. This
is similar to the corresponding situation discussed
in the case of the shell-model approach. The role
of this proton single-particle resonance has been
discussed in work of Zaidi and Coker. "

Expressions (2.19) and (2.20) may be compared
with Eqs. (2.11) and (2.13), respectively, if one
sets E'& =0. The comparison suggests a unique
relationship between the decay-width amplitudes
of the two models. A derivation of this relation-
ship including the possibility that the parent ana-
log state is not a pure single-particle state is

given in Ref. 16. One obtains

V~/~ —(2T, + I) ~~ S ~ (P „l(v v~)lg~ )
(2.24)

The analysis presented in this paper employs the
expressions (2.11)-(2.16) of the shell-model ap-
proach in conjunction with Eq. (2.24) to replace
the decay-width amplitudes of the microscopic
theory with the corresponding quantities of the
Lane model. The complex optical model is used
only to parametrize the background scattering.

Finally we point out that the expression (2.20)
may be identically transformed into the following:

( L) 87TTp 2
=(2T „)(2T I)-, &4 I(E, -E.,+~. — .)I& ).

(2.25)

In deriving this result, Eq. (2.21) and the radial
Schrodinger equation for the function g» have
been used, and a partial integration has been per-
formed. This result is interesting, since it does
not involve the form factor of the charge-exchange
term V, explicitly. Expressions similar to Eq.
(2.25) have been used by Harney and Weidenmttller"
and Bledsoe and Tamura. " Recently Clarkson,
von Brentano, and Harney ' and Clarkson, von
Brentano, and Dost" have also used a similar ex-
pression and discussed in detail the dependence of
the extracted spectroscopic factors on the optical
potentials. De Toledo-Piza and Kerman' and Ker-
man" derive expressions for decay widths that
also involve only the Coulomb interaction. It must,
however, be pointed out that those expressions in-

IOO

90
80,

TABLE II. Calculated resonance mixing phases for
the IAR in 'NPb, 3 Ba, and Sn.

22
20

State

Resonance
energy
(MeV}

~4),~c.&..
(rad)

IO

I5'E

IO

I4.0
I

l5.0 I6.0
Ep (MeV)

I 7.Q l&.Q

FIG. 2. Comparison of the calculated cross sections
with the experimental data for pb(p p) pb. The pa-
rameters used in the calculation are given in Tables I
and III.

208'

i38Ba

i20S

g9/2

d)/2
S i/2

A/2
d8/2

f7/2

P 3/2

P i/2
h 9/2f5/2f5/2f5/2

P i/2

d 3/2

S i/2
d 3/2

d 3/2

14.888
16.431
16.879
17.357
17.436

9.932
10.555
11.008
11.234
11.345
11.633
11.826
12.092

7.506
7.585
8.626
8.914

+0.194
+0.004
—0.10
&.10
—0.10

+0.16
+0.12
+0.12
+0.12
+0.10
&.12
+0.10
+0.008

+0.19
+0.19
+0.21
+0.18
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volve continuum and bound-state functions quite
different from ours.

The one-body potentials for neutrons -nd pro-
tons are expected to be nonlocal. One of the conse-
quences of the nonlocality is that the single-par-
ticle wave functions of a nonlocal potential are
damped inside the nuclear region compared to the
wave functions of an equivalent local potential. "
Effects of the nonlocal potentials have been dis-
cussed by several authors. "" We use the follow-

ing expression suggested by Percy and Buck~' to
correct the local wave functions for nonlocality
effects:

(2.26)

Here U(r) is the local single-particle potential and

p, is the nucleon mass. Throughout the following
analysis we used o.=0.85 F, as suggested by Per-
cy s9

III. EXPERIMENTAL METHOD

Experimental data for the elastic scattering of
protons from '~Pb, ' ' 'Sn, and "Sn were obtained
at the Center for Nuclear Studies using the beam
from the tandem Van de Graaff accelerator. Ex-
citation functions for the elastic scattering of pro-
tons from ~'Ba were measured at the Max-Planck-
InstitQt fGr Kernphysik at Heidelberg. " Lithium-
drifted silicon detectors cooled to dry-ice temper-
ature were used to measure the excitation func-
tions at four backward angles simultaneously.

Self-supporting targets of lead and tin isotopes
were made by evaporating the metals in high vac-
uum onto glass slides coated with a thin layer of

a detergent. After evaporation the slides were al-
lowed to cool. The metal film was peeled from
the glass slides by floating it off on distilled water.
The foils were than picked up on aluminum target
frames and quickly dried by evacuating. This pro-
cedure is important for preventing the deteriora-
tion of lead foils. The thickness of the targets
used in this experiment ranged between 0.2 and

0.5 mg/cm'. Absolute cross sections were deter-
mined by measuring the counts per p.C in the
group of elastically scattered protons for each de-
tector at energies well below the Coulomb barrier
and forward scattering angles. Assuming that un-
der these conditions one has pure Coulomb scatter-
ing we converted the counts per p, C into mb/sr.
This procedure was checked for the 'O'Pb target
by an independent determination of cross sections
whereby the target foils were carefully weighed
and the solid angle of the detectors was directly
measured. The two methods agreed within 5%.

Pulses from the preamplifiers were fed into
main linear amplifiers and biased amplifiers and

finally analyzed using 1024-channel analog-to-digi-
tal converters in conjunction with the PDP-7 on-
line computer.

IV. METHOD OF ANALYSIS

Excitation functions of the elastic proton scatter-
ing at all the angles and over the entire energy
range for which data is available are fitted simul-
taneously using the computer code JULIUs." This
code is a modification of Percy's optical-model
code PEREY. At each energy, the code calculates
the elastic scattering cross section for all the an-

l20i 120,

Ioo 100

80 80

~ 60

4
40 40

20
20

0
110

I

1.15
I

1.20
r (Fermi)

I

1.25 1.30 I I I I

O.I 0.2 0.3 0.4 0.5
I I

0.6 0.7
I

0.8 0.9

FIG. 3. Dependence of the calculated partial widths
I' " upon the radius parameter ro of the potentials.
Neutron binding energy, and the magnitude of the charge-
exchange term V&, were held fixed at the values given in
Tables I and III. The values given in Table III were cal-
culated for ro ——1.19.

V, (MeV)

FIG. 4. Variation of the calculated partial widths I'&E
with the magnitude of the charge-exchange term V&. The
proton wave function was calculated for each value of the
proton well depths as a function of V&. Neutron binding
energy was held fixed for these calculations.
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e= IO5 I"Ba(p,p ))~aaa

50-

50-

40

30,

40

30

30
25

30

E

30

gles using the scattering matrix elements

I (Exp)$2iky - 2t6X &E
1 ~E -E~+ wp'F~

The background-scattering matrix elements e"~&

are first found from the complex optical-model po-
tential, which was chosen to have a Woods-Saxon
shape with spin-orbit coupling and a surface imag-
i.nary term. Then, using the relation

1-Y +2i ~~Y
emily 2ih) x. + ~Pi

(4 2)1+ y~+2ipsLi Y'~ '

where p'P -=n,„"„'/Izs', the values of the real quanti-
ties Y& and 5& are obtained. Treating F~~ ', E~,
and F~ as fitted parameters, one then calculates
the cross section from Eq. (4.1). Comparing the
parametrized form of the scattering matrix (4.1)
to Eq. (2.11), and using Eqs. (2.13), (2.14), (2.20),

and (2.24) one obtains the equation

I'""= rP'= S ra, '(I+ V, +2f '"'y, )-2. (4 3)

Thus, after using Eq. (2.20) to find the Lane width

FzE, the spectroscopic factor S„canbe obtained
from Eq. (4.3).

In finding the Lane width I'~~i from Eq. (2.20),
one needs the potentials v„(r), v, (r), and V,(r).
There are four criteria that we would like to sat-
isfy in choosing these potentials: (1) v„(r)should
reproduce the binding energies of the parent ana-
log states, (2) v~(r) should be the same as the real
part of the optical-model potential which repro-
duces the off-resonance proton elastic scattering
data, (3) V, should satisfy the empirical relation~

-',T,V, = 26(N —Z)/W (4.4)

and, (4) the relation (2.18) should be maintained.
We chose to keep the same shape and radial pa-
rameters for each potential. Realizing that there
is some ambiguity in determining the parameters
which fit elastic scattering, we chose that set of
radial parameters which best reproduced the bind-
ing energies and at the same time maintained the
fit to the elastic scattering data. Then the depth
for v„(kept the same for all states in a given nu-
cleus) was chosen as that which gave the best bind-
ing energies on the average. Having thus deter-
mined v„(r), we required that criterion (3) be sat-
isfied in determining the depths of v~ and V, . This
meant that the v~ (chosen real) used in calculating
I'&~' did not exactly agree with the real part of the
optical potential used to parametrize the back-
ground scattering, though they were close. In the
next section we include results of the uncertainty
in the Lane widths F~~ (and hence of S„)arising
from the uncertainty in the magnitude of V, . Simi-
larly the dependence of I'~~~~ on the choice of pa-
rameters was also investigated.

20 V. RESULTS

IO

30

20-

IO-

If 7/

I 0,0
p~ p i/& h9y f 5/p f /2 pi

, I I I, I 4I I

I I.O I2,0
PROTON ENERGY (MeV)

FIG. 5. Comparison of the calculated cross sections
with the experimental data for ~~8Ba(p,p)~38Ba. The pa-
rameters used in the calculation are given in Tables I
and IV.

The method of analysis has been discussed in
Sec. IV. We now present the results obtained.
Table I shows the optical-model parameters used
in the analysis of the proton elastic scattering
from the target nuclei '~Pb, ~'Ba, "~Sn, and
'"Sn. These parameters were obtained by fitting
the experimental excitation functions for each iso-
tope simultaneously at all the angles at which data
was available. The fitting procedure involved the
adjustment of optical-model and resonance param-
eters. Initial values for the optical-model param-
ters for a Woods-Saxon well with spin-orbit cou-
pling were taken from the literature. Throughout
this analysis, the real part of the proton potential,
the neutron potential, and the form factor of the
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TABLE III. Resonance parameters, calculated partial widths, and spectroscopic factors for Pb(p, p) Pb.
Spectroscopic factors determined from (d, p) and (d, t) reactions are also shown for comparison.

ggc.m.)

(MeV)
Eex

(MeV)
I (EX8

(keV)

I-(~)lj
(keV) (1+Y)2

S~p
(Ref. 43)

SM
(Ref. 44)

14.888

16.431

16.879

17.357

17.436

0.000

1.543

1.991

2.469

2.548

5

T
7
2

21.8

40.0

41.8

29.6

39.4

28.44

85.33

95.00

53.40

88.50

260

275

300

275

275

1.29

1.82

2.06

1.52

1.93

0.98

0.86

0.90

0.84

0.86

1.04

0.99

0.94

1.05

0.97

0.93

0.86

0.86

0.90

0.83

charge-exchange term are all constrained to have
the same radius parameter r, and diffuseness pa-
rameter a. Note that each of the potential depths
has an energy dependence. These were found nec-
essary in order to fit the slope of the cross sec-
tion over the energy region of interest.

The resonance mixing phases are calculated
from Eq. (2.17) and are listed in Table II for the
states in Pb, '3'Ba, , and" Sn. Almost all of the
phases have positive values of the order of 0.1-0.2.
However, since the expression (2.17) for the reso-
nance mixing phase is derived on the basis of a
number of simplifying assumptions, it is not ex-
pected to be better than a rough estimate. We
have actually treated the phases as fitted parame-
ters.

In most eases, the best fit to the data was ob-
tained with a resonance mixing phase equal to zero,
although a few states (most notably the s, ~ reso-
nance in '20Sn) did require fairly large phases in
order to obtain reasonable fits. A systematic
study of the effect of varying the resonance mixing
phase was made, with an example of the results
shown in Fig. 1. The P3/Q resonance in "'Ba is fit
much better at the extreme backward angles with
a zero phase, while at angles of 120-140 a posi-
tive phase of +0.2 seems to fit better. This re-

fleets the inadequacy of the optical potentials used
to generate the background scattering amplitude
and shows the source of major difficulty in deter-
mining the resonance mixing phases. The effects
of the phase at a particular angle depend upon the
shape of the resonance at that angle. At an angle
for which a resonance is high on the low-energy
side and then dips below the background (e.g. , the

f»2 in Fig. 1), a. shift in phase towa. rd positive val-
ues tends to decrease the cross section all across
the resonance, whereas a shift to negative values
increases the cross section. The opposite behav-
ior is observed for a resonance which dips for
E &ER and then rises; a positive resonance mixing
phase increases the cross section, and a negative
phase decreases it. We should point out that we
do not assign a nonzero phase unless we are un-
able to find a reasonable fit by merely varying
the other resonance parameters.

208pb(p p)208pb

The low-lying states in '~pb are expected to be
close to being pure single-particle neutron states.
We obtained by systematic search a neutron poten-
tial that reproduces the binding energies of five
low-lying states in "'pb quite accurately. " Data

TABLE IV. Resonance parameters, calculated partial widths, and spectroscopic factors for Ba(p, p) 3 Ba.
Spectroscopic factors obtained from (d, p) studies are also shown for comparison.

g (c.m.)
R

(MeV)
@ex

(MeV)
I (EXP)

(keV)
I 0.)lj
(keV) (1+Y)'

S~p
(Ref. 47)

9.932

10.555

11.008

11.234

11.345

11.633

11.826

12.092

0.000

0.623

1.076

1.302

1.413

1.701

1.894

2.160

Y
1

9

2

2

(~2)

(-,')

16.6

22.4

16.2

1.4
8.1
7.9
2.4

34.8

21.34

78.19

84.56

2.22

39.23

43.59

47.15

100.65

76

80

75

100

78

80

100

98

1.13

1.43

1.48

1.03

1.23

1.27

1.29

1.58

0.88

0.40

0.28

0.65

0.25

0.23

0.06

0.55

0,70

0.32

0.27

0.54

0.22

0.17
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r 60-

I 38 )38
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Pl/

(~ ~ II 088 MeV)
Pl/2

(p = IQ.632 Mev)
P3/2 P

II 695 Me&)

40- (E - II 550 MeV)
5/&

f (E = ll.427 Mev)
5/2

20 = f 7/2 (F = IQ.QQ4 Me@)

I

I.2I l.27

of Ref. 40 and the calculated cross sections are
shown in Fig. 2. Table III shows resonance pa-
rameters and, in particular, the spectroscopic
factors. For comparison we al thso give e average
neutron spectroscopic factors obtained by Jeans

oulomb barrier and by Igo et al."from the ' '
(I d&'"Pb re

rom e Pb-
reaction. Our results agree quite well

with those reported by Igo et l 44 Tha . ese authors
e ex racted spec-investigated the dependence of th t

troscopic factors upon the parameters of the sin-
g e-particle potential used to calc I t th f
ac or of the transferred neutron. The quoted val-

0 I I I

I,I9 I.23
I

l.25
r (Fermi)

FIG. 6. De ependence of the calculated partial widths
I hE' upon the radius parameter r of the ote po ential. s.

eu ron binding energy, and the magnitude of the charge-

bles I and
exchange term V, were held at th 11& a e va ues given in Ta-
les I and IV. The values given in Table IV w

lated for ro ——1.23.
a e were calcu-

ues of the spectroscopic factors were obtai d f
the sin

aine or
ingle-particle potential employed in this pa-

per. Finally, we investigated the dependence of
the Lane widths I' "'

&E upon the radius parameter ro
of the single-particle potentials and upon the m
nitude

n e mag-
e 1'e-of the charge-exchange term V Th

suits are displayed in Figs. 3 and 4. As can be
seen, the width does not depend strongly on the
radius parameter. Variation of the other potential
parameters showed essentiall thy e same result.
However, the dependence on th h

otential V
e c arge-exchange

p ial V, is stronger, particularly for the par-
tial waves of lower angular momentum, where
varying V, within a range of 10% about the value
prescribed b Ei e y q. (4.4) can result in a change of
the width of about 10-15%. From Eq. (2.20), it
can be seen that F " depend

1 through the magnitude of the symmetr try po en-
v„—u~) which is proportional to V„' and (2)

since as V, varies, Eq. (2.18) requires that the
relative values of v„and v change so th t thn P a e over-
ap o he wave functions involved should also

change.

138@a(p I7)138BB

The IAR in ' 'La have been extensively studied
using the '9'Pa (p, P) Ba reaction. " Systematic
studies of the IAR in the various Lanthanum iso-
topes have been reported by Williams et al." The
IAR in '3 La h ave been analyzed by Harney" and by
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I20
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bC 40
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40-

20-
(E IO 004 MeV)
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4Q
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I

0.60 I
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I I

0.7 0.8 0.9 I.O

V)(MeV)

FIG. 7. Variation ofof the calculated partial widths r '&

with the ma 'tudegni e of the charge-exchange term V . The
hE

proton wave function was calc l t d fcu a e or each value of the
m

proton well depths as a function of V N
ener

ion o &. Neutron binding
gy was held fixed for these calculations

8.0

d3~ d3~

7.Q
I L

9.0 IO.O
PROTON ENERGY (MeV)

'th the e
FIG. 8. Comparison of the calculated cross sections

wi the experimental data for Sn(p p}~ Sn Th
rameters used in t

n, Sn. The pa-
e in t e calculation are given in Tables I
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TABLE V. Resonance parameters, calculated partial widths, and spectroscopic factors for Sn(p, p) Sn.
Spectroscopic factors obtained from (d, p) studies are also shown for comparison.

E (c.m. )
R

(MeV)
&ex

(MeV)

1-(ExP)lj
(keV)

rP&
(keV)

I~
(keV) (1+K)'

S~p
(Ref. 49)

7.506

7.585

8.626

8.914

0.000

0.079

1.120

1.408

2

2

3
2

2

7.2

15.8

3.1

17.92

54.49

39.77

46.63

45

78

55

1.27

1.23

1.27

0.45

0.37

0.20

0.09

0.43

0.39

0.065

0.029

I60

120

70

50

50

30

40

20

RO IO.O II.O

PROTON ENERGY (MeV

'V

FIG. 9. Comparison of the calculated cross sections
with the experimental data for Sn(P,p) 2 Sn. The pa-
rameters used in the calculation are given in Tables I
and VI.

Bund. '4 The data of Ref. 41 and the calculated
cross sections are displayed in Fig. 5. The ex-
tracted resonance parameters and the spectroscop-
ic factors are given in Table IV. The neutron spec-
troscopic factors of the low-lying states in '3'Ba
have been reported by Wiedner et al.4' and von Ehr-
enstein et al.4' In Table IV the results obtained by
Ehrenstein et al. ,"using a zero-range potential
with a radial cutoff, are shown for comparison.
Though there is possibly some ambiguity due to
the numerous overlapping resonances in the region
from 11-12MeV, we found that by far the best fits
were obtained by assigning values of +0.5, -0.2,
and -0.2 to the resonance mixing phases of the

f»2 (11.633), f~,2 (11.826), and p»2 (12.092) reso-
nances, respectively. Other than the f, /2

reso-
nance, for which we find a much higher spectro-
scopic factor, our results agree well with those
of the (d, p) work. In Figs. 6 and 7 the dependence
of the Lane widths F~~ upon the radius parameter
+p and the magnitude of the charge -exchange term
V, is displayed.

Sn(p, p) Sn

Figure 8 shows the e1.astic scattering data on
"'Sn taken at the University of Texas. The param-
eters of the four resonances observed from 7-9
MeV are given in Table V. The 2d» and Ss„,are
separated by only 79 keV, making the fitting some-
what more difficult. The two l= 2 resonances were
a.ssigned a j value of & by Richard et al. ,

4' but the
analysis presented here assumes a j value of —,

' for
each. The spectroscopic factors for the first and

second resonances agree very well with those giv-
en in Ref. 48, though the last two do not. We were
unable to find any combination of parameters for
the closely spaced d, » and s„,resonances which
would give a good fit if the resonance mixing phase
is zero. However, by choosing Q&=0.4 we were
able to obtain a very good f'it. As an illustration
of the effect, consider the 125 data, where the
l = 2 resonance gives almost no contribution. With
a zero phase and the same resonance parameters,
the theoretical curve would reach a minimum at
about 43 mb/sr and a. maximum at about 67 mb/sr;
i.e., considerably below the experimental curve at
both places. One could perhaps fit the maximum
by considerably increasing the partial width, but
then the minimum would be even lower than before.
Application of the positive phase, however, shifts
both portions of the curve upwards to fit the data
well.

Sn(p, p) Sn

The data for "'Sn were taken at the University of
Texas over an energy range from 7.6-11.9 MeV
and are shown in Fig. 9. There are six resonances
present and their parameters are given in Table
VI. The potentials used are given in Table I.
Note that the well depth that was obtained is fairly
small and, as in the other cases, contains an en-
ergy dependence. The spectroscopic factors ob-
tained compare well with those of Schneid, Prak-
ash, and Cohen, ' also given in Table VI. Since
the 90'data is not fitted in magnitude, the experi-
ment was run again, and the values given were
confirmed. Using different potential parameters
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TABLE VI. Resonance parameters, calculated partial widths, and spectroscopic factors for Sn(p, po)"'Sn.
Spectroscopic factors obtained from (d, P) studies are also included for comparison.

E (c.m. )
R

(MeV)
Eex

(MeV)

I.(F.xP)
lj

(keV)

I-0 )lj
{keV) (1+F)2

S~p
(Ref. 49)

7.880

8.065

9.104

9.386

10.585

11.200

0.000

0.185

1.224

1.505

2.705

3.320

(2)

(2)

(3)

2

i
2

{3)

{3)

(7)

(3)

6.2

11.3
2.7

1.5
21.5

23.4

19.9
65.3

46.1

52.4

45.0

106.9

45

50

78

85

120

1.14

1.32

1.28

1.32

1.40

2,36

0.35

0.23

0.13

0.06

0.67

0.51

0.34

0.25

0.039

0.023

0.340

was also to no avail, so the discrepancy is not
understood. The resonances in ~'Sn were fit with
the resonance mixing phases equal to zero for all
the resonances.

VI. DISCUSSION

The present method for obtaining spectroscopic
factors from IAR observed in elastic scattering of
protons is based upon the shell-model theory of
IAR. It employs the phenomenological optical po-
tential only to parametrize the background part
of the energy-averaged scattering matrix elements
predicted by the shell-model theory. The form of
the energy-averaged 8 matrix elements employed
in the analysis agrees with that predicted by most
resonance theories. Thus, the parameters ex-
tracted by us may also be interpreted readily with-
in other framew'orks. We find that the dependence
of the calculated width r~~s' (and hencg the spectro-
scopic factor) on the potential para. meters is small.
The optical-model parameters, on the other hand,
are to be subjected to the constraints discussed in
Secs. II and III; consequently the calculated widths
are well determined. The damping of the wave
functions inside the nucleus arising from the non-
locality of the optical potential is found to have a
significant effect on the results. Indeed, if the
nonlocality correction were not made, all the spec-
troscopic factors arrived at in this analysis would
decrease by about 3. We believe that this damp-
ing is a real effect and cannot be ignored in this
analysis, since the nuclear interior makes a large
contribution in the expression (2.20) for the par-
tial width. The nonlocality length was, however,
held fixed at the value a=0.85 F throughout the
analysis. Experimental data on the IAR considered

in this paper are consistent in general with the as-
sumption of zero resonance mixing phase. In some
cases, however, the best fit is obtained with a
slightly positive resonance mixing phase. This is
particularly true of the s„,resonance in 'Sb. A
nonzero value of the resonance mixing phase
tends to shift the entire resonance up or down de-
pending upon the scattering angle and l value of
the resonance. We believe that positive values of
the resonance mixing phase, of the same order as
given in Table II, correspond to the actual situa-
tion.

In general, the resonance mixing phase is due to
the correlation between the matrix elements V

connecting the analog state with the complicated
background states and the matrix element V~~~ con-
necting the background states 4, with the open pro-
ton channel A. . The evaluation of the resonance
mixing phase based upon Eqs. (2.15) and (2.17) as-
sumes that the above-mentioned correlation is es-
sentially due to the indirect coupling between the
analog state and the complicated states via the
open proton channels. This contribution to the
resonance mixing phase arises from what is
termed external mixing by Hobson' and Mekjian
and MacDonald. " Contributions arising from in-
ternal mixing have not been considered in the pres-
ent framework. The small values of the resonance
mixing phase indicate that in heavy nuclei the
above-mentioned correlation is insignificant.
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