¹²²In Isomers*

K. Takahashi, D. L. Swindle, and P. K. Kuroda Department of Chemistry, University of Arkansas, Fayetteville, Arkansas 72701 (Received 24 March 1971)

Irradiation of enriched ¹²²Sn with 14.8-MeV neutrons was found to produce a new radioactivity with a half-life of 1.5 ± 0.3 sec which was assigned to an isomer of ¹²²In. The decay of the 7.5-sec ¹²²In isomer was also studied and a new half-life of 10.0 ± 0.5 sec determined.

I. INTRODUCTION

The only previously reported investigation of ¹²²In was the initial discovery by Kantle and Karras¹ who produced this nuclide through the ¹²²Sn- $(n, p)^{122}$ In reaction at 14.8-MeV neutron energy. They observed a 7.5±0.8-sec activity with a 4.5 ±0.8-MeV β end-point energy.

In the present investigation, a new 1.5 ± 0.3 -sec activity was observed when 92.25% enriched ¹²²Sn was bombarded with 14.8-MeV neutrons and was assigned as an isomer of ¹²²In. The decay of the previously reported 7.5-sec ¹²²In was studied and a new half-life of 10.0 sec was determined.

II. EXPERIMENTAL

A 200-mg sample of enriched ¹²²Sn oxide was obtained from the Stable Iosotpes Division, Oak Ridge National Laboratory. The isotopic composition of this sample is given in Table I. The sample was sealed in a polyethylene "Marlex" capsule, irradiated with 14.8-MeV neutrons, and transported to the detector system by a pneumatic transport system (transient time = 0.5 sec). The neutrons were generated by the University of Arkansas 400kV Cockroft-Walton linear accelerator through the well known $T(d, n)^4$ He reaction. The neutron flux varied from 1×10^9 to 5×10^9 neutrons/sec cm². Typically 30-100 bombardments of the enriched

TABLE I.	Isotopic	composition	of	enriched	122Sn.
----------	----------	-------------	----	----------	--------

Isotopes	Abundance (%)
¹¹² Sn	< 0.05
¹¹⁴ Sn	< 0.05
¹¹⁵ Sn	< 0.05
¹¹⁶ Sn	0.34
¹¹⁷ Sn	0.17
¹¹⁸ Sn	0.91
¹¹⁹ Sn	0.47
¹²⁰ Sn	4.72
¹²² Sn	92,25
¹²⁴ Sn	1.12

sample were required for each experiment in order to accumulate sufficient counts.

The detectors used for singles γ -ray spectra were a 7.6-cm × 7.6-cm NaI(Tl) detector and an 8cm³ Ge(Li) spectrometer in conjunction with a 4096-channel Nuclear Data 3300 analyzer. β - γ coincidences were measured using a 3.8-cm-diam by 2.1-cm-high cylindrical plastic detector and the NaI(Tl) detector in conjunction with a Canberra 800 series coincidence unit (1- μ sec delay) and a 512-channel Nuclear Data 1100 analyzer. Gross γ -decay measurements were performed using the NaI(Tl) detector in conjunction with the multi-scaling mode of the 1100 model analyzer.

III. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) show the singles Ge(Li) spectra of irradiated enriched ¹²²Sn. The spectra were obtained by accumulating counts from fifty 10-sec bombardments. The counting times for these successive spectra (a) and (b) taken immediately after bombardment were of 30 sec and 1 min, respectively. The 161- and 1174-keV γ rays can be assigned to the ¹²⁴Sn(n, 2n) product, 40-min ¹²³Sn, and the ¹²⁰Sn(n, p) product, 44-sec ¹²⁰In, respectively. Contamination from 10-min ¹³N (511-keV annihilation radiation) and 2.3-min ²⁷Al (1777-keV γ ray) were observed as the products from nitrogen and silicon impurities in the fast-transport capsule. The energies and relative intensities of those γ rays associated with ¹²²In are summarized

TABLE II. Radiation from ¹²²In isomers.

Isomer	Radiation	Energy (MeV)	Relative intensity	Remarks
10 sec	$egin{array}{c} \gamma_1 \ \gamma_2 \ \gamma_3 \end{array}$	$0.104 \pm 0.001 \\ 1.003 \pm 0.001 \\ 1.142 \pm 0.002$	6.8 ± 1 56.1 ± 1 100	
1.5 sec	$\gamma_4 \ eta \ \gamma_3$	$1.194 \pm 0.002 \\ 5.3 \pm 0.2 \\ 1.142 \pm 0.002$	18.2±2	log <i>ft</i> 5.1
	β [°]	4.4 ± 0.2		$\log ft$ 4.5

4

517

in Table II. Singles γ -ray spectra obtained with the NaI(Tl) detector did not reveal any higher-energy γ rays than 1.19 MeV which could be assigned to 10-sec ¹²²In.

The half-life of the 104 ± 30 -, 1003 ± 30 -, and 1142 ± 30 -keV γ -ray regions were measured by biasing a NaI(Tl) detector on those regions and multi-scaling using the 512-channel Nuclear Data analyzer. The results of these measurements are shown in Fig. 2. The average half-life was determined to be 10.0 ± 0.5 sec. In each of the measurements a residual activity of 40 to 80 counts/channel was subtracted.

Singles β spectra of irradiated ¹²²Sn could not be obtained due to the 7.1-sec ¹⁶N activity produced from oxygen in the sample.

The level structure of the even tin isotopes has been studied extensively by the Coulomb-excitation method,²⁻⁵ and excited states of probable spinparities of 2^+ , 4^+ with energies of 1142 ± 1 and 2145 ± 1 keV have been reported for ¹²²Sn. In addition to these levels, an excited state of probable spinparity 5⁻ was observed in this work at an energy of 2249 ± 1 keV. A short-lived activity with a half-life of 1.5 ± 0.3 sec was found by biasing the NaI(Tl) detector on the 1142 ± 30 -keV γ -ray region and multi-scaling using 0.8-, 0.4-, and 0.1-sec time interval per channel. The results of these measurements are shown in Figs. 3 and 4. This 1.5-sec activity was only observed when biasing on the 1142-keV γ -ray.

Yamada and Matumoto⁶ have estimated the β -decay Q value of ¹²²In to be \cong 6.8 MeV, whereas no other fast-neutron reaction product from ¹²²Sn is expected to have a Q_{β} ->4.5 MeV. The β - γ coincidence measurements on the 1142-keV region, obtained by 100 bombardments of the enriched sample, are shown in Figs. 5 and 6. Analysis of the coincident β spectrum taken for the first 20 sec after irradiation revealed a 5.3±0.2-MeV β endpoint energy, while the coincident β spectrum taken during the time interval from 20 to 40 sec after bombardment revealed a 4.4±0.2-MeV β end point. The log *ft* values for the 4.4-MeV (10 sec) and the 5.3-MeV (1.5 sec) β rays were calculated to be 5.1 and 4.5, respectively.

In Fig. 7 is shown the proposed decay scheme for 122 In which was derived from Table II. The

FIG. 1. Typical singles Ge(Li) γ -ray spectra from irradiated enriched ¹²²Sn. The spectra were obtained by accumulating counts from 50 bombardments of the ¹²²Sn: (a) a counting period of 30 sec from 5 sec after bombardment; (b) a counting period of 1 min from 35 sec after bombardment.

FIG. 3. Gross γ decay of the 1142-keV γ ray obtained by analysis of 50 consecutive 0.8-sec multiscale NaI(Tl) spectra of irradiated enriched ¹²²Sn.

FIG. 4. Gross γ decay of the 1142-keV γ ray obtained by analysis of 100 consecutive 0.1-sec multiscale NaI(Tl) spectra of irradiated enriched ¹²²Sn.

FIG. 5. Fermi-Kurie plot of β spectrum of 1.5-sec ¹²²In from irradiated enriched ¹²²Sn.

FIG. 6. Fermi-Kurie plot of β spectrum of 10-sec 122 In from irradiated enriched 122 Sn.

FIG. 7. Tentatively proposed decay scheme of the $$^{122}\mathrm{In}$$ isomers.

proton-neutron configurations for a number of oddodd In isomers have been proposed by Brennan and Bernstein.⁷ Theoretically the shell model assigns the 49th proton of ¹²²In a $J^{\pi} = \frac{9}{2}^{-}$ and the 73rd neutron a $J^{\pi} = \frac{11}{2}^{-}$. Nordheim's⁸ coupling rules for odd-odd nuclei predict a ground-state spin-parity of (1⁺) for ¹²²In. The existence of an isomeric state in indium isotopes can be explained as due to the three low-lying configurations ($g_{9/2}^{-}$, $s_{1/2}$), ($g_{9/2}^{-}$, $d_{3/2}$), and ($p_{1/2}^{-}$, $h_{11/2}$). Since the β ray of

*Work supported by U. S. Atomic Energy Commission Contract No. At-(40-1)-3235.

- ¹J. Kantle and M. Karras, Phys. Rev. <u>129</u>, 270 (1963). ²D. G. Alkhazov, D. S. Anduev, K. I. Erokhina, and
- I. Kh. Lemberg, Zh. Eksperim. i Teor. Fiz. 33, 1347
- (1957) [transl.: Sov. Phys. JETP 6, 1036 (1958)].
- ³P. H. Stelson and F. K. McGowan, Phys. Rev. <u>110</u>, 489 (1958).

⁴P. H. Stelson, F. K. McGowan, R. L. Robinson, W. T. Milner, and R. O. Sayer, Phys. Rev. <u>170</u>, 1172 (1968). 4.4 MeV was observed to feed the 4^{+} level at 2145 keV and had a corresponding $\log ft$ value of 5.1, this would imply a spin-parity of either 4^{+} or 5^{+} for the 10-sec ¹²²In isomer.

The new 1.5-sec activity observed in this investigation was assigned to an isomer of ¹²²In based on the following reasons: (a) The β -decay Q value of 6.5 ± 0.2 MeV obtained for the 1.5-sec activity is in good agreement with the estimated value of Yamada and Matumoto;⁶ (b) no other fast-neutron product from Sn is expected to have greater than 5.3 MeV available for decay; and (c) a search of the *Table of Isotopes*⁹ did not reveal any 1.5-sec activity with a β -decay Q value of 6.5 MeV which could be produced by fast-neutron bombardment on any possible contaminant.

The 7.5-sec half-life for ¹²²In reported by Kantle and Karras¹ from gross β -decay measurements could have been influenced by 7.1-sec ¹⁶N produced from the oxygen in the sample.

ACKNOWLEDGMENTS

We would like to express our appreciation to Dr. T. E. Ward for many helpful suggestions and discussions and to D. Coffield for operation of the accelerator.

⁵W. Makofskey, W. Savin, H. Ogata, and T. H. Kruse, Phys. Rev. <u>174</u>, 1429 (1968).

- ⁶M. Yamada and Z. Matumoto, J. Phys. Soc. Japan <u>16</u>, 1497 (1961).
- ⁷M. H. Brennan and A. M. Bernstein, Phys. Rev. <u>120</u>, 927 (1960).
- ⁸L. W. Nordheim, Phys. Rev. <u>23</u>, 322 (1951).
- ⁹C. M. Lederer, J. M. Hollander, and I. Perlman,
- Table of Isotopes (John Wiley & Sons, Inc., New York, 1967), 6th ed.