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We define a nondenumerably infinite class of two-body potentials that give T matrix ele-
ments that are identical on the energy shell but are different off shell. The existence of this
class is shown to be related to a nonuniqueness in the off-shell continuation of the Schro-
dinger equation. A relation for the difference between off-shell elements of T matrices that
are equal on shell is given in a form that is convenient for the systematic study of off-shell
effects in systems of more than two nucleons. In particular, these relations allow one to in-
vestigate subclasses of elastically equivalent interaction potentials that satisfy restrictions
such as finite range. The possibility that elastically equivalent interactions have different
off-shell symmetry properties is discussed, and some observations concerning the use and
interpretation of elastically equivalent potentials in many-body calculations are presented.

I. INTRODUCTION

Considerable effort has recently been directed
toward an understanding of the off-energy-shell
properties of the nucleon-nucleon interaction. This
work has been motivated primarily by the realiza-
tion that our present knowledge of the two-nucleon
interaction is not adequate to permit unambiguous
calculations of the properties of systems of more
than two nucleons. Rather, it seems necessary al-
so to investigate the properties of few- and many-
nucleon systems in order to determine the essen-
tial character of the two-nucleon interaction. A
systematic investigation of this kind presupposes
a formalism that makes explicit the arbitrariness
that persists in the off-shell behavior of the two-
nucleon interaction after all on-shell properties
are taken into account. In this paper we present
such a formalism. One result is a convenient re-
lation for the difference between off-shell elements
of T matrices that are equal on shell.

The present discussion is restricted to a nonrel-
ativistic quantum-mechanical description of the
two-body system or, equivalently, to a system de-
scribed by the one-body Schrodinger equation in
the center-of-mass system. For notational con-
venience, all formulas are given for a single par-
tial wave in an uncoupled partial-wave description
of the system. This restriction is easily removed.
We use in a fundamental way the assumption that
the two-body system is described by a Hermitian
Hamiltonian H that can be expressed in the form

H= Ho+ V,

where Ho describes the unperturbed relative mo-
tion of the isolated particles and V describes the

interaction between them. It is further assumed
that H does not depend explicitly on the parametric
center-of-mass energy E. The only other limita-
tions on the interaction are those necessary for
the application of conventional scattering theory.
In particular, V need not be a local potential. The
nucleons are considered as point particles so that
the discussion is for values of E such that inelas-
tic processes, such as meson production, can be
ignored.

Many of the results in this paper are not new.
The on-shell equivalence of systems described by
the interactions V and V= UHU —H„where U is
a unitary operator of finite range, has been point-
ed out previously. ' Also, the restrictions on the
two-body interaction that follow from the complete-
ness and orthogonality of the scattering (plus
bound) states have been discussed. ' 4 However,
the incorporation of these ideas within the frame-
work of conventional scattering theory and the ex-
plicit exposition of the resulting relations between
them may be of considerable heuristic, as well as
practical, value.

The organization of the paper is as follows. In
Sec. II it is shown that the off-shell continuation
of the Schrodinger equation is not unique. This,
in turn, is related to the existence of a nondenum-
erably infinite class of potentials that give identi-
cal on-shell, but different off-shell, T matrix ele-
ments. Limitations on the off-shell continuation
of the T matrix are implied by the relation between
the asymptotic wave function and the T matrix;
these are discussed in Sec. III. The relation be-
tween off-shell elements of T matrices that corre-
spond to elastically equivalent potentials is de-
rived in Sec. IV. Restrictions on the off-shell ele-
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ments of T are also imposed by the conditions of
completeness and orthogonality of the scattering
plus bound states of the system. These restric-
tions are discussed in Sec. V, and a practical pro-
cedure is given for the systematic study of off-
shell effects in nuclear processes that involve
more than two particles. The possibility that elas-
tically equivalent systems have different off-shell
symmetry properties is considered briefly in Sec.
VI. In Sec. VII we make some observations con-
cerning the use of elastically equivalent potentials
in the many-body problem.

II. OFF-SHELL CONTINUATION OF THE
SCHRODINGER EQUATION

We suppress the index that designates a particu-
lar partial wave and write the Schrodinger equa-
tion for the relative motion of the two-body system
in the form

(k' —a) IPg& =0, (2.1)

where k'=E is the relative energy. We assume
(a) that as the distance of separation r increases,
the interaction potential V goes to zero sufficiently
fast that Eq. (2.1) has at most a finite number of
bound-state solutions, i.e., that V approaches
zero at least as fast as r ' ' with e & 0; and (b)
that the continuum solutions satisfy the usual T
matrix boundary conditions, i.e., that for k'&0
the function (r I P„& is asymptotically a plane wave
of unit amplitude plus an outgoing spherical wave.
For the sake of simplicity the particles are also
assumed to be spinless.

The integral equation

ly';Ipse = Ik&+(k' -H. +fo) 'VIP;I~&, (2 2)

incorporates this boundary condition for the posi-
tive-energy solutions of Eq. (2.1). The ket

I k& rep-
resents a plane wave and satisfies the free-parti-
cle equation

Equation (2.2) may be rewritten as

Iy", I„&=n(k'+fo) lk&,

and its continuation off shell is

ly&;, I,.& =n(k'+fo) Ik &,

(2.2')

(2.5)

The wave amplitude defined by Eq. (2.5) is not an
eigenfunction of H; in fact, it satisfies a Bethe-
Goldstone equation of the form

(k' a) Ip-;.'&& = (k' k"-)
I
k'& . (2 8)

(2.10)

The wave operator Q(z) in the
I k& basis satisfies

the operator relation

Q(z} = 1+(z —U HOU) '(H —U Hov)n(z) (2.11)

or

Q(z) =1+(z —H) '(H —U HOU), (2.11')

and the corresponding off-shell continuation of Eq.
(2.7) gives the wave amplitude

Although Eq. (2.5) uniquely defines the off-shell
amplitude Ig;.'~&, the off-shell continuation itself
is not unique. To show this let us rewrite Eq.
(2.1) in the form

lk' —U H U-(H —U H U)]If &=0, (2.7)

where U is a unitary operator that approaches the
unit operator sufficiently fast that (U —1) I k& is a
vector of finite norm. This implies that

rr'(r
I U —1 lr'& —0, (2.8)

as r or r' approaches infinity. Equations (2.1) and
(2.7}are, of course, identical. However, we make
the off-shell continuation of Eq. (2.7) in terms of
a complete set of states I Fj, where

(k'- v'H, v) Ik) =o (2.9)

(k' —a,) Ik& = 0 . (2.3) It ~a", ~z& = Q(k'+fO) IR'& = n(k'+IO) V' lk'&,

[In the angular momentum decomposition, the ket
I k& really represents not a plane wave but rather
(r I k& = (2/w)"'krj, (kr). However, as a matter of
convenience, we continue to refer to this as a
plane wave. ]

In order to discuss the off-shell continuation of
Eq. (2.2), it is convenient to introduce the wave
operator Q(z}, which is the solution of the integral
equation

k' & k" . (2.12)

From Eqs. (2.5) and (2.12) it follows that

Ip';.'~& —Iy';42& [Q(k'+fo)v' -n(k'+fo)]lk'&.

(2.13}

Substitution of Eqs. (2.11') and (2.4') for the wave
operators in Eq. (2.13), together with the condi-
tions (2.8), gives

Q(z)= 1+(z —H, ) 'Vn(z),

or, in "solved" form,

Q(z) = 1+(z —H) V .

(2.4)

(2.4')

lg',"~& —IP~,", p& = (k' —k")(k' —H+i0) '(U —1)lk'& .

(2.14)

For k' e k, the right-hand side of Eq. (2.14) van-
ishes identically if and only if Ut —1-=0. Conse-
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quently the off-shell continuation of the Schrddin-
ger equation is not unique, but rather any distinct
unitary operator other than the identity can gener-
ate a different continuation.

Although the treatment of scattering in terms of
the kets I%& that satisfy Eq. (2.9) may appear
somewhat artificial, this representation is certain-
ly as valid as that given originally in terms of the
plane-wave states Ik&. In fact, if U satisfies con-
ditions (2.8), I%& is asymptotically a plane wave;
i.e., for sufficiently large r

&~I&&- &~ik& =(2iv)'"k i, (k ). (2.15)

Furthermore, since all observable properties of
the two-body system depend only on the on-shell
amplitudes (k'= ka), Eq. (2.14) shows that the two
representations lead to identical predictions for
the results of any allowed observation.

It is of interest to examine the consequences of
the nonuniqueness in the off-shell continuation of
the Schri5dinger equation in terms of the elements
of the associated T matrices. In the usual plane-
wave basis, the interaction V is defined to be H
—H„where H, is the generator of the basis states
I k&, and the elements of the T matrix are

&k"
I T(k')

I
k'& = &k"

I v Ie';'~& = &k" I VQ(k'+ f0) I
k'& .

(2.16)

In the transformed basis, the interaction V is de-
fined to be V=H- U H, U, and H, = U H, U is the
generator of the basis states I%&. The elements
of the corresponding T matrix may thus be taken
to be

&&"IT(k') IX'& =&X"
I vip&;, &&& =%"

I vQ(k'+io)Ia &.

formation to give

(k' —UHU')
I y». &

= 0,
where

(2.21)

III. LIMITATIONS ON OFF-SHELL CONTINUATIONS
OF THE T MATRIX

In Sec. II we have concerned ourselves with a
certain kind of off-shell continuation of the T ma-
trix. One might perhaps think that this sort of
continuation is not the only possible continuation.
We might, for example, apply the foregoing off-
shell continuation to the wave operator. That is
to say, we choose, as before,

(2.22)

In order to obtain an integral equation in the I k&

basis, Eq. (2.21) may be rewritten in the form

(k —Ho —V)IP~ y& =0, (2.23}

where V is defined by Eq. (2.19). The off-shell
continuation of the corresponding integral equation
ls

I
j&„;&„&=f}(k'+io)Ik &, (2.24)

where the wave operator f} is defined by Eq. (2.20).
Since Eqs. (2.1) and (2.23) are equivalent repre-
sentations of the same two-body system, they
must predict the same results for any observation
on the system. In particular, they must yield
identical discrete spectra and identical elastic
scattering phase shifts or, equivalently, identical
on-shell T matrix elements. For this reason, all
interaction potentials V defined by Eq. (2.19}are
called elastically equivalent potentials.

(2.17)

In order to compare T matrices it is convenient to
introduce the operator T(k'), where

I y",,.'~& = I%"&+(k' —U~H U+iO)-'

x(H —U H U) IP~~'&~&, (3.1)

T(k') = UT(k')U = UVQ(k'+i0)U, (2.18)
and we define the barred wave operator through
the relation

whose matrix elements are defined with respect to
the same basis states as are those of T(k') We.
also introduce the operators

V= UVU = UHU —Ho (2.19)

IP;.&„& =Q(k'+io) I'k"&. (3.2)

We may, if we wish, define the wave operator
Q(k'+iO) to be

Q(z) = UQ (z)U = 1 + (z —Ho) iVQ(z),

in terms of which Eq. (2.18) becomes

(2.20)
Q(k'+iO) =Q(k'+i0)U = U Q(k'+iO),

so that

I PPy& =Q(k'+iO)
I k "& .

(3 3)

(3.4)
T(k )= VQ(k +iO) . (2.18')

All interaction potentials in the class V defined
by Eq. (2.19) have identical on-shell properties.
This may be shown as follows. The Schr5dinger
Eq. (2.1) may be transformed by a unitary trans- &k'IT(k')Ik"& =(k'IVQ(k'+iO)Ik"&, (3.6)

If we then define a scattering operator f(k'} as

T(k') = VA(k'+iO), (3.5)

with matrix elements
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&k IT(k')Ik&=(k'IT(k')Ik&, (3.7)

for all values of k'. To see this we observe that

Q(k'+io) = U +(k' —H+io) '(H —U HOU)U

= Q(k'+i 0)+ (k' —H+io)-'

x [k'(U' —I) —(U' —1)H,],
so that

Q(k'+ io) I
k "& =Q(k'+f0)

I k "&

(3.8)

+ (k' —k'~)(k' —H+io)-'(v' —1) I
k"&,

we find that we have achieved another off-shell ex-
tension of the T matrix, and that its matrix ele-
ments are identical with those of the T matrix giv-
en by T(k') = VQ(k +io) on the energy shell. In
fact, the matrix elements of T(k') and T(k') are
identical on the "half-shell, " i.e.,

It is easy to see that the extension (3.5) does not
have this property.

IV. T MATRICES FOR ELASTICALLY
EQUIVALENT POTENTIALS

T(k') = (V, + V2) Q(k +io),
where

(4.1)

Next we consider the relation between the off-
shell elements of the T matrices that correspond
to the elastically equivalent potentials V and V.
The notation V is used here to designate any mem-
ber of the class of potentials defined by Eq. (2.19).
To obtain the desired relation, it is convenient to
use the two-potential formula in its operator form.
We begin with a brief discussion of this formula.

Let T(k') denote the transition operator for the
interaction Vg+ V2 i.e., let

and thus

(3.9)
Q(z) =1+(z —H ) '(V, + V, )Q(z) .

In terms of the wave operator Q,(z) given by

(4 2)

(k'I T(k ) Ik" & =(k'I T(k ) Ik") +(k —k" )

x(k'I V(k' —H+io) '(U —1) Ik"&.

(3.10)

This continuation is thus one for which (O'
I T(k')

I
k"&

and (k'IT(k') Ik"& are identical if k"'= k'.
It is not difficult to see, however, that this con-

tinuation is unsatisfactory. To show this we ex-
amine the asymptotic behavior of the wave func-
tion (r IP;-'~& in coordinate space. We have

&r I y,"~& =&r IQ(k'+io)
I

k-&

Q, (z) = 1+ (z —H, ) ' V„
where

H~ = Ho + V~,

Eq. (4.2}becomes

Q(z) =Q,(z)+(z —H, ) 'V, Q(z) .

(4.3)

(4.4)

(4.5)

By use of Eq. (4.5}, it is possible to rewrite Eq.
(4.1) as

T(k') = V~ Q, (k +io)

+ [I+V,(k' —H, +io) '] V2Q(k'+io)

(4 8)

—i ' e""(kI—(UH-H, U)Q(k'+io)
I
k"&

(3.11)

or

T(k') = T,(k )+Q, (k —io)V, Q(k +io), (4.7)

Now we note that the coefficient of the outgoing
spherical wave in Eq. (3.11) is just

(kI(UH —H U)Q(k'+i0) I
k"&

= (k I(vHv' —H, @(k'+i0) I k "&

=(kI T(k') Ik "& =(kl T(k') Ik "& .

(3.12}
If we wish to retain the usual relationship between
the asymptotic wave function and the T matrix as
part of our definition of the off-shell continuation,
then the continuation (3.5) of the T matrix is not
acceptable. This rejection is equivalent to saying
that an acceptable T matrix must satisfy an equa-
tion of the form

where T,(k') is the transition operator for the in-
teraction V, alone and Q, (z) is the Hermitian con-
jugate of the wave operator defined by Eq. (4.3).
Equation (4.7) is easily recognized as an operator
form of the familiar two-potential formula.

The relation between transition matrices corre-
sponding to V and V is given by Eq. (4.7) if we
make the substitutions

V~- V, V2- V —V,

(4.8)

H~- HO+V =H.

This gives

T(k ) = T(k )+Q (k' -io)(H —H)Q(k +io),
T= V+VGT. (3.13) (4.9)
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where Q is given by Eq. (2.20). In the "solved"
form, Eq. (2.20) is

From Eqs. (2.12), (2.20), and (2.24), it follows
that

Q(z) =1+(z —H) 'I, (4.10) Q(k'+so) ~k') = Ug,';p» (4.12)

where

H= UHU (4.11}

for all k and k'. This result, together with Eqs.
(2.5) and (2.14), gives the relation

Q (z) = UQ (z ) + U(z —H) '(U —1)(z —H, ) .

and Q (z) is the Hermitian conjugate of the wave
operator defined by Eq. (2.4').

(4.13)
Substitution of this result into Eq. (4.9) gives

T(k )= T(k )+Q (k —i0)(U —1)(k —Ho)+(k —Ho)(U- 1)Q(k +i0)

+ (k —Ho)(U —1)(k —H+i0) '(U —1)(k —Ho) .

The condition that (U —1)
~
k) be of finite norm is sufficient to ensure that

lim(k' —k")(k'((U —1)Q(k'+i0) ( k} = 0 .

(4.14)

(4.15)

Consequently, it follows from Eq. (4.14) that the on-shell elements of T(k ) and T(k') are identical, that
the half-shell elements are related as

&k'I T(k') Ik) = &k'I T(k')
I k) + (k' —k")& k'I(U —I)Q(k'+i 0) I k) (4.16)

(k ) T(k ) (
k') = (k [ T(k ) (

k') + (k —k ' )(k ) Q (k' —i0)(U —1) ( k'),

and that the difference between fully-off-shell elements is

(k'~ T(k ) —T(k ) ~

k") =(k —k"')(k'~Q (k —i0)(U —1)
~

k")+(k' —k' )(k'~(U —1)Q(k +i0) ~k")

+(k' —k" )(k' —k' )(k'~(U —1)(k' —H+i0) '(U —1) ~

k") .

Note that T(k') -=T(k') only if U is the unit operator in the space of the scattering states ~p„'~~)

=Q(k'+i0)
~
k) . The possible use of these results in an investigation of the off-shell properties of

the two-nucleon interaction will be considered in Sec. V.

(4.17)

(4.18)

V. RESTRICTIONS ON THE OFF-SHELL ELEMENTS OF THE T MATRIX

The off-shell elements of T are not completely arbitrary. The completeness condition

lg', p)d( kgb,.1=1-P, (5.1)

where P =Q, ) P, ) (P, ~
is the projection onto the bound states of the system, is sufficient to define the fully-

off-shell elements in terms of the remaining ones. Multiplication of Eq. (5.1}from the left by V leads to
the relation

()"
I
)'I ):"&=(), 'I ~)+"')

I
) "& ~ ()."

I
&(e*)

I e&( . „* ) &el &'is*)
I
a") +r(, -)"*)i)."I ),) (), I

)'"),

(5.2)

where

Equation (5.2) defines the interaction potential in terms of bound-state properties of the system and the
half-shell elements of the T matrix. Once V is determined, all elements of T are uniquely defined.

An explicit expression for the fully-off-shell elements may be obtained by using Eq. (5.1) to expand the
wave operator in Eq. (2.16). The result is
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+ d&1 + „«&,—k' ~«&, - k" '
&k IT(k')lk"&=&k IVlk"&+ &k IVI'", ,a& k, ", ,

0
&y&;&,mlVlk"&++ "' . ' ' &k'le~&&eblk"&,k' — '+so 5

(5.3}
where of course,

&k'I I'I 0",,', & =&k'I T(e') I q&.

Elimination of the interaction potential between Eqs. (5.2) and (5.3) gives the desired relation, namely

(5.4)

&k'I T(k') Ik"& =&k'I T(k"') Ik"&+, &k'I T(q') I e& de[(k' —e'+f0) ' —(k"' —q'+io) ']& eI T'(q')
I

k"&

~ &&.
"*-

&, *&I; '
&. )&&."It&, &&&, l

&."&

b (d~ k

In a similar way, the orthonormality condition

&C&:&~ I C',".'& = 5(k- k')

yields another off-shell extension of the optical theorem, namely

(5.5)

(5.6)

&k~T(k' ) —T (k )+T (k2) 2 —,2 +iv5(k —Ho)+iv5(k'2 —Ho) T(k' )(k'& =0. (5.7)

Recently Baranger et al.' have shown that even
more restrictive conditions on the off-shell ele-
ments of T are implied by Eqs. (5.1) and (5.6).
They define a half-shell matrix element

y(k, k ) =e-'"&"&&k'~ T(k')
~ k&,

and a wave function

(5.8)

=5(k —k')cos&)(k)+ „, „4&(k, k'),

(5.9}

where q(k} is the elastic scattering phase shift for
the partial wave of interest. The advantage of
this representation is that &t&(k, k') and &k' ~&1&', ,2& are
real. Since the half-shell elements determine the
fully-off-shell ones, it is necessary to consider
only the former, i.e., the 4&(k, k'). The real oper-
ator W is defined by its matrix elements

&k'i W
i k& = &k'

i
y'

so that, in this representation, conditions (5.1)
and (5.6) become

(5.10)

cient for the determination of 4&(k, k') if o(k, k') is
given for all k, k'. Thus the arbitrariness in the
continuation of T off the energy shell is isolated
to an arbitrariness in the off-diagonal elements
of the symmetric part of the T matrix. The gen-
eralization of this result to systems with bound
states was given in Refs. 3 and 4 and was dis-
cussed further by Amado~ and by Van Dijk and
Razavy. '

The practical advantage of this result is that it
shows one how to vary the off-shell elements of T
without changing the on-shell elements and without
violating the quantum-mechanical conditions (5.10)
and (5.11). This, in turn, makes possible a sys-
tematic study of the effects in other nuclear phe-
nomena of a variety of T matrices that are ex-
actly the same on shell. The main disadvantage of
the suggested procedure is that it provides no sim-
ple way by which reasonable assumptions about
the two-body interaction can be incorporated in
the choice of the off-diagonal elements of the o
matrix. '

An alternative procedure for the systematic
study of different on-shell-equivalent T matrices
is suggested by Eq. (4.16). In the real representa-
tion introduced in this section, Eq. (4.16) becomes

(5.11) P(k, k')= 4&(k, k')+(k —k")&k'~(U —1)W(k&,

The matrix Q is written as a sum of a symmetric
matrix 0 and an antisymmetric matrix n, i.e.,

where

P(k, k')=e '"t &&k'~ T(k )~k)

(5.13}

(5.14)

4&(k, k') = o(k, k') +a(k, k') . (5.12)

In the case of no bound states (P = 0), Baranger et
al. show that conditions (5.10}and (5.11)are suffi-

and U is orthogonal, i.e., real. Note that &7(k)
= q(k), since the on-shell elements of T(k ) and
T(k') are equal. Thus, simply by varying the
choice of the orthogonal transformation U, the off-
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where g, (r) and g, (r}are members of an orthonor-
mal set of functions, i.e., where

drg;(r) g, (r) = 5„, (5.16)

shell elements of T (or P) can be varied without

changing the on-shell elements.
The initial P matrix in Eq. (5.13) need not be

generated from a potential but may be determined
from a chosen a matrix as suggested by Baranger
et al. On the other hand, if (t) is obtained from a
two-body potential V that satisfies given conditions
of finite range, etc., then by a proper choice of
transformations U it is possible to investigate on-
shell-equivalent T matrices that also satisfy these
conditions. More exactly, the potentials implied
by these on-shell-equivalent matrices would also
satisfy the conditions initially imposed on V. Note,
however, that the implied potential need not be cal-
culated in any application of Eq. (5.13}.

A convenient general expression for a unitary
matrix is

(r'~(U-1)~r) = g g, (r')(X,.~
—5,&}g,.(r}, (5.15)

are chosen such that the transforms

g,.(k) = (2/v)"'Jt drkr j,(kr)g, (r), (5.19)

are easily obtained analytically, then the evalua-
tion of the matrix elements

(k' ~(U- 1)W ) k) = (k'
( U —1

(
k") dk "(k"

(
W

~
k)

4

(5.20)

is simplified considerably.

VI. SYMMETRY PROPERTIES OFF SHELL

The canonical transformations (2.21) and (2.22)
describe completely equivalent two-body systems.
In particular, all systems described by these equa-
tions must possess identical symmetry properties.
On the other hand, the off-shell continuation of the
Schr6dinger equation (2.23} leads to off-shell T
matrix elements that are not equal for different
choices of the unitary transformation U that de-
fines the transformed potential V, where

"0 V UHU H() H H() ~ (6.1)

and the A.,~ are elements of a unitary matrix.

For N = 1, Eq. (5.15) becomes

(r'~(U —1)~r) = 2g(r')g(r-) . (5.17)

-sin0 cos6}—1 g, r
(5.18)

where -v &8 &w. If, in addition, g,(r) and g, (r)

For N= 2, it becomes the transformation of rank
2 described by Coester et al. ,7 namely

(r'I U- I lr) =(g (r'), g'(r'})

It is of interest, therefore, to inquire about pos-
sible off-shell violations of a given symmetry with-
in the class of interactions defined by Eq. (6.1).

As an example, consider a system described by
a Hamiltonian II that is invariant under time re-
versal. In terms of the half-shell elements of the
T matrix, this implies that an antiunitary time-
reversal operator K exists for which

(k') VQ(k +iO) )k) =(Kk(Q (k —iO)V(Kk') .
(6.2}

For any of the on-shell-equivalent systems with
interaction potential given by Eq. (6.1), it follows
from Eq. (4.13) that

(k'~ VQ(k +i0)~k) =(Kk~Q (k' —i0)V~Kk') +(Kk~Q (k —i0}[V(UKU K" —1)+[Ho, UKU K ]}~Kk') . (6.3)

Thus the system described by H is time reversal
invariant off shell only if U and K commute, i.e.,
only if

[Ui K] = 0 . (6.4)

It follows that a unitary transformation of the
form

(r'( U(r) =e' ~"'6(r'-r), (6.5)

where &u(r) is a real function of r, does not relate
two systems that are both (off shell) invariant un-
der time reversal. Clearly no elastic scattering
experiment can reveal differences in off-shell

symmetry properties, since, on the energy shell,
the two systems have identical T matrix elements.

VII. ELASTICALLY EQUIVALENT POTENTIALS
AND THE MANY-BODY PROBLEM

In a number of recent calculations of the prop-
erties of nuclear matter, elastically equivalent po-
tentials have been used to describe the interaction
between two nucleons. "These calculations have
determined that the binding energy and density in
nuclear matter are sensitive to the off-shell char-
acter of this interaction.

In this section we wish to point out that it is pos-



50 MONAHAN, SHAKIN, AND THA LER

sible to adopt two different philosophies with re-
spect to the use of elastically equivalent potentials
in the many-body problem. The first point of view
is quite simple. One may assume that one has no
knowledge of the free nucleon-nucleon interaction
other than the information concerning phase shifts
and the deuteron binding energy. Interactions that
reproduce these properties of the two-body sys-
tem are then used to calculate properties of the
many-body system. The Hamiltonian for this
problem may be written in the standard form

H(V) =Q(n
~ ti P)a„a&+ —,

' P (nPi Viy&)a„aaaqa„,
cx 8 n8&&

(7.1)

where t is the kinetic energy operator and V is a
member of the class of elastically equivalent po-
tentials that reproduce the known properties of
the two-nucleon systems. The letters (n, P, y, 6)
denote any complete set of single-particle states.

The determination of the eigenvalues and eigen-
functions of H(Vj may be made via perturbation
theory if V is sufficiently smooth; otherwise, var-
ious reaction-matrix methods may be used. As
mentioned previously, the results of such calcula-
tions are sensitive to the off-shell character of V.

We now turn to a discussion of a second approach
to the many-body problem. One assumes that
there exists a definite many-body Hamiltonian
containing known two-body interactions, namely

H=Q(n iti P)a aa+ —' P (nPi V iy6)a„aaaqaz .
n8 a8&b

(7.2}

In this case the solution of the many-body Schro-
dinger equation may be facilitated by the introduc-

H =e ' He'eff (7.3)

has the same spectrum as H. In some cases it
may be more convenient to calculate with H, f f
rather than with H. If one is mainly interested in
two-body correlation, it is convenient to choose
S to be the two-body operator

S = S ~ i = —,
' (n P i S i y6) a a 8a~ n z .

n yb

More generally we may write

g S(~)
n= J,

(7.4)

(7.5)

where S "' denotes an n-body operator.
To perform calculations, one carries out a clus-

ter expansion of H, ff, namely

H =H'" +H"'+H(') + ~ ~ ~
eff (7.6)

where the H("' are n-body operators. The effec-
tive many-body forces" (n&2) appear here as a
result of introducing the unitary transformation
(7.3), even though the original H contained only
two-body forces, as in Eq. (7.2).

As usual we assume that the operator S has no
one-body part, as in Eq. (7.4). The various oper-
ators appearing in Eq. (7.6) may be determined
successively by taking matrix elements of Eq.
(7.6) in the space of states of one particle, two
particles, etc. In this manner we find that H'" is
just the many-body kinetic energy operator. The
two-body term H ' is found to be

tion of a unitary transformation of the basis states. '
We may denote this unitary transformation as e',
and note that

H('i = —', 5, (n p i e ' »(t, + t, + V»)e' » —(t, + t, ) i y6)a a aa qa z, (7.7)

where the subscripts 1 and 2 indicate the integration variables for the evaluation of the matrix element.
It is now useful to comment on the structure of the matrix element appearing in Eq. (7.7). We may in-

troduce the two-body states

(7.8}
which are analogous to the i%) states introduced in Eq. (2.10). As in the case of the operator U introduced
in Sec. G the operator e' ~ does not affect the center-of-mass motion of the pair and introduces only
short-range correlations in the relative motion. Thus inP) is identical to inP) for ir, —r, i sufficiently
large. More precisely, in the space of two particles the operators e' and the operator U may be related
by:

(r|r2(e' ir|r, ) =(r|r2ie' irir, ') =d '[a(r|+r2) ——,'(r,'+r2)]U(r, -r„r,'-r,')=6' (R —R')U(r, r ), (7.9)

where R is a center-of-mass coordinate and r a relative coordinate. Note that in the space of three
particles

(r,r,r, (e' (r,'rmr, ') =(r,r,r, ie' »' »' »'irir, 'r,') 4(r,r,r, ie"»e' »e' »ir,'r,'r,'), (7.10)
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since the terms in the exponent do not commute.
This feature makes the accurate evaluation of the
higher cluster terms (n& 2) difficult.

We define the operator V» as

V»= (t, + t + V») —e' »(t, +t2)e ' (7.11)

in complete analogy to the operator V introduced
in Eq. (2.17). Then Eq. (7.7) may be written as

(aP( V»~yE)a a8azaz .
e y6

(7.12)

Again, we have the option of working in the un-
barred representation of Eq. (7.7). Correspon-
dence to the foregoing analysis is achieved by
writing

V» = e ~V»e (7.13)

In terms of V„, H' has the simple structure

H' =~ 5, (aP
~ V» ~y5)a atIaqa„. (7.14}

As we have seen in the previous analysis, the po-
tential V» is elastically equivalent to the potential
V». We are therefore led to the following observa-
tions:

(1) If one terminates the cluster expansion for

H f f at the second term, the calculations carried
out using either the first philosophy (in which only
on-shell information is used to determine H) or
the calculation of H, ff=H" +H' with H' given by
Eq. (7.7}are identical from the computational
point of view.

(2) In the case of the unitary-transformation ap-
proach, a complete calculation of the entire clus-
ter series will provide a result independent of the
unitary transformation e' . One may take an al-
ternative point of view of the calculations carried
out with elastically equivalent potentials and the
first philosophy. These calculations may be
thought of as giving the results for the truncated
problem H, ff=-H" +H"'. Since the results depend
quite significantly on the potential used, one may
infer that the higher terms in H«(th ose with n&2)
can be large, of the order of several MeV per par-
ticle.

(3) Reasonable agreement with nuclear binding
energy and other properties achieved with poten-
tials that are not obtained from any fundamental
approach is probably fortuitous in that various
elastically equivalent potentials (which are just as
acceptable from a theoretical point of view} will
give quite different results.
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